Studiengangsbeschreibung

Inhalt

Die Elektroindustrie ist nach dem Maschinenbau gemessen an den Beschäftigtenzahlen die zweitgrößte Industriebranche der BRD. Mit ca. 847.000 Beschäftigten wird dabei ein Umsatz von ca. 179 Milliarden Euro erzielt (bezogen auf das Jahr 2016, Quelle: de.statista.com). Die Elektrotechnik ist damit nicht nur einer der „klassischen Ingenieurwissenschaften“ sondern auch einer der wesentlichen Motoren des nationalen und internationalen technischen Fortschritts in den letzten Jahrzehnten.

Das Masterstudium der Elektrotechnik mit  an der TUHH bereitet seine Absolventinnen und Absolventen auf führende Positionen in der elektrotechnischen Industrie und auf selbständiges Arbeiten in der Forschung vor. Die Master-Ausbildung ist dementsprechend gekennzeichnet durch eine wissenschaftliche Ausrichtung, inhaltliche Schwerpunktbildung und die Vermittlung von effektiven, strukturierten, interdisziplinären Arbeitsmethoden. Die inhaltlichen Schwerpunkte sind eng verknüpft mit den Forschungsthemen der Institute des Studiendekanats und spiegeln die Einheit von Forschung und Lehre wider. Dies gewährleistet stets aktuelle Vorlesungsinhalte und Möglichkeiten zur Mitarbeit in der Forschung an der TUHH z.B. im Rahmen von Abschlussarbeiten, Seminarbeiträgen und Projektarbeiten. Des Weiteren sind die inhaltlichen Schwerpunkte des Masterstudiengangs verknüpft mit den Kernfächern des Bachelorstudiengangs im Sinne eines konsekutiven Gesamtstudiengangs.

Ergänzend zu dem fachlichen Grundlagenkanon an der TUHH sind Seminare zur Personalen Kompetenzentwicklung im Rahmen des Theorie-Praxis-Transfers in das duale Studium integriert, die den modernen Berufsanforderungen an eine Ingenieurin bzw. einen Ingenieur gerecht werden und die Verknüpfung der beiden Lernorte unterstützt.

Die praxisintegrierenden dualen Intensivstudiengänge der TUHH bestehen aus einem wissenschaftsorientierten und einem praxisorientierten Teil, welche an zwei Lernorten durchgeführt werden. Der wissenschaftsorientierte Teil umfasst das Studium an der TUHH. Der praxisorientierte Teil ist mit dem Studium inhaltlich und zeitlich abgestimmt und findet jeweils in der vorlesungsfreien Zeit in einem Kooperationsunternehmen in Form von Praxismodulen und -phasen statt.


Berufliche Perspektiven

Ein erfolgreicher Abschluss des Masterstudiums Elektrotechnik ermöglicht den Berufseinstieg in die typischen Tätigkeitsfelder der Elektrotechnik. Dazu gehören die Nachrichten- und Kommunikationstechnik, die Mess-, Steuer- und Regelungstechnik, die Mikrosystemtechnik und Nanoelektronik, die elektrische Energietechnik, die Hochfrequenztechnik und optische Systeme.

Die Ingenieure und Ingenieurinnen der Elektrotechnik gehören zu den meistgefragten Akademikern bzw. Akademikerinnen auf dem Arbeitsmarkt. Eine aktuelle Auswertung der Daten der Bundesagentur für Arbeit belegt den steigenden Bedarf (Bundesagentur für Arbeit: "Berichte: Blickpunkt Arbeitsmarkt - Ingenieurinnen und Ingenieure", Nürnberg, 2018). Während die Zahl der gemeldeten Arbeitslosen weiter kontinuierlich sinkt, erhöht sich gleichzeitig die Anzahl der gemeldeten offenen Stellen deutlich. Dabei wird wohl nur ein Bruchteil der ausgeschriebenen Stellen der Bundesagentur für Arbeit gemeldet, so dass das Angebot an Stellen aktuell die Nachfrage übersteigen dürfte. Somit kann die Nachfrage nach Ingenieuren und Ingenieurinnen der Elektrotechnik - v.a. in den alten Bundesländern inkl. Hamburg - wie schon in den vergangenen Jahren nicht befriedigt werden („Fachkräftemangel“).

Der Master-Abschluss befähigt die Absolventen zudem zur Aufnahme einer Promotion. 

Zudem erlangen die Studentinnen und Studenten grundlegende fachliche und personale Kompetenzen im dualen Studium, die sowohl zu einem frühen Einstieg in die Berufspraxis als auch zu einem wissenschaftlich vertiefenden Studium befähigen. Darüber hinaus werden berufspraktische Erfahrungen durch die integrierten Praxismodule erweitert. Die Absolventinnen und Absolventen des dualen Studiengangs verfügen über ein breites Grundlagenwissen, grundlegende Fähigkeiten des wissenschaftlichen Arbeitens und über anwendungsbezogene personale Kompetenzen.


Lernziele

Die Absolventinnen und Absolventen des Master‐Studiengangs Elektrotechnik sollen in der Lage sein, ihre im Studium erworbenen ingenieurwissenschaftlichen, mathematischen und naturwissenschaftlichen Kompetenzen in die Praxis zu übertragen und dort - wenn nötig - selbstständig zu erweitern. Sie können Probleme mit wissenschaftlichen Methoden analysieren und zu einer Lösung führen, auch wenn die Probleme „offen“ oder unvollständig definiert sind. Sie sind zu selbständigem Arbeiten im Elektrotechnikingenieurwesen und in angrenzenden Disziplinen befähigt und können die für die Lösung technischer und konzeptioneller Fragestellungen benötigten Methoden und Verfahren sowie neue Erkenntnisse anwenden, kritisch hinterfragen und weiterentwickeln. Die Absolventinnen und Absolventen sind ferner qualifiziert, Entwürfe für anspruchsvolle Vorhaben in einer der Vertiefungsrichtungen

  • HF‐Technik, Optik und Elektromagnetische Verträglichkeit,
  • Medizintechnik,
  • Nachrichten‐ und Kommunikationstechnik,
  • Nanoelektronik und Mikrosystemtechnik und
  • Regelungs‐ und Energietechnik

zu erarbeiten und diese unter Berücksichtigung erforderlicher Abklärungen und Prüfung vorhandener Informationen zu planen. Die Lernziele sind im Folgenden eingeteilt in die Kategorien Wissen, Fertigkeiten, Sozialkompetenz und Selbstständigkeit.

Wissen

  • Die Studierenden können vertiefte mathematisch‐naturwissenschaftliche Kenntnisse wiedergeben und diese mit einem breiten theoretischen und methodischen Fundament untermauern. Dies schließt die Gebiete der Hochfrequenztechnik, der Regelungstechnik, der Mikrosystemtechnik und der Nanoelektronik ein, die im ersten Semester alle Pflichtveranstaltungen sind.
  • Die Studierenden können die Prinzipien, Methoden und Anwendungsgebiete der Vertiefungsrichtungen der Elektrotechnik im Detail erklären. Die Vertiefungsrichtungen sind (1) HF‐Technik, Optik und Elektromagnetische Verträglichkeit, (2) Medizintechnik, (3) Modellierung und Simulation, (4) Nachrichten‐ und Kommunikationstechnik, (5) Nanoelektronik und Mikrosystemtechnik und (6) Regelungs‐ und Energietechnik.
  • Die Studierenden können die Grundlagen im Bereich Betrieb und Management und angrenzenden Fächern wie Patentwesen benennen und in Beziehung zu ihrem Fach setzen.
  • Die Studierenden können die Elemente wissenschaftlicher Arbeit und Forschung anführen und können einen Überblick über deren Anwendung in der Elektrotechnik geben.

Fertigkeiten 

Für alle Vertiefungen

  • Die Absolventen sind in der Lage komplexe regelungstechnische Systeme zu beurteilen, ihre Funktionsfähigkeit zu testen sowie mikrosystemtechnische und nanoelektronische Schaltungen zu analysieren und zu optimieren. Ferner können sie hochfrequenztechnische Lösungen erarbeiten sowie einen Überblick über Verfahren und Anwendungsmöglichkeiten der digitalen Nachrichtenübertragung geben (Kernqualifikationen). 
  • Die Studierenden können zukünftige Technologien und wissenschaftliche Entwicklungen untersuchen bzw. einschätzen und sind befähigt, eigenständig forschend tätig zu werden (Befähigung zur Promotion).

Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit

Die Studierenden beherrschen das theoriegeleitete Anwenden sehr anspruchsvoller Methoden und Verfahren der HF-Technik, der Optik und der elektrotechnischen Verträglichkeit.

  • Studierende können komplexere Probleme der Antennentheorie beschreiben, mit CAD Simulationen Lösungsverfahren für Teilprobleme herausarbeiten und daraus eine Gesamtlösung erstellen. Sie sind in der Lage Effekte in Schaltungen der HF-Technik zu analysieren, zu simulieren und zu bewerten.
  • Studierende sind in der Lage faseroptische und integrierte optische Wellenausbreitungen mathematisch zu beschreiben, bei der Modellierung Näherungslösungen abzuleiten und Einflussfaktoren auf Systemkomponenten abzuschätzen.
  • Studierende sind in der Lage unterschiedliche Methoden zur Berechnung elektromagnetischer Felder und zur Wellenausbreitung anzuwenden sowie die Ergebnisse zu diskutieren. Ebenso können Sie den Einfluss bezüglich der Elektromagnetischen Verträglichkeit abschätzen, analysieren und unterschiedliche Lösungswege gegeneinander abwägen.

Vertiefung Medizintechnik

Die Studierenden beherrschen theoriegeleitetes Anwenden sehr anspruchsvoller Methoden und Verfahren der Medizintechnik. 

  • Studierende können Funktionsweise und Einsatzmöglichkeiten klinischer Bildgebungsverfahren erläutern sowie Effekte der wichtigsten Klassen bildgebender Sensoren und Displays unter Verwendung mathematischer Methoden und physikalischer Modelle interpretieren.
  • Die Studierenden können Navigations- und robotische Systeme für medizinische Anwendungen entwerfen und bewerten. Sie sind in der Lage eine Auswahl und Adaption von Klassifikations-, Regressions- und Prädiktionsverfahren zu begründen und können diese anhand klinischer Beispieldaten bewerten und die entsprechenden Methoden umsetzen.
  • Studierende sind in der Lage, medizinelektronische Anwendungen und die Realisierbarkeit von Mikrosystemen zu analysieren, Prozessfolgen für die Herstellung von Mikrostrukturen zu entwerfen und diese anzuwenden.

Vertiefung Nachrichten- und Kommunikationstechnik

Die Studierenden beherrschen theoriegeleitetes Anwenden sehr anspruchsvoller Methoden und Verfahren der Nachrichten- und Kommunikationstechnik. 

  • Studierende sind in der Lage, die Leistungsfähigkeit von Nachrichtenübertragungsverfahren und Kommunikationsnetzen zu bewerten und die aufgetretenen Effekte zu erläutern sowie typische Planungs- und Optimierungsaufgaben zu lösen. 
  • Die Studierenden sind in der Lage, mit Hilfe grundlegender informationstheoretischer Methoden Übertragungsverfahren, Datenkompressionsverfahren (Quellencodierung) und Fehlerkorrekturverfahren (Kanalcodierung) zu vergleichen, auszuwählen und zu dimensionieren.  Sie sind in der Lage, diese Verfahren in Software zu implementieren. Insbesondere können sie  die Grenzen der Datenkompression bzw. der Datenübertragungsrate  bestimmen und damit ein Übertragungsverfahren dimensionieren. 
  • Studierende können Methoden der Statistik auf Probleme der Kommunikationstechnik und der Signalverarbeitung anwenden. Sie können theoretisch und methodisch fundiert Merkmalsbewertungen und Klassifikationen analysieren.

Vertiefung Nanoelektronik und Mikrosystemtechnik

Die Studierenden beherrschen das theoriegeleitete Anwenden sehr anspruchsvoller Methoden und Verfahren der Nanoelektronik und der Mikrosystemtechnik. 

  • Sie können elektronische Schaltungen (analog und digital) entwerfen, Abweichungen von integrierten Bauelementen und Rauschspektren berechnen und durch Simulation verifizieren. Sie können das Kosten-Nutzen-Verhältnis unterschiedlicher Designansätze bestimmen.
  • Studierende sind in der Lage, die Realisierbarkeit von Mikrosystemen zu analysieren, eine Analyse der Einflüsse von Prozessparametern durchzuführen, Prozessfolgen für die Herstellung von Mikrostrukturen zu entwerfen und  diese anzuwenden.
  • Die Studierenden können Modelle und mathematische Beschreibungen hinsichtlich freier Wellenausbreitung sowie quantenoptischer Phänomene und Prozesse ableiten sowie  Näherungslösungen finden.

Vertiefung Regelungs- und Energietechnik

Die Studierenden beherrschen das theoriegeleitete Anwenden sehr anspruchsvoller Methoden und Verfahren der Regelungs- und der Energietechnik.

  • Die Studierenden sind in der Lage, Optimierungen von Prozessabläufen durchzuführen und für abstrakte Aufgabenstellungen Methoden auszuwählen, die zu gewünschten Ergebnissen führen.
  • Die Studierenden sind in der Lage, Technologien und Verfahren zur Planung bzw. Analyse elektrischer Energiesysteme anzuwenden, die Ergebnisse zu bewerten, das dynamische Verhalten und die Stabilität elektrischer Energiesysteme anhand geeigneter Modellierungen zu berechnen und zu analysieren.
  • Studierende sind in der Lage, komplexe lineare und nichtlineare Systeme zu analysieren, regelungstechnische Methoden anzuwenden und zu implementieren sowie umfassende mathematische Simulationen durchzuführen.

Sozialkompetenz

  • Die Studierenden sind in der Lage, Vorgehensweise und Ergebnisse ihrer Arbeit schriftlich und mündlich auf Deutsch und Englisch verständlich darzustellen.
  • Die Studierenden können über fortgeschrittene Inhalte und Probleme der Elektrotechnik mit Fachleuten und Laien auf Deutsch und Englisch kommunizieren. Sie können auf Nachfragen, Ergänzungen und Kommentare geeignet reagieren.
  • Die Studierenden sind in der Lage, in Gruppen zu arbeiten. Sie können Teilaufgaben definieren, verteilen und integrieren. Sie können zeitliche Vereinbarungen treffen und sozial interagieren. Sie haben die Fähigkeit und Bereitschaft, Führungsverantwortung zu übernehmen.

Kompetenz zum selbständigen Arbeiten

  • Die Studierenden sind in der Lage, notwendige Informationen zu beschaffen und in den Kontext ihres Wissens zu setzen.
  • Die Studierenden können ihre vorhandenen Kompetenzen realistisch einschätzen, Defizite selbstständig kompensieren und sinnvolle Erweiterungen vornehmen.
  • Die Studierenden können selbstorganisiert und -motiviert Forschungsgebiete erarbeiten und neue Problemstellungen finden bzw. definieren (lebenslanges Forschen).

Der kontinuierliche Wechsel der Lernorte im dualen Studium ermöglicht es, dass Theorie und Praxis zueinander in Beziehung gesetzt werden können. Die individuellen berufspraktischen Erfahrungen werden von den Studierenden theoretisch reflektiert und in neue Formen der Praxis überführt, wie auch die praktische Erprobung theoretischer Elemente als Anregung für die theoretische Auseinandersetzung genutzt wird.


Studiengangsstruktur

Das Curriculum des Masterstudiengangs Elektrotechnik ist wie folgt gegliedert:

  • Kernqualifikation: 14 Module, 84 LP, 1. - 3. Semester inkl. der Praxisphasen (30 LP)
  • Vertiefung: 36 LP, 2. und 3. Semester
  • Masterarbeit: 30 LP, 4. Semester im Lernort Kooperationsunternehmen

Die fachliche Lehre der Kernqualifikation ist unterteilt in: 

  • Theoretische Grundlagen der Vertiefungsrichtungen: 5 Module, 30 LP, 1. Semester 
  • Technische Ergänzungskurse: 2 Module, 12 LP, 2. und 3. Semester

Die Kernqualifikation beinhaltet neben Fachmodulen auch überfachliche Module:

  • Betrieb & Management: 6 LP, 1. - 3. Semester
  • Theorie-Praxis-Verzahnung für dual Studierende im Master: 6 LP, 1. - 3. Semester

Die Wahl einer Vertiefungsrichtung ist obligatorisch. 

Die Vertiefungsrichtungen des Masterstudiengangs sind:

  • HF‐Technik, Optik und Elektromagnetische Verträglichkeit,
  • Medizintechnik,
  • Nachrichten‐ und Kommunikationstechnik,
  • Nanoelektronik und Mikrosystemtechnik und
  • Regelungs‐ und Energietechnik.

Innerhalb einer Vertiefungsrichtung kann und muss im Rahmen der vorgeschriebenen Leistungspunkteanzahl von 36 LP, entsprechend einem Anteil von 30% des Curriculums, aus einem Wahlpflichtkatalog ausgewählt werden. Die Fachmodule der Vertiefungsrichtungen sind im Modulhandbuch einzeln aufgeführt. Innerhalb jeder Vertiefungsrichtung muss mindestens ein Modul "Forschungsprojekt und Seminar" belegt werden, wobei sich die Zuordnung zur Vertiefungsrichtung aus den bearbeiteten Themen ergibt. Um trotz großer individueller Freiräume bei der Auswahl der Lehrveranstaltungen ein ausgewogenes Verhältnis von formalen und praktischen Lehrinhalten im Theorie‐ und Anwendungsbereich des Curriculums zu gewährleisten, sind Querschnittsveranstaltungen (theoretische Grundlagen der Vertiefungsrichtungen) im Umfang von 30 ECTS, entsprechend einem Anteil von 25% des Curriculums, obligatorisch für alle Studierenden des ersten Semesters. Diese umfassen die Module Digitale Nachrichtenübertragung, Elektrische Energiesysteme, Hochfrequenztechnik, Mikrosystemtechnik, Theorie und Entwurf regelungstechnischer Systeme. Weitere Spielräume bei der individuellen Gestaltung des Studienplanes bieten die technischen Ergänzungskurse, die aus dem technischen Gesamtkatalog aller Mastervorlesungen der TUHH im Umfang von 12 LP, entsprechend einem Anteil von 10% des Curriculums gewählt werden können. Den verbleibenden Teil des Curriculums machen die nichttechnischen Fächer mit einem Anteil von ebenfalls 10% und die Masterarbeit mit einem Anteil von 25% aus.

Der Studienplan enthält ein Mobilitätsfenster derart, dass Studierende das zweite oder dritte Semester im Ausland absolvieren können.

Das Strukturmodell der dualen Studienvariante folgt einem moduldifferenzierenden Ansatz. Aufgrund des praxisorientierten Teils weist das Curriculum der dualen Studienvariante Unterschiede im Vergleich zum regulären Bachelorstudium auf. Die fünf Praxismodule sind in entsprechenden Praxisphasen in der vorlesungsfreien Zeit verortet und finden im Kooperationsunternehmen der dual Studierenden statt.

Fachmodule der Kernqualifikation

Modul M0523: Betrieb & Management

Modulverantwortlicher Prof. Matthias Meyer
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden sind in der Lage, ausgewählte betriebswirtschaftliche Spezialgebiete innerhalb der Betriebswirtschaftslehre zu verorten.
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Theorien, Kategorien und Modelle erklären.
  • Die Studierenden können technisches und betriebswirtschaftliches Wissen miteinander in Beziehung setzen.


Fertigkeiten
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Methoden anwenden.
  • Die Studierenden können für praktische Fragestellungen in betriebswirtschaftlichen Teilbereichen Entscheidungsvorschläge begründen.


Personale Kompetenzen
Sozialkompetenz
  • Die Studierenden sind in der Lage, in interdisziplinären Kleingruppen zu kommunizieren und gemeinsam Lösungen für komplexe Problemstellungen zu erarbeiten.


Selbstständigkeit
  • Die Studierenden sind in der Lage, sich notwendiges Wissen durch Recherchen und Aufbereitungen von Material selbstständig zu erschließen.


Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltungen
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls.

Modul M0676: Digitale Nachrichtenübertragung

Lehrveranstaltungen
Titel Typ SWS LP
Digitale Nachrichtenübertragung (L0444) Vorlesung 2 3
Digitale Nachrichtenübertragung (L0445) Hörsaalübung 2 2
Praktikum Digitale Nachrichtenübertragung (L0646) Laborpraktikum 1 1
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Mathematik 1-3
  • Signale und Systeme
  • Einführung in die Nachrichtentechnik und ihre stochastischen Methoden
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind in der Lage, moderne digitale Nachrichtenübertragungsverfahren zu verstehen, zu vergleichen und zu entwerfen. Sie sind vertraut mit den Eigenschaften linearer und nicht-linearer digitaler Modulationsverfahren. Sie können die Verzerrungen durch Übertragungskanäle beschreiben sowie Empfänger einschließlich Kanalschätzung und Entzerrung entwerfen und beurteilen. Sie kennen die Prinzipien der Single Carrier- und Multicarrier-Übertragung und die Grundlagen wichtiger Vielfachzugriffsverfahren.

Die Studierenden kennen die Vorlesungs- und Übungsinhalte und können diese erläutern sowie auf neue Fragestellungen anwenden.


Fertigkeiten

Die Studierenden sind in der Lage, ein digitales Nachrichtenübertragungsverfahren einschließlich Vielfachzugriff zu analysieren und zu entwerfen. Sie sind in der Lage, ein hinsichtlich Übertragungsrate, Bandbreitebedarf, Fehlerwahrscheinlichkeit und weiterer Signaleigenschaften geeignetes digitales Modulationsverfahren zu wählen. Sie können einen geeigneten Detektor einschließlich Kanalschätzung und Entzerrung entwerfen und dabei Eigenschaften suboptimaler Verfahren hinsichtlich Leistungsfähigkeit und Aufwand berücksichtigen. Sie sind in der Lage, ein Single-Carrierverfahren oder ein Multicarrier-Verfahren zu dimensionieren und die Eigenschaften beider Ansätze gegeneinander abzuwägen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in fachspezifische Aufgaben gemeinsam bearbeiten.

Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Schriftliche Ausarbeitung
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme: Pflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0444: Digital Communications
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum WiSe
Inhalt
  • Repetition: Baseband Transmission
    • Pulse shaping: Non-return to zero (NRZ) rectangular pulses, raised-cosine pulses, square-root raised-cosine pulses
    • Power spectral density (psd) of baseband signals
    • Intersymbol interference (ISI)
    • First and second Nyquist criterion
    • AWGN channel
    • Matched filter
    • Matched-filter receiver and correlation receiver
    • Noise whitening matched filter
    • Discrete-time AWGN channel model
  • Representation of bandpass signals and systems in the equivalent baseband
    • Quadrature amplitude modulation (QAM)
    • Equivalent baseband signal and system
    • Analytical signal
    • Equivalent baseband random process, equivalent baseband white Gaussian noise process
    • Equivalent baseband AWGN channel
    • Equivalent baseband channel model with frequency-offset and phase noise
    • Equivalent baseband Rayleigh fading and Rice fading channel models
    • Equivalent baseband frequency-selective channel model
    • Discrete memoryless channels (DMC)
  • Bandpass transmission via carrier modulation
    • Amplitude modulation, frequency modulation, phase modulation
    • Linear digital modulation methods
      • On-off keying, M-ary amplitude shift keying (M-ASK), M-ary phase shift keying (M-PSK), M-ary quadrature amplitude modulation (M-QAM), offset-QPSK
      • Signal space representation of transmit signal constellations and signals
      • Energy of linear digital modulated signals, average energy per symbol
      • Power spectral density of linear digital modulated signals
      • Bandwidth efficiency
      • Correlation coefficient of elementary signals
      • Error probabilities of linear digital modulation methods
        • Error functions
        • Gray mapping and natural mapping
        • Bit error probabilities, symbol error probabilities, pairwise symbol error probabilities
        • Euclidean distance and Hamming distance
        • Exact and approximate computation of error probabilities
        • Performance comparison of modulation schemes in terms of per bit SNR vs. per symbol SNR
      • Hierarchical modulation, multilevel modulation
      • Effects of carrier phase offset and carrier frequency offset
      • Differential modulation
        • M-ary differential phase shift keying (M-PSK)
        • Coherent and non-coherent detection of DPSK
        • p/M-differential phase shift keying (p/M-DPSK)
        • Differential amplitude and phase shift keying (DAPSK)
    • Non-linear digital modulation methods
      • Frequency shift keying (FSK)
      • Modulation index
      • Minimum shift keying (MSK)
        • Offset-QPSK representation of MSK
        • MSK with differential precoding and rotation
        • Bit error probabilities of MSK
        • Gaussian minimum shift keying (GMSK)
        • Power spectral density of MSK and GMSK
      • Continuous phase modulation (CPM)
        • General description of CPM signals
        • Frequency pulses and phase pulses
      • Coherent and non-coherent detection of FSK
    • Performance comparison of linear and non-linear digital modulation methods
  • Frequency-selective channels, ISI channels
    • Intersymbol interference and frequency-selectivity
    • RMS delay spread
    • Narrowband and broadband channels
    • Equivalent baseband transmission model for frequency-selective channels
    • Receive filter design
  • Equalization
    • Symbol-spaced and fractionally-spaced equalizers
    • Inverse system
    • Non-recursive linear equalizers
      • Linear zero-forcing (ZF) equalizer
      • Linear minimum mean squared error (MMSE) equalizer
    • Non-linear equalization:
      • Decision feedback equalizer (DFE)
      • Tomlinson-Harashima precoding
    • Maximum a posteriori probability (MAP) and maximum likelihood equalizer, Viterbi algorithm
  • Single-carrier vs. multi-carrier transmission
  • Multi-carrier transmission
    • General multicarrier transmission
    • Orthogonal frequency division multiplex (OFDM)
      • OFDM implementation using the Fast Fourier Transform (FFT)
      • Cyclic guard interval
      • Power spectral density of OFDM
      • Peak-to-average power ratio (PAPR)
  • Multiple access
    • Principles of time division multiple access (TDMA), frequency division multiple access (FDMA), code division multiple access (CDMA), non-orthogonal multiple access (NOMA), hybrid multiple access
  • Spread spectrum communications
    • Direct sequence spread spectrum communications
    • Frequency hopping
    • Protection against eavesdropping
    • Protection against narrowband jammers
    • Short vs. long spreading codes
    • Direct sequence spread spectrum communications in frequency-selective channels
      • Rake receiver
    • Code division multiple access (CDMA)
      • Design criteria of spreading sequences, autocorrelation function and crosscorrelation function of spreading sequences
      • Intersymbol interference (ISI) and multiple access interference (MAI)
      • Pseudo noise (PN) sequences, maximum length sequences (m-sequences), Gold codes, Walsh-Hadamard codes, orthogonal variable spreading factor (OVSF) codes
      • Multicode transmission   
      • CDMA in uplink and downlink of a wireless communications system
      • Single-user detection vs. multi-user detection


Literatur

K. Kammeyer: Nachrichtenübertragung, Teubner

P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner.

J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill.

S. Haykin: Communication Systems. Wiley

R.G. Gallager: Principles of Digital Communication. Cambridge

A. Goldsmith: Wireless Communication. Cambridge.

D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge.

Lehrveranstaltung L0445: Digital Communications
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0646: Praktikum Digitale Nachrichtenübertragung
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Gerhard Bauch
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- DSL-Übertragung

- Stochastische Prozesse

- Digitale Datenübertragung

Literatur

K. Kammeyer: Nachrichtenübertragung, Teubner

P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner.

J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill.

S. Haykin: Communication Systems. Wiley

R.G. Gallager: Principles of Digital Communication. Cambridge

A. Goldsmith: Wireless Communication. Cambridge.

D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge.

Modul M0710: Hochfrequenztechnik

Lehrveranstaltungen
Titel Typ SWS LP
Hochfrequenztechnik (L0573) Vorlesung 2 3
Hochfrequenztechnik (L0574) Hörsaalübung 2 2
Hochfrequenztechnik (L0575) Laborpraktikum 1 1
Modulverantwortlicher Prof. Alexander Kölpin
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlagen der Nachrichtentechnik, Halbleiterelektronik und elektronischer Schaltungen, Grundkenntnisse der Wellenausbreitung aus den Vorlesungen Leitungstheorie und Theoretische Elektrotechnik.


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können Phänomene bei der Ausbreitung elektromagnetischer Wellen in unterschiedlichen Frequenzbändern erklären. Sie können Übertragungssysteme und die darin enthaltenen Komponenten beschreiben. Sie können einen Überblick über unterschiedliche Antennentypen geben und die grundlegenden Kenngrößen von Antennen beschreiben. Sie können das Rauschen von linearen Schaltungen erklären, Schaltungsvarianten anhand von Kenngrößen vergleichen und für unterschiedliche Situationen die jeweils am besten geeignete wählen.

Fertigkeiten

Die Studierenden sind in der Lage, die Ausbreitung elektromagnetischer Wellen zu berechnen. Sie können komplette Übertragungssysteme analysieren und einfache Empfängerschaltungen auslegen. Sie können die Eigenschaften und Kenngrößen von einfachen Antennen und Gruppenstrahlern anhand aus der Geometrie berechnen. Sie können das Rauschen von Empfängern und den Signal-zu-Rausch-Abstand von kompletten Übertragungssystemen berechnen. Die Studienenden können die erlerne Theorie in Praktikumsversuchen anwenden.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden führen während des Praktikums in Gruppen versuche durch. Sie dokumentieren, diskutieren und bewerten die Ergebnisse gemeinsam.


Selbstständigkeit

Die Studierenden sind fähig das erlernte Wissen mit ihren Vorkenntnissen aus anderen Vorlesungen zu verknüpfen. Sie können unter Anleitung für die Lösung spezifischer Probleme notwendige Daten aus externen Quellen, wie Normen oder Literatur, extrahieren und anwenden. Sie sind in der Lage eigenständig und mit Hilfe der Praktikumsumdrucke ihr Wissen in die Praxis umzusetzen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Kernqualifikation: Pflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Lehrveranstaltung L0573: Hochfrequenztechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Antennen: Berechnungsgrundlagen - Kenngrößen - Verschiedene Antennenformen

- Funkwellenausbreitung

- Sender: Leistungserzeugung mit Röhren - Sendeverstärker

- Empfänger: Vorverstärker - Überlagerungsempfang - Empfangsempfindlichkeit - Rauschen

- Ausgewählte Systembeispiele


Literatur

H.-G. Unger, „Elektromagnetische Theorie für die Hochfrequenztechnik, Teil I“, Hüthig, Heidelberg, 1988

H.-G. Unger, „Hochfrequenztechnik in Funk und Radar“, Teubner, Stuttgart, 1994

E. Voges, „Hochfrequenztechnik - Teil II: Leistungsröhren, Antennen und Funkübertragung, Funk- und Radartechnik“, Hüthig, Heidelberg, 1991

E. Voges, „Hochfrequenztechnik“, Hüthig, Bonn, 2004


C.A. Balanis, “Antenna Theory”, John Wiley and Sons, 1982

R. E. Collin, “Foundations for Microwave Engineering”, McGraw-Hill, 1992

D. M. Pozar, “Microwave and RF Design of Wireless Systems”, John Wiley and Sons, 2001

D. M. Pozar, “Microwave Engineerin”, John Wiley and Sons, 2005


Lehrveranstaltung L0574: Hochfrequenztechnik
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0575: Hochfrequenztechnik
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0746: Microsystem Engineering

Lehrveranstaltungen
Titel Typ SWS LP
Mikrosystemtechnik (L0680) Vorlesung 2 4
Mikrosystemtechnik (L0682) Projekt-/problembasierte Lehrveranstaltung 2 2
Modulverantwortlicher Dr. Thomas Kusserow
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Basic courses in physics, mathematics and electric engineering
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students know about the most important technologies and materials of MEMS as well as their applications in sensors and actuators.

Fertigkeiten

Students are able to analyze and describe the functional behaviour of MEMS components and to evaluate the potential of microsystems.

Personale Kompetenzen
Sozialkompetenz

Students are able to solve specific problems alone or in a group and to present the results accordingly.

Selbstständigkeit

Students are able to acquire particular knowledge using specialized literature and to integrate and associate this knowledge with other fields.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 10 % Referat
Prüfung Klausur
Prüfungsdauer und -umfang zweistündig
Zuordnung zu folgenden Curricula Elektrotechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0680: Microsystem Engineering
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Dr. Thomas Kusserow
Sprachen EN
Zeitraum WiSe
Inhalt

Object and goal of MEMS

Scaling Rules

Lithography

Film deposition

Structuring and etching

Energy conversion and force generation

Electromagnetic Actuators

Reluctance motors

Piezoelectric actuators, bi-metal-actuator

Transducer principles

Signal detection and signal processing

Mechanical and physical sensors

Acceleration sensor, pressure sensor

Sensor arrays

System integration

Yield, test and reliability

Literatur

M. Kasper: Mikrosystementwurf, Springer (2000)

M. Madou: Fundamentals of Microfabrication, CRC Press (1997)

Lehrveranstaltung L0682: Microsystem Engineering
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Thomas Kusserow
Sprachen EN
Zeitraum WiSe
Inhalt

Examples of MEMS components

Layout consideration

Electric, thermal and mechanical behaviour

Design aspects

Literatur

Wird in der Veranstaltung bekannt gegeben

Modul M0846: Control Systems Theory and Design

Lehrveranstaltungen
Titel Typ SWS LP
Theorie und Entwurf regelungstechnischer Systeme (L0656) Vorlesung 2 4
Theorie und Entwurf regelungstechnischer Systeme (L0657) Gruppenübung 2 2
Modulverantwortlicher Prof. Herbert Werner
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Introduction to Control Systems
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain how linear dynamic systems are represented as state space models; they can interpret the system response to initial states or external excitation as trajectories in state space
  • They can explain the system properties controllability and observability, and their relationship to state feedback and state estimation, respectively
  • They can explain the significance of a minimal realisation
  • They can explain observer-based state feedback and how it can be used to achieve tracking and disturbance rejection
  • They can extend all of the above to multi-input multi-output systems
  • They can explain the z-transform and its relationship with the Laplace Transform
  • They can explain state space models and transfer function models of discrete-time systems
  • They can explain the experimental identification of ARX models of dynamic systems, and how the identification problem can be solved by solving a normal equation
  • They can explain how a state space model can be constructed from a discrete-time impulse response

Fertigkeiten
  • Students can transform transfer function models into state space models and vice versa
  • They can assess controllability and observability and construct minimal realisations
  • They can design LQG controllers for multivariable plants
  •  They can carry out a controller design both in continuous-time and discrete-time domain, and decide which is  appropriate for a given sampling rate
  • They can identify transfer function models and state space models of dynamic systems from experimental data
  • They can carry out all these tasks using standard software tools (Matlab Control Toolbox, System Identification Toolbox, Simulink)

Personale Kompetenzen
Sozialkompetenz

Students can work in small groups on specific problems to arrive at joint solutions. 

Selbstständigkeit

Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems.

They can assess their knowledge in weekly on-line tests and thereby control their learning progress.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Elektrotechnik: Kernqualifikation: Pflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Lehrveranstaltung L0656: Control Systems Theory and Design
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum WiSe
Inhalt

State space methods (single-input single-output)

• State space models and transfer functions, state feedback 
• Coordinate basis, similarity transformations 
• Solutions of state equations, matrix exponentials, Caley-Hamilton Theorem
• Controllability and pole placement 
• State estimation, observability, Kalman decomposition 
• Observer-based state feedback control, reference tracking 
• Transmission zeros
• Optimal pole placement, symmetric root locus 
Multi-input multi-output systems
• Transfer function matrices, state space models of multivariable systems, Gilbert realization 
• Poles and zeros of multivariable systems, minimal realization 
• Closed-loop stability
• Pole placement for multivariable systems, LQR design, Kalman filter 

Digital Control
• Discrete-time systems: difference equations and z-transform 
• Discrete-time state space models, sampled data systems, poles and zeros 
• Frequency response of sampled data systems, choice of sampling rate 

System identification and model order reduction 
• Least squares estimation, ARX models, persistent excitation 
• Identification of state space models, subspace identification 
• Balanced realization and model order reduction 

Case study
• Modelling and multivariable control of a process evaporator using Matlab and Simulink 
Software tools
• Matlab/Simulink

Literatur
  • Werner, H., Lecture Notes „Control Systems Theory and Design“
  • T. Kailath "Linear Systems", Prentice Hall, 1980
  • K.J. Astrom, B. Wittenmark "Computer Controlled Systems" Prentice Hall, 1997
  • L. Ljung "System Identification - Theory for the User", Prentice Hall, 1999
Lehrveranstaltung L0657: Control Systems Theory and Design
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1250: Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze

Lehrveranstaltungen
Titel Typ SWS LP
Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze (L1696) Vorlesung 3 4
Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze (L1697) Hörsaalübung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik,

Elektrische Energiesysteme I,

Mathematik I, II, III

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können Technologien und Informationssysteme der Betriebsführung konventioneller und moderner elektrischer Energieversorgungssysteme sowie Verfahren und Algorithmen der Rechner gestützten stationären Netzberechnung, der Fehlerrechnung, der Netzführung und Systemoptimierung detailliert erläutern und kritisch bewerten.

Fertigkeiten

Mit Abschluss dieses Moduls sind die Studierenden in der Lage, die erlernten Technologien und Verfahren zur Planung bzw. Analyse realer elektrischer Energiesysteme anzuwenden und die Ergebnisse kritisch zu bewerten. 

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnisse vor anderen vertreten. 

Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen sowie im Rahmen weiterführender Forschungsaktivitäten nutzbar machen. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Elektrotechnik: Kernqualifikation: Pflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L1696: Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum WiSe
Inhalt
  • Stationäre Modellierung elektrischer Energiesysteme
    • konventionelle Komponenten
    • leistungselektronische Netzregler (FACTS) und HGÜ
    • Netzmodellierung
  • Netzbetrieb
    • Prozess der elektrischen Energieversorgung
    • Netz-/Systemführung
    • Netzbereitstellung
  • Netzleittechnik und Netzleitsysteme
    • Informations- und Kommunikationstechnik elektrischer Energiesysteme
    • IT-Architekturen der Stations-, Feld- und Netzleitebene
    • IT-Integration (Energiemarkt / Engpassmanagement / Asset Management)
    • Entwicklungstrends in der Leittechnik
    • Smart Grids
  • Funktionen und stationäre Berechnungen für den Netzbetrieb
    • Lastflussberechnungsmethoden
    • Sensitivitätsanalyse und Lastflusssteuerung
    • Sensitivitätsanalyse
    • Betriebsoptimierung
    • Symmetrische Kurzschlussberechnung
    • Unsymmetrische Fehlerstromberechnung
      • symmetrische Komponenten
      • Berechnung unsymmetrischer Fehler
    • Netzzustandsabschätzung
Literatur

E. Handschin: Elektrische Energieübertragungssysteme, Hüthig Verlag

B. R. Oswald: Berechnung von Drehstromnetzen, Springer-Vieweg Verlag

V. Crastan: Elektrische Energieversorgung Bd. 1 & 3, Springer Verlag

E.-G. Tietze: Netzleittechnik Bd. 1 & 2, VDE-Verlag

Lehrveranstaltung L1697: Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1759: Theorie-Praxis-Verzahnung im dualen Master

Modulverantwortlicher Dr. Henning Haschke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Modul „Theorie-Praxis-Verzahnung im dualen Bachelor“
  • Praxismodule aus dem dualen Bachelor der TUHH
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden …

… können ausgewählte klassische und aktuelle Theorien, Konzepte und Methoden ...

  • des Projektmanagements und
  • des Veränderungs- und Transformationsmanagements

... beschreiben, einordnen sowie auf konkrete Situationen, Prozesse und Vorhaben in Ihrem persönlichen beruflichen Kontext anwenden.

Fertigkeiten

Die Studierenden …

  • ... antizipieren typische Schwierigkeiten, positive und negative Auswirkungen sowie Erfolgs- und Misserfolgsfaktoren im Ingenieurbereich, beurteilen diese und wägen aussichtsreiche Strategien und Handlungsoptionen gegeneinander ab.
  • … entwickeln spezialisierte fachliche und konzeptionelle Fertigkeiten zur Lösung komplexer Aufgaben- und Problemstellungen im beruflichen Tätigkeitsfeld/Arbeitsbereich. 
Personale Kompetenzen
Sozialkompetenz

Die Studierenden …

  • … sind in der Lage, auch interdisziplinäre Teams im Rahmen komplexer Aufgaben- und Problemstellungen verantwortlich zu leiten.
  • … führen bereichsspezifische und -übergreifende Diskussionen mit Fachexpertinnen und Fachexperten, Stakeholdern sowie Mitarbeiterinnen und Mitarbeitern und vertreten dabei ihre Vorgehensweisen, Standpunkte und Arbeitsergebnisse. 
Selbstständigkeit

Die Studierenden …

  • … definieren, reflektieren und bewerten Ziele und Maßnahmen für komplexe anwendungsorientierte Projekte und Veränderungsprozesse.
  • … gestalten ihren beruflichen Zuständigkeitsbereich eigenständig und nachhaltig.
  • … übernehmen Verantwortung für ihr Handeln und für ihre Arbeitsergebnisse.
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine fortlaufende Dokumentation und Reflexion der Lernerfahrungen und der Kompetenzentwicklung im Bereich der Personalen Kompetenz.
Lehrveranstaltung L2890: Projektmanagement im Ingenieurbereich verantwortungsvoll gestalten (duale Studienvariante)
Typ Seminar
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Dr. Henning Haschke, Heiko Sieben
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt
  • Theorien und Methoden des Projektmanagements
  • Innovationsmanagement
  • Agiles Projektmanagement
  • Grundlagen agiler und klassischer Methoden
  • Hybrider Einsatz klassischer und agiler Methoden  
  • Rollen, Perspektiven und Stakeholder im Projektverlauf
  • Initiierung und Koordination von komplexen Projekten im Ingenieurbereich
  • Grundlagen Moderation, Teamsteuerung, Teamführung, Konfliktmanagement
  • Kommunikationsstrukturen: betriebsintern, unternehmensübergreifend
  • Öffentliche Informationspolitik
  • Förderung von Commitment und Empowerment
  • Erfahrungsaustausch mit Fach- und Führungskräften aus dem Ingenieurbereich
  • Dokumentation und Reflexion von Lernerfahrungen
Literatur

Seminarapparat

Lehrveranstaltung L2891: Veränderungs- und Transformationsmanagement im Ingenieurbereich verantwortungsvoll gestalten (duale Studienvariante)
Typ Seminar
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Dr. Henning Haschke, Heiko Sieben
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt
  • Grundkonzepte, Chancen und Grenzen organisationalen Wandels 
  • Modelle und Methoden der Organisationsgestaltung und -entwicklung
  • Strategische Ausrichtung und Veränderung und deren kurz-, mittel- und langfristigen Konsequenzen für Individuum, Organisation und Gesellschaft
  • Rollen, Perspektiven und Stakeholder in Veränderungsprozessen
  • Initiierung und Koordinierung von Veränderungsmaßnahmen im Ingenieurbereich
  • Phasen-Modelle des organisationalen Wandels (Lewin, Kotter etc.) 
  • Veränderungsgerechte Informationspolitik und Umgang mit Widerständen und Unsicherheit 
  • Förderung von Commitment und Empowerment
  • Erfolgreicher Umgang mit Change und Transformation: persönlich, als Mitarbeiterin bzw. Mitarbeiter, als Führungskraft (persönlich, professional, organisational)
  • Unternehmen und Globe (systemisch)
  • Erfahrungsaustausch mit Fach- und Führungskräften aus dem Ingenieurbereich
  • Dokumentation und Reflexion von Lernerfahrungen
Literatur Seminarapparat

Modul M1756: Praxismodul 1 im dualen Master

Lehrveranstaltungen
Titel Typ SWS LP
Praxisphase 1 im dualen Master (L2887) 0 10
Modulverantwortlicher Dr. Henning Haschke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Erfolgreicher Abschluss eines dualen Bachelors der TU Hamburg bzw. vergleichbare berufspraktische Erfahrungen und Kompetenzen im Bereich der Theorie-Praxis-Verzahnung
  • LV D "Projektmanagement im Ingenieurbereich verantwortungsvoll gestalten" aus dem Modul "Theorie-Praxis-Verzahnung im dualen Master"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden …

  • … verbinden ihre Kenntnisse von Fakten, Grundsätzen, Theorien und Methoden der bisherigen Studieninhalte mit dem erworbenen Praxiswissen, insbesondere ihrem Wissen um berufspraktische Verfahrens- und Vorgehensmöglichkeiten, im aktuellen Tätigkeitsfeld im Ingenieurbereich. 
  • … verfügen über ein kritisches Verständnis über die praktischen Anwendungsmöglichkeiten ihres ingenieurwissenschaftlichen Faches. 
Fertigkeiten

Die Studierenden …

  • … wenden fachtheoretisches Wissen auf komplexe, bereichsübergreifende Problemstellungen des Betriebes an und beurteilen die dazugehörigen Arbeitsprozesse und -ergebnisse unter Einbeziehung von Handlungsoptionen.
  • … setzen die mit ihren aktuellen Aufgaben korrespondierenden hochschulseitigen Anwendungsempfehlungen um. 
  • … erarbeiten Lösungen sowie Verfahrens- und Vorgehensweisen in ihrem Tätigkeitsfeld und Zuständigkeitsbereich.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden …

  • … arbeiten verantwortlich in Projektteams ihres Arbeitsbereichs und gehen vorausschauend mit Problemen in der Arbeitsgruppe um. 
  • … vertreten komplexe ingenieurwissenschaftliche Standpunkte, Sachverhalte, Problemstellungen und Lösungsansätze im Gespräch mit internen und externen betrieblichen Stakeholdern argumentativ. 
Selbstständigkeit

Die Studierenden …

  • … definieren Ziele für die eigenen Lern- und Arbeitsprozesse als Ingenieurin bzw. Ingenieur.
  • … reflektieren Lern- und Arbeitsprozesse in ihrem Zuständigkeitsbereich.
  • … reflektieren die Bedeutung von Fachmodulen, Vertiefungsrichtungen und Spezialisierung für die Arbeit als Ingenieurin bzw. Ingenieur sowie die Umsetzung der hochschulseitigen Anwendungsempfehlungen und der damit einhergehenden Herausforderungen eines positiven Theorie-Praxis-Transfers.
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Leistungspunkte 10
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat.
Zuordnung zu folgenden Curricula Bauingenieurwesen: Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht
Computer Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energietechnik: Kernqualifikation: Pflicht
Environmental Engineering: Kernqualifikation: Pflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Information and Communication Systems: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht
Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht
Materialwissenschaft: Kernqualifikation: Pflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Kernqualifikation: Pflicht
Microelectronics and Microsystems: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht
Regenerative Energien: Kernqualifikation: Pflicht
Schiffbau und Meerestechnik: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Lehrveranstaltung L2887: Praxisphase 1 im dualen Master
Typ
SWS 0
LP 10
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Dozenten Dr. Henning Haschke
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt

Onboarding Betrieb

  • Zuweisung berufliches Tätigkeitsfeld als Ingenieurin bzw. Ingenieur (B.Sc.) und dazugehöriger Arbeitsbereiche
  • Festlegung der Zuständigkeiten und Befugnisse des dual Studierenden im Betrieb als Ingenieurin bzw. Ingenieur (B.Sc.)
  • Eigenverantwortliches Arbeiten im Team und ausgewählten Projekten - bereichs- und ggf. unternehmensübergreifend
  • Ablaufplanung des aktuellen Praxismoduls mit klarer Zuordnung zu den Arbeitsstrukturen 
  • Ablaufplanung der Prüfungsphase/nächstes Studiensemester

Betriebliches Wissen und betriebliche Fertigkeiten

  • Unternehmensspezifika: Verantwortung als Ingenieurin bzw. Ingenieur (B.Sc.) im eigenen Arbeitsbereich, Koordination von Team- und Projektarbeit, Umgang mit komplexen Zusammenhängen und ungelösten Problemstellungen, Entwicklung und Realisierung von Innovationen
  • Fachliche Spezialisierung (korrespondierend mit dem gewählten Studiengang (M.Sc.) im Tätigkeitsfeld
  • Systemische Fertigkeiten
  • Umsetzung der hochschulseitigen Anwendungsempfehlungen (Theorie-Praxis-Transfer) in damit korrespondierenden Arbeits- und Aufgabenbereichen des Betriebes 

Lerntransfer/-reflexion

  • Anlegen E-Portfolio
  • Bedeutung der Studieninhalte (M.Sc.) für die Arbeit als Ingenieurin bzw. Ingenieur
  • Bedeutung von Entwicklung und Innovation für die Arbeit als Ingenieurin bzw. Ingenieur 
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer
Literatur
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Handlungsempfehlungen zum Theorie-Praxis-Transfer

Modul M0798: Technischer Ergänzungskurs für ETMS (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Siehe gewähltes Modul laut FSPO

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

siehe gewähltes Modul laut FSPO

Fertigkeiten

siehe gewähltes Modul laut FSPO

Personale Kompetenzen
Sozialkompetenz

siehe gewähltes Modul laut FSPO

Selbstständigkeit

siehe gewähltes Modul laut FSPO

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 12
Zuordnung zu folgenden Curricula Elektrotechnik: Kernqualifikation: Pflicht

Modul M1757: Praxismodul 2 im dualen Master

Lehrveranstaltungen
Titel Typ SWS LP
Praxisphase 2 im dualen Master (L2888) 0 10
Modulverantwortlicher Dr. Henning Haschke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Erfolgreicher Abschluss des Praxismoduls 1 im dualen Master
  • LV D "Projektmanagement im Ingenieurbereich verantwortungsvoll gestalten" aus dem Modul "Theorie-Praxis-Verzahnung im dualen Master"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden …

  • … verbinden ihre Kenntnisse von Fakten, Grundsätzen, Theorien und Methoden der bisherigen Studieninhalte mit dem erworbenen Praxiswissen, insbesondere ihrem Wissen um berufspraktische Verfahrens- und Vorgehensmöglichkeiten, im aktuellen Tätigkeitsfeld im Ingenieurbereich. 
  • … verfügen über ein kritisches Verständnis über die praktischen Anwendungsmöglichkeiten ihres ingenieurwissenschaftlichen Faches. 
Fertigkeiten

Die Studierenden …

  • … wenden fachtheoretisches Wissen auf komplexe, bereichsübergreifende Problemstellungen des Betriebes an und beurteilen die dazugehörigen Arbeitsprozesse und -ergebnisse unter Einbeziehung von Handlungsoptionen.
  • … setzen die mit ihren aktuellen Aufgaben korrespondierenden hochschulseitigen Anwendungsempfehlungen um. 
  • … erarbeiten (neue) Lösungen sowie Verfahrens- und Vorgehensweisen in ihrem Tätigkeitsfeld und Zuständigkeitsbereich - auch bei sich häufig ändernden Anforderungen (systemische Fertigkeiten).
Personale Kompetenzen
Sozialkompetenz

Die Studierenden …

  • … arbeiten verantwortlich in bereichs- und übergreifenden Projektteams und gehen vorausschauend mit Problemen in der Arbeitsgruppe um. 
  • … vertreten komplexe ingenieurwissenschaftliche Standpunkte, Sachverhalte, Problemstellungen und Lösungsansätze im Gespräch mit internen und externen betrieblichen Stakeholdern argumentativ und entwickeln diese gemeinsam weiter. 
Selbstständigkeit

Die Studierenden …

  • … definieren Ziele für die eigenen Lern- und Arbeitsprozesse als Ingenieurin bzw. Ingenieur.
  • … reflektieren Lern- und Arbeitsprozesse in ihrem Zuständigkeitsbereich.
  • … reflektieren die Bedeutung von Fachmodulen, Vertiefungsrichtungen und Spezialisierung für die Arbeit als Ingenieurin bzw. Ingenieur sowie die Umsetzung der hochschulseitigen Anwendungsempfehlungen und der damit einhergehenden Herausforderungen eines positiven Theorie-Praxis-Transfers.
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Leistungspunkte 10
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat.
Zuordnung zu folgenden Curricula Bauingenieurwesen: Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht
Computer Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energietechnik: Kernqualifikation: Pflicht
Environmental Engineering: Kernqualifikation: Pflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Information and Communication Systems: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht
Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht
Materialwissenschaft: Kernqualifikation: Pflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Kernqualifikation: Pflicht
Microelectronics and Microsystems: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht
Regenerative Energien: Kernqualifikation: Pflicht
Schiffbau und Meerestechnik: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Lehrveranstaltung L2888: Praxisphase 2 im dualen Master
Typ
SWS 0
LP 10
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Dozenten Dr. Henning Haschke
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt

Onboarding Betrieb

  • Zuweisung berufliches Tätigkeitsfeld als Ingenieurin bzw. Ingenieur (B.Sc.) und dazugehöriger Arbeitsbereiche
  • Festlegung der Zuständigkeiten und Befugnisse des dual Studierenden im Betrieb als Ingenieurin bzw. Ingenieur (B.Sc.)
  • Eigenverantwortliches Arbeiten im Team und ausgewählten Projekten - im bereichs- und ggf. unternehmensübergreifend
  • Ablaufplanung des aktuellen Praxismoduls mit klarer Zuordnung zu den Arbeitsstrukturen 
  • Ablaufplanung der Prüfungsphase/nächstes Studiensemester

Betriebliches Wissen und betriebliche Fertigkeiten

  • Unternehmensspezifika: Verantwortung als Ingenieurin bzw. Ingenieur (B.Sc.) im eigenen Arbeitsbereich, Koordination von Team- und Projektarbeit, Umgang mit komplexen Zusammenhängen und ungelösten Problemstellungen, Entwicklung und Realisierung von Innovationen
  • Fachliche Spezialisierung (korrespondierend mit dem gewählten Studiengang (M.Sc.) im Tätigkeitsfeld
  • Systemische Fertigkeiten
  • Umsetzung der hochschulseitigen Anwendungsempfehlungen (Theorie-Praxis-Transfer) in damit korrespondierenden Arbeits- und Aufgabenbereichen des Betriebes 

Lerntransfer/-reflexion

  • Fortschreiben E-Portfolio
  • Bedeutung der Studieninhalte (M.Sc.) für die Arbeit als Ingenieurin bzw. Ingenieur
  • Bedeutung von Entwicklung und Innovation für die Arbeit als Ingenieurin bzw. Ingenieur 
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer
Literatur
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Modul M1758: Praxismodul 3 im dualen Master

Lehrveranstaltungen
Titel Typ SWS LP
Praxisphase 3 im dualen Master (L2889) 0 10
Modulverantwortlicher Dr. Henning Haschke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Erfolgreicher Abschluss des Praxismoduls 2 im dualen Master
  • LV E aus dem Modul "Theorie-Praxis-Verzahnung im dualen Master"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden …

  • … verbinden ihr umfassendes und spezialisiertes ingenieurwissenschaftliches Wissen der bisherigen Studieninhalte mit dem erworbenen strategieorientierten Praxiswissen im aktuellen Arbeits- und Verantwortungsbereich. 
  • … verfügen über ein kritisches Verständnis über die praktischen Anwendungsmöglichkeiten ihres ingenieurwissenschaftlichen Faches sowie der angrenzenden Bereiche bei der Realisierung von Innovationen.
Fertigkeiten

Die Studierenden …

  • … wenden spezialisierte und konzeptionelle Fertigkeiten zur Lösung komplexer, mitunter bereichsübergreifender Problemstellungen des Betriebes an und beurteilen die dazugehörigen Arbeitsprozesse und -ergebnisse unter Einbeziehung von Handlungsoptionen.
  • … setzen die mit ihren aktuellen Aufgaben korrespondierenden hochschulseitigen Anwendungsempfehlungen um. 
  • … erarbeiten neue Lösungen sowie Verfahrens- und Vorgehensweisen für die Umsetzung betrieblicher Projekte und Aufträge - auch bei sich häufig ändernden Anforderungen und unvorhersehbaren Veränderungen (systemische Fertigkeiten).
  • … sind in der Lage, mit wissenschaftlichen Methoden neue Ideen und Verfahren für betriebliche Problem- und Fragestellungen zu entwickeln und diese hinsichtlich ihrer Verwendbarkeit zu beurteilen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden …

  • … arbeiten verantwortlich in bereichs- und unternehmensübergreifenden Projektteams und gehen vorausschauend mit Problemen in der Arbeitsgruppe um. 
  • … sind in der Lage, die fachliche Entwicklung anderer gezielt zu fördern.
  • … vertreten komplexe und interdisziplinäre ingenieurwissenschaftliche Standpunkte, Sachverhalte, Problemstellungen und Lösungsansätze im Gespräch mit internen und externen betrieblichen Stakeholdern argumentativ und entwickeln diese gemeinsam weiter. 
Selbstständigkeit

Die Studierenden …

  • … reflektieren Lern- und Arbeitsprozesse in ihrem Zuständigkeitsbereich.
  • … definieren Ziele für neue anwendungsorientierte Aufgaben, Projekte und Innovationsvorhaben unter Reflexion möglicher Auswirkungen auf Betrieb und Öffentlichkeit. 
  • … reflektieren die Bedeutung von Vertiefungsrichtungen, Spezialisierung und Forschung für die Arbeit als Ingenieur*in sowie die Umsetzung der hochschulseitigen Anwendungsempfehlungen und der damit einhergehenden Herausforderungen eines positiven Theorie-Praxis-Transfers.
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Leistungspunkte 10
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat.
Zuordnung zu folgenden Curricula Bauingenieurwesen: Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht
Computer Science: Kernqualifikation: Pflicht
Data Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energietechnik: Kernqualifikation: Pflicht
Environmental Engineering: Kernqualifikation: Pflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Information and Communication Systems: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht
Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht
Luftfahrttechnik: Kernqualifikation: Pflicht
Materials Science and Engineering: Kernqualifikation: Pflicht
Materialwissenschaft: Kernqualifikation: Pflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Kernqualifikation: Pflicht
Microelectronics and Microsystems: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht
Regenerative Energien: Kernqualifikation: Pflicht
Schiffbau und Meerestechnik: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Lehrveranstaltung L2889: Praxisphase 3 im dualen Master
Typ
SWS 0
LP 10
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Dozenten Dr. Henning Haschke
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt

Onboarding Betrieb

  • Zuweisung zukünftiges berufliches Tätigkeitsfeld als Ingenieurin bzw. Ingenieur (M.Sc.) und dazugehöriger Arbeitsbereiche
  • Erweiterung der Zuständigkeiten und Befugnisse des dual Studierenden im Betrieb bis hin zur vorgesehenen Erstverwendung nach dem Studium 
  • Verantwortliches Arbeiten im Team; Projektverantwortung im eigenen Zuständigkeitsbereich ggf. auch bereichs- und unternehmensübergreifend
  • Ablaufplanung des letzten Praxismoduls mit klarer Zuordnung zu den Arbeitsstrukturen 
  • Betriebsinterne Abstimmung über eine potenzielle Problemstellung oder ein Innovationsvorhaben für die Masterarbeit
  • Ablaufplanung der Masterarbeit im Betrieb in der Zusammenarbeit mit der TU Hamburg  
  • Ablaufplanung der Prüfungsphase/nächstes Studiensemester

Betriebliches Wissen und betriebliche Fertigkeiten

  • Unternehmensspezifika: Umgang mit Veränderungen, Projekt- und Teamentwicklung, Verantwortung als Ingenieurin bzw. Ingenieur im zukünftigen Arbeitsbereich (M.Sc.), Umgang mit komplexen Zusammenhängen, häufigen und unvorhersehbaren Veränderungen, Entwicklung und Realisierung von Innovationen
  • Fachliche Spezialisierung in einem Arbeitsbereich (Abschlussarbeit)
  • Systemische Fertigkeiten
  • Umsetzung der hochschulseitigen Anwendungsempfehlungen (Theorie-Praxis-Transfer) in damit korrespondierenden Arbeits- und Aufgabenbereichen des Betriebes 

Lerntransfer/-reflexion

  • E-Portfolio
  • Bedeutung von Studieninhalten und der eigenen Spezialisierung für die Arbeit als Ingenieurin bzw. Ingenieur
  • Bedeutung von Forschung und Innovation für die Arbeit als Ingenieurin bzw. Ingenieur 
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer
Literatur
  • Studierendenhandbuch
  • betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Fachmodule der Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit

Modul M0643: Optoelectronics I - Wave Optics

Lehrveranstaltungen
Titel Typ SWS LP
Optoelektronik I: Wellenoptik (L0359) Vorlesung 2 3
Optoelektronik I: Wellenoptik (Übung) (L0361) Gruppenübung 1 1
Modulverantwortlicher Dr. Alexander Petrov
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basics in electrodynamics, calculus


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can explain the fundamental mathematical and physical relations of freely propagating optical waves.
They can give an overview on wave optical phenomena such as diffraction, reflection and refraction, etc. 
Students can describe waveoptics based components such as electrooptical modulators in an application oriented way.



Fertigkeiten

Students can generate models and derive mathematical descriptions in relation to free optical wave propagation.
They can derive approximative solutions and judge factors influential on the components' performance.


Personale Kompetenzen
Sozialkompetenz

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Selbstständigkeit

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Leistungspunkte 4
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Materialwissenschaft: Vertiefung Nano- und Hybridmaterialien: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Lehrveranstaltung L0359: Optoelectronics I: Wave Optics
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction to optics
  • Electromagnetic theory of light
  • Interference
  • Coherence
  • Diffraction
  • Fourier optics
  • Polarisation and Crystal optics
  • Matrix formalism
  • Reflection and transmission
  • Complex refractive index
  • Dispersion
  • Modulation and switching of light
Literatur

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 
Hecht, E., Optics, Benjamin Cummings, 2001
Goodman, J.W. Statistical Optics, Wiley, 2000
Lauterborn, W., Kurz, T., Coherent Optics: Fundamentals and Applications, Springer, 2002

Lehrveranstaltung L0361: Optoelectronics I: Wave Optics (Problem Solving Course)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum SoSe
Inhalt see lecture Optoelectronics 1 - Wave Optics
Literatur

see lecture Optoelectronics 1 - Wave Optics

Modul M0645: Fibre and Integrated Optics

Lehrveranstaltungen
Titel Typ SWS LP
Faseroptik und Integrierte Optik (L0363) Vorlesung 2 3
Faseroptik und Integrierte Optik (Übung) (L0365) Gruppenübung 1 1
Modulverantwortlicher Prof. Manfred Eich
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basic principles of electrodynamics and optics

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can explain the fundamental mathematical and physical relations and technological basics of guided optical waves. They can describe integrated optical as well as fibre optical structures. They can give an overview on the applications of integrated optical components in optical signal processing.

Fertigkeiten

Students can generate models and derive mathematical descriptions in relation to fibre optical and integrated optical wave propagation. They can derive approximative solutions and judge factors influential on the components' performance.


Personale Kompetenzen
Sozialkompetenz Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.
Selbstständigkeit

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.

Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Leistungspunkte 4
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0363: Fibre and Integrated Optics
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Hagen Renner
Sprachen EN
Zeitraum SoSe
Inhalt
  • Theory of optical waveguides
  • Coupling to and from waveguides
  • Losses
  • Linear and nonlinear dspersion
  • Components and technical applications
Literatur

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007
Hunsperger, R.G., Integrated Optics: Theory and Technology, Springer, 2002
Agrawal, G.P.,Fiber-Optic Communication Systems, Wiley, 2002, ISBN 0471215716
Marcuse, D., Theory of Dielectric Optical Waveguides, Academic Press,1991, ISBN 0124709516
Tamir, T. (ed), Guided-Wave Optoelectronics, Springer, 1990

Lehrveranstaltung L0365: Fibre and Integrated Optics (Problem Solving Course)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Hagen Renner
Sprachen EN
Zeitraum SoSe
Inhalt

See lecture Fibre and Integrated Optics

Literatur

See lecture Fibre and Integrated Optics

Modul M1016: Optical Communications

Lehrveranstaltungen
Titel Typ SWS LP
Optische Kommunikationstechnik (L0477) Vorlesung 2 3
Optische Kommunikationstechnik (L0480) Hörsaalübung 1 1
Modulverantwortlicher Dr. Hagen Renner
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Fundamentals of Electrical Engineering, Communication Engineering, Electronics Components

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The aim of this course is imparting profound knowledge and analytical skills in the following fields:

- Fundamentals of Optical Waveguiding

- Properties of Optical Silica Fibers

- Passive Components for Optical Communications

- Fundamentals of Photodiodes and LEDs

- Noise in Photodetectors

- Laser Diodes

- Optical Amplifiers

- Nonlinearities in Optical Fibers

- Optical Communication Systems

Fertigkeiten Fundamental skills are imparted with respect to the modelling of basic optical communication systems and fundamental optical components as well as to estimating the influence of important causes of impairement.
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit In the excersises the autonomous aplication of the knowledge gained in the lecture to specific problems of Optical Communications will be trained.
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Leistungspunkte 4
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Lehrveranstaltung L0477: Optical Communication
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Hagen Renner
Sprachen EN
Zeitraum SoSe
Inhalt

Optical Communications 

  • Optical waveguide fundamentals 
    • total internal reflection at plane dielectric interfaces
    • slab waveguides
    • rays in step-index and graded-index “multi-mode” fibers
    • modes in optical fibers
    • single-mode fibers
    • fabrication of fibers
  • Properties of silica optical fiber relevant in communications
    • attenuation by scattering and absorption
    • dispersion and pulse broadening
    • polarization mode dispersion
  • Passive fiber optical components
    • excitation of fibers, splice/connector loss
    • fiber optical directional couplers
    • isolators, circulators, phased arrays, grating components
  • Photodiode and LED fundamentals
    • pin-photodiodes: responsivity, response time, equivalent circuit
    • avalanche photodiodes
    • light emitting diodes: spectra, output power, modulation
  • Noise in photodetectors 
    • power spectral density of a train of randomly occuring events
    • shot noise and thermal noise
    • photodetector equivalent circuits with noise sources
    • basic receiver considerations
  • Laserdiodes
    • basic laser physics
    • Fabry-Perot laser diodes
    • rate equations and LD characteristics
    • special laser diodes
  • Optical fiber amplifiers
    • Erbium in silica fibers: energy levels, transitions, cross sections, amplification                                            
    • noise in optical amplifiers: spontaneous emission, ASE, noise figure, periodic amplification
    • modelling of optical amplifiers
    • examples and applications
  • Nonlinearities in optical fibers
    • basic nonlinear effects
    • solitons for high bit rate transmission: dispersion vs. self phase modulation
  • Optical fiber systems
Literatur

[1]        G.P. Agrawal, "Fiber-optic communication systems", Wiley-Interscience, 2002

[2]        J. Gowar: “Opical Communication Systems“, Prentice Hall 199

[3]         I.P. Kaminov and L. Koch (ed.): “Optical Fiber Telecomminications“,

            volume IIIA and IIIB, Academic Press, 1997

[4]        A. Yariv: “Optical Electronics“, Sauders College Publishing, 1997

[5]        E.G. Neumann: “Single-Mode Fibers“, Springer 1988

[6]        H.G. Unger: “Optische Nachrichtentechnik“, volume I and II, Hüthig 1992

            (in German)

[7]        J.M. Senior: “Optical Fiber communications“, Prentice Hall 2009

[8]        E. Voges and K. Petermann (ed.): “Optische Kommunikationstechnik”,

            Springer 2002 (in German)

Lehrveranstaltung L0480: Optical Communication
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Hagen Renner
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0712: Hochfrequenzbauelemente und -schaltungen I

Lehrveranstaltungen
Titel Typ SWS LP
Hochfrequenzbauelemente und -schaltungen I (L0580) Vorlesung 3 4
Hochfrequenzbauelemente und -schaltungen I (L0581) Hörsaalübung 2 2
Modulverantwortlicher Prof. Alexander Kölpin
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Elektrotechnik IV, Hochfrequenztechnik, Grundlagen der Halbleitertechnik


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die Funktionsweise von Verstärker, Mischer und Oszillator detailliert erläutern. Sie können Theorien, Konzepte und sinnvolle Annahmen zur Beschreibung und Synthese dieser Bauelemente darstellen. Sie sind in der Lage, vertiefte Kenntnisse der Physik ausgewählter Hochfrequenz-Halbleiterbauelemente auf den Verstärker, den Mischer und den Oszillator anzuwenden. Sie können verschiedene Bauelemente hinsichtlich unterschiedlicher Parameter (wie z.B. Frequenzbereich, Leistung und Effizienz) gegenüberstellen.


Fertigkeiten

Die Studierenden sind in der Lage einzuschätzen, welche prinzipiellen linearen und nichtlinearen Effekte in einer aktiven Schaltung der Hochfrequenztechnik auftauchen können, und können diese analysieren und bewerten. Sie können passive und aktive lineare Mikrowellenschaltungen mit modernen Software-Werkzeugen unter Berücksichtigung von Anwendungsanforderungen entwickeln.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der CAD-Übungen).


Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik IV, Theoretische Elektrotechnik, Hochfrequenztechnik und Elektronische Bauelemente) verknüpfen. Sie sind fähig, Probleme und Lösungen im Bereich der Hochfrequenzbauelemente auf Englisch kommunizieren.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Lehrveranstaltung L0580: Hochfrequenzbauelemente und -schaltungen I
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum SoSe
Inhalt

- Verstärker: S-Parameter, Stabilität, Gewinndefinitionen, Gewöhnlicher Bipolartransistor und HBT, MESFET und HEMT; Schaltungsanwendungen, Nichtlineare Verzerrungen, Rauscharmer Vorverstärker, Leistungsverstärker

- Mischer: Parametrische Rechnung; pn- und Schottky-Diode, FET; Schaltungsanwendungen, Konversionsgewinn und Rauschzahl

- Oszillator: Anschwingverhalten, Großsignalarbeitspunkt, Stabilität; IMPATT-Diode, Gunn-Element, FET; Oszillator-Stabilisierung

- Lineare Passive Schaltungen: Planare Mikrowellenschaltungen, Lambda-Viertel-Anpassung und Diskontinuitäten, Tiefpass- und Bandpassfilter-Synthese

- Entwurf aktiver Schaltungen


Literatur

- E. Voges, „Hochfrequenztechnik“, Hüthig (2004)

- H.-G. Unger, W. Harth, „Hochfrequenz-Halbleiterelektronik“, S. Hirzel Verlag (1972)

- S.M. Sze, „Physics of Semiconductor Devices”, John Wiley & Sons (1981)
- A. Jacob, „Lecture Notes Microwave Semiconductor Devices and Circuits Part I“


Lehrveranstaltung L0581: Hochfrequenzbauelemente und -schaltungen I
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0769: EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren

Lehrveranstaltungen
Titel Typ SWS LP
EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren (L0743) Vorlesung 3 4
EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren (L0744) Gruppenübung 1 1
EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren (L0745) Laborpraktikum 1 1
Modulverantwortlicher Prof. Christian Schuster
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegenden Gesetzmäßigkeiten, Zusammenhänge und Methoden der Elektromagnetischen Verträglichkeit elektrischer und elektronischer Systeme erklären und in den Kontext des störungsfreien Aufbaus und des Nachweises der Elektromagnetischen Verträglichkeit solcher Systeme setzen. Sie können die verschiedenen Störquellen und Koppelpfade klassifizieren und erläutern. Sie können passive Entstörkonzepte für Probleme der Elektromagnetischen Verträglichkeit vorschlagen und beschreiben. Sie können einen Überblick über messtechnische und numerische Methoden zur Sicherstellung der Elektromagnetischen Verträglichkeit in der elektrotechnischen Praxis geben.

Fertigkeiten

Die Studierenden können eine Reihe von Verfahren zur Modellbildung der Elektromagnetischen Verträglichkeit typischer elektrischer und elektronischer Systeme anwenden. Sie können einschätzen, welche prinzipiellen Effekte diese Modelle in Bezug auf die Elektromagnetische Verträglichkeit vorhersagen, können diese klassifizieren und quantitativ analysieren. Sie können Lösungsstrategien aus diesen Vorhersagen ableiten und für die Anwendung in der elektrotechnischen Praxis dimensionieren. Sie können verschiedene Lösungsstrategien gegeneinander abwägen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise auf Englisch präsentieren, etwa während der praktischen Versuche und Übungen.

Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Theoretischer Elektrotechnik und Nachrichtentechnik) verknüpfen. Sie können Probleme und Lösungen im Bereich der Elektromagnetischen Verträglichkeit auf Englisch kommunizieren.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Referat
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0743: EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einführung in die Elektromagnetische Verträglichkeit (EMV)
  • Störquellen in Zeit- und Frequenzbereich
  • Kopplungsmechanismen
  • Leitungen und ihre Kopplung an elektromagnetische Felder
  • Schirmung
  • Filter
  • EMV-Prüfverfahren
Literatur
  • C.R. Paul: "Introduction to Electromagnetic Compatibility", 2nd ed., (Wiley, New Jersey, 2006).
  • A.J. Schwab und W. Kürner: "Elektromagnetische Verträglichkeit", 6. Auflage, (Springer, Berlin 2010).
  • F.M. Tesche, M.V. Ianoz, and T. Karlsson: "EMC Analysis Methods and Computational Models", (Wiley, New York, 1997).
Lehrveranstaltung L0744: EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Übung dient der Vertiefung und Einübung der Vorlesungsinhalte.

Literatur
  • C.R. Paul: "Introduction to Electromagnetic Compatibility", 2nd ed., (Wiley, New Jersey, 2006).
  • A.J. Schwab und W. Kürner: "Elektromagnetische Verträglichkeit", 6. Auflage, (Springer, Berlin 2010).
  • F.M. Tesche, M.V. Ianoz, and T. Karlsson: "EMC Analysis Methods and Computational Models", (Wiley, New York, 1997).
  • Scientific articles and papers
Lehrveranstaltung L0745: EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Mit Hilfe von Laborversuchen werden die folgenden Themenfelder der EMV praktisch untersucht:

  • Schirmung
  • Leitungsgeführte EMV-Prüfverfahren
  • Die GTEM-Zelle als feldgebundene Prüfumgebung
Literatur Versuchsbeschreibungen und zugehörige Literatur werden innerhalb der Veranstaltung bereit gestellt.

Modul M1785: Machine Learning in Electrical Engineering and Information Technology

Lehrveranstaltungen
Titel Typ SWS LP
General Introduction Machine Learning (L3004) Vorlesung 1 2
Machine Learning Applications in Electric Power Systems (L3008) Vorlesung 1 1
Machine Learning in Electromagnetic Compatibility (EMC) Engineering (L3006) Vorlesung 1 1
Machine Learning in High-Frequency Technology and Radar (L3007) Vorlesung 1 1
Machine Learning in Wireless Communications (L3005) Vorlesung 1 1
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

The module is designed for a diverse audience, i.e. students with different background. It shall be suitable for both students with deeper knowledge in machine learning methods but less knowledge in electrical engineering, e.g. math or computer science students, and students with deeper knowledge in electrical engineering but less knowledge in machine learning methods, e.g. electrical engineering students. Machine learning methods will be explained on a relatively high level indicating mainly principle ideas. The focus is on specific applications in electrical engineering and information technology. 

The chapters of the course will be understandable in different depth depending on the individual background of the student. The individual background of the students will be taken into consideration in the oral exam.


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht
Lehrveranstaltung L3004: General Introduction Machine Learning
Typ Vorlesung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Dr. Maximilian Stark
Sprachen EN
Zeitraum SoSe
Inhalt
  • From Rule-Based Systems to Machine Learning
    • Brief overview recent advances in ML in various domain
    • Outline and expected learning outcomes
    • Basics statistical inference and statistics
    • Basics of information theory
  • The Notions of Learning in Machine Learning
    • Unsupervised and supervised machine learning
    • Model-based and data-driven machine learning
    • Hybrid modelling
    • Online/offline/meta/transfer learning
    • General loss functions
  • Introduction to Deep Learning
    • Variants of neural networks
    • MLP
    • Conv. neural networks
    • Recurrent neural networks
    • Training neural networks
    • (Stochastic) Gradient Descent
  • Regression vs. Classification
    • Classification as supervised learning problem
    • Hands-On Session
  • Representation Learning and Generative Models
    • AutoEncoders
    • Directed Generative Models
    • Undirected Generative Models
    • Generative Adversarial Neural Networks
  • Probabilistic Graphical Models
    • Bayesian Networks
    • Variational inference (variational autoencoder)
Literatur
Lehrveranstaltung L3008: Machine Learning Applications in Electric Power Systems
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Becker, Dr. Davood Babazadeh
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L3006: Machine Learning in Electromagnetic Compatibility (EMC) Engineering
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster, Dr. Cheng Yang
Sprachen EN
Zeitraum SoSe
Inhalt

Electromagnetic Compatibility (EMC) Engineering deals with design, simulation, measurement, and certification of electronic and electric components and systems in such a way that their operation is safe, reliable, and efficient in any possible application. Safety is hereby understood as safe with respect to parasitic effects of electromagnetic fields on humans as well as on the operation of other components and systems nearby. Examples for components and systems range from the wiring in aircraft and ships to high-speed interconnects in server systems and wirless interfaces for brain implants. In this part of the course we will give an introduction to the physical basics of EMC engineering and then show how methods of Machine Learning (ML) can be applied to expand todays physcis-based approaches in EMC Engineering.

Literatur
Lehrveranstaltung L3007: Machine Learning in High-Frequency Technology and Radar
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Kölpin, Dr. Fabian Lurz
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L3005: Machine Learning in Wireless Communications
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Maximilian Stark
Sprachen EN
Zeitraum SoSe
Inhalt
  • Supervised Learning Application - Channel Coding
    • Recap channel coding and block codes
    • Block codes as trainable neural networks
    • Tanner graph with trainable weights
    • Hands-on session
  • Supervised Learning Application - Modulation Detection
    • Recap wireless modulation schemes
    • Convolutional neuronal networks for blind detection of modulation schemes
    • Hands-on session
  • Autoencoder Application - Constellation Shaping I
    • Recap channel capacity and constellation shaping, 
    • Capacity achieving machine learning systems
    • Information theoretical explanation of the autoencoder training
    • Hands-on session
  • Autoencoder Application - Constellation Shaping II
    • Training without a channel model
    • Mutual information neural estimator
    • Hands-on session
  • Generative Adversarial Network Application - Channel Modelling
    • Recap realistic channels with non-linear hardware impairments
    • Training a digital twin of a realistic channel with insufficient training data
    • Hands-on session
  • Recurrent Neural Network Application - Channel prediction
    • Recap time-varying channel models
    • Recurrent neural networks for temporal prediction
    • Hands-on session
Literatur

Modul M1689: Drahtlose Systeme für mobile Anwendungen

Lehrveranstaltungen
Titel Typ SWS LP
Drahtlose Systeme für mobile Anwendungen (L2680) Vorlesung 2 3
Drahtlose Systeme für mobile Anwendungen (L2681) Hörsaalübung 2 3
Modulverantwortlicher Prof. Alexander Kölpin
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Hochfrequenztechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die Funktionsweise von mobilen Funkkommunikationssystemen, Radar und Low-Power-Sensornetzen detailliert erläutern. Sie können Theorien, Konzepte und sinnvolle Annahmen der Effekte der Funkwellenausbreitung bei mobilen Anwendungen darstellen. Sie sind in der Lage, vertiefte Kenntnisse der Physik der Wellenausbreitung in dynamischen Szenarien auf die Systemauslegung von Mobilkommunikation, Radar und drahtlose Sensornetze anzuwenden. Sie können verschiedene Konzepte dieser Anwendungen hinsichtlich unterschiedlicher Parameter (wie z.B. Frequenzbereich, Robustheit und Effizienz) gegenüberstellen.

Fertigkeiten

Die Studierenden sind in der Lage einzuschätzen, welche prinzipiellen dynamischen Effekte in mobilen Funksystemen auftauchen können, und können diese analysieren und bewerten. Sie können regulierungskonforme und leistungsoptimierte Funksysteme unter Berücksichtigung von Anwendungsanforderungen entwerfen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während praktischen Übungen).

Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Theoretische Elektrotechnik, Hochfrequenztechnik und Hochfrequenzbauelemente und Schaltungen I) verknüpfen. Sie sind fähig, Probleme und Lösungen im Bereich der drahtlosen Systeme für mobile Anwendungen auf Englisch kommunizieren.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Lehrveranstaltung L2680: Drahtlose Systeme für mobile Anwendungen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Mobiler Funkkanal: Funkkanaleigenschaften, Funkkanalmodellierung, Modulationstechniken, digitale Modulation
  • Mobile Kommunikationssysteme: Car-2-X, hybride und Ultra-Low-Power-Kommunikationssysteme (Aufweckempfänger, Sub-GHz-Systeme, RFID)
  • Radar: Puls-, Doppler- und Continuous-Wave-, FMCW-Radar,
Literatur
  • C.A. Balanis, “Antenna Theory”, John Wiley and Sons, 1982
  • D. M. Pozar, “Microwave and RF Design of Wireless Systems”, John Wiley and Sons, 2001
  • D. M. Pozar, “Microwave Engineering”, John Wiley and Sons, 2005
  • B. Razavi, “RF Microelectronics”, Pearson, 2011
Lehrveranstaltung L2681: Drahtlose Systeme für mobile Anwendungen
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1695: Ausgewählte Aspekte der HF-Technik, Optik und Elektromagnetische Verträglichkeit

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Aspekte der HF-Technik, Optik und Elektromagnetische Verträglichkeit (L2696) Vorlesung 2 4
Ausgewählte Aspekte der HF-Technik, Optik und Elektromagnetische Verträglichkeit (L2697) Hörsaalübung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Elektrotechnik: Vertiefung Wireless and Sensor Technologies: Wahlpflicht
Lehrveranstaltung L2696: Ausgewählte Aspekte der HF-Technik, Optik und Elektromagnetische Verträglichkeit
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Dozenten des SD E
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt
Literatur
Lehrveranstaltung L2697: Ausgewählte Aspekte der HF-Technik, Optik und Elektromagnetische Verträglichkeit
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dozenten des SD E
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0644: Optoelectronics II - Quantum Optics

Lehrveranstaltungen
Titel Typ SWS LP
Optoelektronik II: Quantenoptik (L0360) Vorlesung 2 3
Optoelektronik II: Quantenoptik (Übung) (L0362) Gruppenübung 1 1
Modulverantwortlicher Dr. Alexander Petrov
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basic principles of electrodynamics, optics and quantum mechanics

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can explain the fundamental mathematical and physical relations of quantum optical phenomena such as absorption, stimulated and spontanous emission. They can describe material properties as well as technical solutions. They can give an overview on quantum optical components in technical applications.

Fertigkeiten

Students can generate models and derive mathematical descriptions in relation to quantum optical phenomena and processes. They can derive approximative solutions and judge factors influential on the components' performance.


Personale Kompetenzen
Sozialkompetenz

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Selbstständigkeit

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Leistungspunkte 4
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Materialwissenschaft: Vertiefung Nano- und Hybridmaterialien: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0360: Optoelectronics II: Quantum Optics
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum WiSe
Inhalt
  • Generation of light
  • Photons
  • Thermal and nonthermal light
  • Laser amplifier
  • Noise
  • Optical resonators
  • Spectral properties of laser light
  • CW-lasers (gas, solid state, semiconductor)
  • Pulsed lasers
Literatur

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007
Demtröder, W., Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, 2002
Kasap, S.O., Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2001
Yariv, A., Quantum Electronics, Wiley, 1988
Wilson, J., Hawkes, J., Optoelectronics: An Introduction, Prentice Hall, 1997, ISBN: 013103961X
Siegman, A.E., Lasers, University Science Books, 1986

Lehrveranstaltung L0362: Optoelectronics II: Quantum Optics (Problem Solving Course)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum WiSe
Inhalt see lecture Optoelectronics 1 - Wave Optics
Literatur

see lecture Optoelectronics 1 - Wave Optics

Modul M0781: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme

Lehrveranstaltungen
Titel Typ SWS LP
EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme (L0770) Vorlesung 3 4
EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme (L0771) Gruppenübung 1 1
EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme (L0774) Laborpraktikum 1 1
Modulverantwortlicher Prof. Christian Schuster
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegenden Gesetzmäßigkeiten, Zusammenhänge und Methoden der Signalintegrität und der Güte der Spannungsversorgung (Powerintegrität) elektronischer Systeme erklären und in den Kontext des störungsfreien Aufbaus bzw. der elektromagnetischen Verträglichkeit solcher Systeme setzen. Sie können das prinzipielle Verhalten von Signalen und Spannungsversorgung vor dem Hintergrund der typischen Aufbau- und Verbindungstechnik erläutern.  Sie können Lösungsstrategien für Probleme der Signal- und Powerintegrität vorschlagen und beschreiben. Sie können einen Überblick über messtechnische und numerische Methoden zur Charakterisierung der Signal- und Powerintegrität in der elektrotechnischen Praxis geben.


Fertigkeiten

Die Studierenden können eine Reihe von Verfahren zur Modellbildung zur Beschreibung des elektromagnetischen Verhaltens typischer Aufbau- und Verbindungstechnik elektronischer Systeme anwenden. Sie können einschätzen, welche prinzipiellen Effekte diese Modelle in Bezug auf die Signal- und Powerintegrität vorhersagen, können diese klassifizieren und quantitativ analysieren. Sie können Lösungsstrategien aus diesen Vorhersagen ableiten und für die Anwendung in der elektrotechnischen Praxis dimensionieren. Sie können verschiedene Lösungsstrategien gegeneinander abwägen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise auf Englisch präsentieren (z.B. während der CAD-Übungen).


Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Theoretischer Elektrotechnik, Nachrichtentechnik und Halbleiterschaltungstechnik) verknüpfen. Sie können Probleme und Lösungen im Bereich der Signal- und Powerintegrität der Aufbau- und Verbindungstechnik auf Englisch kommunizieren.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Referat
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung Wireless and Sensor Technologies: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0770: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Die Rolle von Packages und Interconnects in elektronischen Systemen

- Komponenten der Aufbau- und Verbindungstechnik elektronischer Systeme

- Hauptziele und Konzepte der Signal- und Powerintegrität elektronischer Systeme

- Wiederholung relevanter Konzepte der elektromagnetischen Feldtheorie

- Eigenschaften digitaler Signale und Systeme

- Entwurf und Charakterisierung der Signalintegrität

- Entwurf und Charakterisierung der Spannungsversorgung

- Techniken und Geräte zur Messung in Zeit- und Frequenzbereich

- CAD-Werkzeuge für elektrische Analyse und Entwurf von Packages und Interconnects

- Bezug zur gesamten elektromagnetischen Verträglichkeit von elektronischen Systemen


Literatur

- J. Franz, "EMV: Störungssicherer Aufbau elektronischer Schaltungen", Springer (2012)

- R. Tummala, "Fundamentals of Microsystems Packaging", McGraw-Hill (2001)

- S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994)

- S. Thierauf, "Understanding Signal Integrity", Artech House (2010)

- M. Swaminathan, A. Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Prentice-Hall (2007)


Lehrveranstaltung L0771: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0774: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Die Rolle von Packages und Interconnects in elektronischen Systemen

- Komponenten der Aufbau- und Verbindungstechnik elektronischer Systeme

- Hauptziele und Konzepte der Signal- und Powerintegrität elektronischer Systeme

- Wiederholung relevanter Konzepte der elektromagnetischen Feldtheorie

- Eigenschaften digitaler Signale und Systeme

- Entwurf und Charakterisierung der Signalintegrität

- Entwurf und Charakterisierung der Spannungsversorgung

- Techniken und Geräte zur Messung in Zeit- und Frequenzbereich

- CAD-Werkzeuge für elektrische Analyse und Entwurf von Packages und Interconnects

- Bezug zur gesamten elektromagnetischen Verträglichkeit von elektronischen Systemen


Literatur

- J. Franz, "EMV: Störungssicherer Aufbau elektronischer Schaltungen", Springer (2012)

- R. Tummala, "Fundamentals of Microsystems Packaging", McGraw-Hill (2001)

- S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994)

- S. Thierauf, "Understanding Signal Integrity", Artech House (2010)

- M. Swaminathan, A. Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Prentice-Hall (2007)


Modul M1614: Optics for Engineers

Lehrveranstaltungen
Titel Typ SWS LP
Optik für Ingenieure (L2437) Vorlesung 3 3
Optik für Ingenieure (L2438) Projekt-/problembasierte Lehrveranstaltung 3 3
Modulverantwortlicher Prof. Thorsten Kern
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse - Basics of physics
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Teaching subject ist the design of simple optical systems for illumination and imaging optics

  • Basic values for optical systems and lighting technology
  • Spectrum, black-bodies, color-perception
  • Light-Sources und their characterization
  • Photometrics
  • Ray-Optics
  • Matrix-Optics
  • Stops, Pupils and Windows
  • Light-field Technology
  • Introduction to Wave-Optics
  • Introduction to Holography
Fertigkeiten

Understandings of optics as part of light and electromagnetic spectrum. Design rules, approach to designing optics

Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung Teilnahme an Laborübungen und Simulation
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L2437: Optics for Engineers
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Thorsten Kern
Sprachen EN
Zeitraum WiSe
Inhalt
  • Basic values for optical systems and lighting technology
  • Spectrum, black-bodies, color-perception
  • Light-Sources und their characterization
  • Photometrics
  • Ray-Optics
  • Matrix-Optics
  • Stops, Pupils and Windows
  • Light-field Technology
  • Introduction to Wave-Optics
  • Introduction to Holography
Literatur  
Lehrveranstaltung L2438: Optics for Engineers
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Thorsten Kern
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0788: Hochfrequenzbauelemente und -schaltungen II

Lehrveranstaltungen
Titel Typ SWS LP
Hochfrequenzbauelemente und -schaltungen II (L0788) Vorlesung 1 1
Hochfrequenzbauelemente und -schaltungen II (L0789) Hörsaalübung 1 1
Praktikum Mikrowellenschaltungsentwurf (L0790) Laborpraktikum 4 4
Modulverantwortlicher Prof. Alexander Kölpin
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Halbleitertechnik, Hochfrequenztechnik, Hochfrequenzbauelemente und -schaltungen I


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die Funktionsweise des Frequenzvervielfachers detailliert erläutern. Sie können Theorien und Konzepte und sinnvolle Annahmen zur Beschreibung und Synthese darstellen. Sie sind in der Lage, vertiefte Kenntnisse der Physik ausgewählter Hochfrequenz-Halbleiterbauelemente auf den Frequenzvervielfacher anzuwenden. Sie können verschiedene Bauelemente hinsichtlich unterschiedlicher Parameter (wie z.B. Frequenzbereich, Leistung und Effizienz) gegenüberstellen. Sie sind fähig, Hochfrequenzmessmethoden zu beschreiben.


Fertigkeiten

Die Studierenden sind in der Lage einzuschätzen, welche prinzipiellen Effekte in einer aktiven Schaltung der Hochfrequenztechnik auftauchen können, und können diese analysieren und bewerten. Sie können lineare und nichtlineare Mikrowellenschaltungen mit modernen Software-Werkzeugen unter Berücksichtigung von Fertigungsmöglichkeiten und Anwendungsanforderungen entwickeln und praktisch aufbauen. Sie sind in der Lage, die zur Analyse geeignete Messtechnik auszuwählen und anzuwenden.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise vor Fachpersonen präsentieren und vertreten (im Rahmen des Mikrowellenschaltungsentwurfs). Sie sind fähig, ihren Beitrag zu dem Gesamtprojekt (Satellitenempfänger) einzuschätzen und zu reflektieren. Sie sind zum Austausch zwischen Fachgruppen und mit einem Betreuer in der Lage, wobei sie mit Rückmeldungen zu ihren Leistungen konstruktiv umgehen.


Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie sind fähig, Theorien aus Vorlesungen eigenständig in die Praxis zu übertragen. Sie können ihre Fähigkeiten und die Ergebnisse ihrer Arbeit einschätzen und bewerten und die Notwendigkeit von Unterstützung erkennen.


Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Elektrotechnik: Vertiefung Wireless and Sensor Technologies: Wahlpflicht
Lehrveranstaltung L0788: Hochfrequenzbauelemente und -schaltungen II
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Frequenzvervielfacher: Harmonische Balance, Rauschen in nichtlinearen Schaltungen; Speicherdiode, FET; Schaltungssynthese, Großsignal-, Rausch- und Stabilitätsanalyse

- Rauscharmer Verstärker im Schaltungsentwurf: Stabilität und Stabilitätskreise, Gewinn und Gewinnkreise, Rauschen, Rauschzahl und Rauschzahlkreise

- Mischer, Oszillator: Messtechnik (Netzwerkanalysator, Spektrumanalysator, Frequenzgenerator)


Literatur

- E. Voges, „Hochfrequenztechnik“, Hüthig (2004)

- H.-G. Unger, W. Harth, „Hochfrequenz-Halbleiterelektronik“, S. Hirzel Verlag (1972)


- S.M. Sze, "Physics of Semiconductor Devices", John Wiley & Sons (1981)

- A. Jacob, "Lecture Notes Microwave Semiconductor Devices and Circuits Part II"


Lehrveranstaltung L0789: Hochfrequenzbauelemente und -schaltungen II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0790: Praktikum Mikrowellenschaltungsentwurf
Typ Laborpraktikum
SWS 4
LP 4
Arbeitsaufwand in Stunden Eigenstudium 64, Präsenzstudium 56
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Satellitenempfänger im X-Band (Rauscharmer Verstärker, Mischer, Oszillator): Entwurf, Aufbau und Charakterisierung der Empfängerkomponenten und des Systems


Literatur

- A. Jacob, "Microwave Circuit Design Laboratory Guide"


Modul M1524: Forschungsprojekt und Seminar in HF-Technik, Optik und Elektromagnetischer Verträglichkeit

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Dozenten des SD E
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Fortgeschrittener Kenntnisstand im Master-Studium Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden kennen aktuelle Forschungsprojekte der Institute in der Vertiefungsrichtung. Sie können die grundlegenden wissenschaftlichen Methoden nennen, mit denen an diesen gearbeitet wird. Sie können weiterhinim Diskurs einschlägige Fachbegriffe verwenden und Forschungsthemen erläutern.

Fertigkeiten

Die Studierenden sind in der Lage, ein eigenständiges Teilprojekt in aktuell laufenden Forschungsprojekten der Institute in der Vertiefungsrichtung durchzuführen. Studierende können ihre Vorgehensweise zur Lösung einer Aufgabe begründen, aus den gewonnen Ergebnissen Schlussfolgerungen ziehen und wenn nötig neue Arbeitsmethoden finden. Studierende sind in der Lage, alternative Lösungskonzepte mit dem gewählten Ansatz bzgl. vorgegebener Kriterien zu vergleichen und zu beurteilen.

Die Studierenden können sich ein für sie neues Thema inhaltlich erschießen. Sie verknüpfen dazu die Inhalte ihres bisherigen Studiums mit dem vorgegebenen Thema und schließen Wissenslücken durch Fachgespräche mit wissenschaftlichen Mitarbeitern  und eigene Recherchen (z.B. im Internet oder in Fachliteratur). Sie können wissenschaftliche Veröffentlichungen zusammenfassen und präsentieren.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, mit Mitarbeitern der betreuenden Institute fachlich den Fortschritt der Arbeit zu diskutieren und ihre Endergebnisse adressatengerecht zu präsentieren.

Die Studierenden können in Zusammenarbeit mit wissenschaftlichen Mitarbeitern  aktuelle Themen aus der Forschung erarbeiten, diskutieren und reflektieren. Sie können Zusammenfassungen derselben in englischer Sprache vor einem Fachpublikum präsentieren und erläutern.

Selbstständigkeit

Die Studierenden sind in der Lage, anhand der im bisherigen Studium erworbenen Kompetenzen sich selbstständig aus aktuellen Forschungsprojekten sinnvolle Aufgaben zu definieren, dazu notwendiges Wissen zu erschließen sowie geeignete Lösungsmethoden auszuwählen.

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext des Seminars zu setzen. Sie erschließen sich eigenständig weitere Quellen im Internet. Sie können inhaltlich einen Bezug zu ihrer gewählten Vertiefungsrichtung herstellen.

Arbeitsaufwand in Stunden Eigenstudium 360, Präsenzstudium 0
Leistungspunkte 12
Studienleistung Keine
Prüfung Studienarbeit
Prüfungsdauer und -umfang gem. ASPO
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Pflicht

Modul M0548: Bioelektromagnetik: Prinzipien und Anwendungen

Lehrveranstaltungen
Titel Typ SWS LP
Bioelektromagnetik: Prinzipien und Anwendungen (L0371) Vorlesung 3 5
Bioelektromagnetik: Prinzipien und Anwendungen (L0373) Gruppenübung 2 1
Modulverantwortlicher Prof. Christian Schuster
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Physik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegenden Gesetzmäßigkeiten, Zusammenhänge und Methoden der Bioelektromagnetik, d.h. der Beschreibung und Anwendung des Verhaltens elektromagnetischer Felder in biologischer Materie,  erklären. Sie können die wesentlichen physikalischen Abläufe erläutern und nach Wellenlänge bzw. Frequenz der Felder einordnen. Sie können einen Überblick über messtechnische und numerische Methoden zur Charakterisierung elektromagnetischer Felder in der Praxis geben. Sie können therapeutische und diagnostische Anwendungen elektromagnetischer Felder in der Medizintechnik benennen.

Fertigkeiten

Die Studierenden können eine Reihe von Verfahren zur Beschreibung des Verhaltens elektromagnetischer Felder in biologischer Materie anwenden. Dafür können Sie auf elementare Lösungen der Maxwellschen Gleichungen Bezug nehmen und diese sinnvoll einsetzen. Sie können einschätzen, welche prinzipiellen Effekte diese Modelle in Bezug auf biologische Materie vorhersagen, können diese nach Wellenlänge bzw. Frequenz klassifizieren und quantitativ analysieren. Sie können Validierungsstrategien für ihre Vorhersagen entwickeln. Sie können Effekte elektromagnetischer Felder für therapeutische und diagnostische Anwendungen gegeneinander abwägen und auswählen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise auf Englisch präsentieren (z.B. während Kleingruppenübungen).




Selbstständigkeit

Die Studierenden sind in der Lage, Informationen aus einschlägigen Fachpublikationen zu gewinnen und in den Kontext der Vorlesung zu setzen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Theoretischer Elektrotechnik, Grundlagen der Elektrotechnik oder Physik) zu verknüpfen. Sie können Probleme und Effekte im Bereich der Bioelektromagnetik auf Englisch kommunizieren.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Referat
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Elektrotechnik: Vertiefung Wireless and Sensor Technologies: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0371: Bioelektromagnetik: Prinzipien und Anwendungen
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Grundlegende Eigenschaften elektromagnetischer Felder (Phänomene)

- Mathematische Beschreibung elektromagnetischer Felder (Maxwell-Gleichungen)

- Elektromagnetische Eigenschaften biologischer Materie

- Prinzipien der Energieabsorption in biologischer Materie, Dosimetrie

- Numerische Methoden zur Berechnung elektromagnetischer Felder (v.a. FDTD)

- Messtechnische Methoden zur Bestimmung elektromagnetischer Felder

- Verhalten elektromagnetischer Felder niedriger Frequenz in biologischer Materie

- Verhalten elektromagnetischer Felder mittlerer Frequenz in biologischer Materie

- Verhalten elektromagnetischer Felder hoher Frequenz in biologischer Materie

- Verhalten elektromagnetischer Felder sehr hoher Frequenz in biologischer Materie

- Diagnostische Anwendungen elektromagnetischer Felder in der Medizin

- Therapeutische Anwendungen elektromagnetischer Felder in der Medizin

- Der menschliche Körper als Generator elektromagnetischer Felder


Literatur

- C. Furse, D. Christensen, C. Durney, "Basic Introduction to Bioelectromagnetics", CRC (2009)

- A. Vorst, A. Rosen, Y. Kotsuka, "RF/Microwave Interaction with Biological Tissues", Wiley (2006)

- S. Grimnes, O. Martinsen, "Bioelectricity and Bioimpedance Basics", Academic Press (2008)

- F. Barnes, B. Greenebaum, "Bioengineering and Biophysical Aspects of Electromagnetic Fields", CRC (2006)


Lehrveranstaltung L0373: Bioelektromagnetik: Prinzipien und Anwendungen
Typ Gruppenübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Fachmodule der Vertiefung Medizintechnik


Die Vertiefungsrichtung „Medizintechnik“ bietet Studierenden die Möglichkeit, einen interdisziplinären Schwerpunkt in Ihrem Studium zu wählen. Einerseits vertiefen eine Reihe technischer Module das grundlegende Verständnis moderner Medizintechnik, insbesondere mit Bezug zu elektrotechnischen Grundlagen. Andererseits geben Module zu medizinischen Themen einen Einblick in klinische Fragestellungen, Rahmenbedingungen und Terminologie. Die Studierenden werden in die Lage versetzt, Methoden, Algorithmen und Systeme im Kontext klinischer Einsatzszenarien zu entwerfen, zu implementieren sowie systematisch zu evaluieren. Dabei können Sie bei der Bewertung unterschiedlicher Ansätze auf Kenntnisse des komplexen Systems „Patient“ zurückgreifen. Durch die so gewonnenen Kompetenzen an der Schnittstelle der Elektrotechnik zur Medizin sind die Studierenden auf die Übernahme von Aufgaben in Industrie und Forschung vorbereitet.

Modul M0630: Robotics and Navigation in Medicine

Lehrveranstaltungen
Titel Typ SWS LP
Robotik und Navigation in der Medizin (L0335) Vorlesung 2 3
Robotik und Navigation in der Medizin (L0338) Projektseminar 2 2
Robotik und Navigation in der Medizin (L0336) Gruppenübung 1 1
Modulverantwortlicher Prof. Alexander Schlaefer
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • principles of math (algebra, analysis/calculus)
  • principles of programming, e.g., in Java or C++
  • solid R or Matlab skills
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in detail. Systems can be evaluated with respect to collision detection and  safety and regulations. Students can assess typical systems regarding design and  limitations.

Fertigkeiten

The students are able to design and evaluate navigation systems and robotic systems for medical applications.


Personale Kompetenzen
Sozialkompetenz

The students are able to grasp practical tasks in groups, develop solution strategies independently, define work processes and work on them collaboratively.
The students are able to collaboratively organize their work processes and software solutions using virtual communication and software management tools.
The students can critically reflect on the results of other groups, make constructive suggestions for improvement, and also incorporate them into their own work.


Selbstständigkeit

The students can assess their level of knowledge and independently control their learning processes on this basis as well as document their work results. They can critically evaluate the results achieved and present them in an appropriate argumentative manner to the other groups.



Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 10 % Schriftliche Ausarbeitung
Ja 10 % Referat
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0335: Robotics and Navigation in Medicine
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt

- kinematics
- calibration
- tracking systems
- navigation and image guidance
- motion compensation
The seminar extends and complements the contents of the lecture with respect to recent research results.


Literatur

Spong et al.: Robot Modeling and Control, 2005
Troccaz: Medical Robotics, 2012
Further literature will be given in the lecture.

Lehrveranstaltung L0338: Robotics and Navigation in Medicine
Typ Projektseminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0336: Robotics and Navigation in Medicine
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1280: MED II: Einführung in die Physiologie

Lehrveranstaltungen
Titel Typ SWS LP
Einführung in die Physiology (L0385) Vorlesung 2 3
Modulverantwortlicher Dr. Roger Zimmermann
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Keine. Das Modul deckt fachspezifische Lehrinhalte des Mediziningenieurwesens ab und erlaubt Studenten, die nicht Mediziningenieurwesen im Bachelor vertieft haben, den Master Mediziningenieurwesen zu belegen.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Die Studierenden können
  • Physiologische Zusammenhänge in ausgewählten Kernfeldern von Muskel-, Herz/Kreislauf- sowie Neuro- & Sinnesphysiologie darstellen.
  • Grundzüge des Energiestoffwechsels beschreiben;
Fertigkeiten Die Studierenden können die Wirkprinzipien grundlegender Körperfunktionen (Sinnesleistungen, Informationsweiterleitung und Verarbeitung, Kraftentwicklung und Vitalfunktionen) darstellen und sie in Relation zu ähnlichen technischen Systemen setzen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können Diskussionen in Forschung und Medizin auf fachlicher Ebene führen.

Die Studierenden können in Kleingruppen Probleme im Bereich physiologischer Fragestellungen analysieren und messtechnische Lösungen finden.

Selbstständigkeit

Die Studierenden können Fragen zu Themengebieten der Vorlesung oder weitergehende physiologische Themen eigenständig aus der Fachliteratur erarbeiten.

Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Data Science: Vertiefung Medizin: Pflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Wahlpflicht
Maschinenbau: Vertiefung Biomechanik: Pflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0385: Einführung in die Physiology
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Gerhard Engler
Sprachen DE
Zeitraum SoSe
Inhalt

Beginnend bei den Mechanismen zur elektrischen oder biochemischen Übertragung von Information wird eingegangen auf die Funktion von Rezeptoren für die verschiedenen Sinneseindrücke sowie der spezifischen Weiterleitung und Verarbeitung dieser afferenten Reize. Efferente Signale steuern den Körper in einer sich dynamisch verändernden Umgebung: Dazu werden Informationen aus dem körpereigenen System der Selbstwahrnehmung mit aktuellen afferenten Reizen verbunden um über Gehirn und Rückenmark gezielt Kraft auf die betreffenden Muskeln zu dosieren. Der unmittelbar zur Erhaltung dieser Funktionen notwendige Stoffwechsel wird durch das System: Herz, Lunge und Blutgefäße bereitgestellt. Auch dieses System paßt sich an wechselnden Bedarf bzw. sich ändernde Lastverhältnisse anhand biochemisch und bioelektrisch gesteuerter Regelmechanismen an. Neben den physiologischen Grundlagen wird anhand von Beipielen auch das Versagen dieser Systeme im Falle von Erkrankungen mit einigen typischen Erscheinungsbildern dargestellt.

Literatur

Taschenatlas der Physiologie, Silbernagl Despopoulos, ISBN 978-3-135-67707-1, Thieme

Repetitorium Physiologie, Speckmann, ISBN 978-3-437-42321-5, Elsevier

Modul M0635: Medizintechnik Projekt

Lehrveranstaltungen
Titel Typ SWS LP
Medizintechnik Projekt (L1096) Projekt-/problembasierte Lehrveranstaltung 6 6
Modulverantwortlicher Prof. Alexander Schlaefer
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

gute Programmierkenntnisse in Java / C++
Kenntnisse in R/Matlab
Kenntnisse in Bildverarbeitung
Grundlagen Mathematik (Algebra, Analysis)
Grundlagen Stochastik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die Komplexität medizintechnischer Systeme erklären und die Eignung der betrachteten Methoden begründen.


Fertigkeiten

Die Studierenden sind in der Lage medizintechnische Problemstellungen zu analysieren und selbstständig Lösungen zu erarbeiten.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Gruppen Projektziele konzipieren und den Projektablauf organisieren und dabei eine sinnvolle Verteilung von Aufgaben innerhalb der Gruppe berücksichtigen.
Die Studierenden können innerhalb der Gruppe für die Aufgabenstellung verschiedenen Rollen definieren und besetzen und sind in der Lage sich gemäß dieser Rolle in den Gruppenprozess einzubringen.
Sie können Gruppenprozesse verantwortlich leiten und sind in der Lage Umgehensweisen für Probleme in der Gruppe und im Arbeitsprozess zu entwickeln.
Die Studierenden können ihre Arbeitsprozesse und Softwarelösungen unter der Verwendung von virtuellen Kommunikations- und Softwareverwaltungstools (z.B. GitLab, Mattermost) kollaborativ organisieren.

Selbstständigkeit

Die Studierenden können selbständig Lösungsstrategien entwickeln und diese bei Problemen im Projektablauf adaptieren.
Die Studierenden können ihren Wissensstand einschätzen und ihre Arbeitsergebnisse dokumentieren. Sie können die erzielten Ergebnisse kritisch bewerten und vor der Zielgruppe in geeigneter Weise präsentieren.

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Gruppendiskussion
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang ca. 8 Seiten, Bearbeitungszeit: semesterbegleitend
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Lehrveranstaltung L1096: Medizintechnik Projekt
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 6
LP 6
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Dozenten Prof. Alexander Schlaefer
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Das Projektthema wird gemeinsam im Rahmen der Veranstaltung ausgewählt.

Literatur

Wird in der Veranstaltung bekannt gegeben.

Modul M0845: Regelungstechnische Methoden für die Medizintechnik

Lehrveranstaltungen
Titel Typ SWS LP
Regelungstechnische Methoden für die Medizintechnik (L0664) Vorlesung 2 3
Modulverantwortlicher Johannes Kreuzer
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Regelungstechnik, Grundlagen der Physiologie

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Vorlesung arbeitet das spannende Gebiet der Medizintechnik ingenieurtechnisch auf und vermittelt dem Ingenieur Grundlagenkenntnisse der Physiologie sowie das Verständnis für die Komplexität des menschlichen Körpers.
Es gibt eine Einführung in körpereigene Regulationsalgorithmen der Beatmung und des Herzens. Das Potential insbesondere der Automatisierungs- und Regelungstechnik für die Medizintechnik  wird vermittelt. 
Die Studierenden wissen, welche zusätzlichen Schritte notwendig sind, um die erlernte Theorie der Regelungstechnik in der Praxis nutzen zu können und welche Stolpersteine dort lauern.

Fertigkeiten

Die Studierenden sind in der Lage, physiologische Problemstellung in Modelle zu übersetzen, die u.a. zur Simulation genutzt werden können. Mit Hilfe dieser Simulationen können die Studierenden Regler und Strategien entwerfen und diskutieren. Die Studierenden können analoge Signale praxisgerecht digitalisieren und damit den Transfer der Theorie in die reale Regelungstechnik bewältigen.



Personale Kompetenzen
Sozialkompetenz

Die Studierenden müssen sich mit den unterschiedlichen Ausdrucks- und Sichtweisen von Medizinern und Ingenieuren auseinandersetzen und zwischen diesen vermitteln.
Durch die Exkursion in einen Industriebetrieb und den Austausch mit erfahrenen Regelungstechnik-Ingenieuren lernen sie ihr zukünftiges Arbeitsumfeld kennen.


Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Die notwendigen Tools, wie Matlab, vertiefen die Studierenden eigenständig um die gestellten Aufgaben zu lösen.
Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (prüfungsnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Regelungstechnik, Physiologie) verknüpfen.


Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Johannes Kreuzer, Christian Neuhaus
Sprachen DE
Zeitraum SoSe
Inhalt

Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt:

  • Einleitung in die Thematik
  • Grundlagen der physiologischen Modellbildung
  • Einführung in die Atmung und Beatmung
  • Physiologie und Pathologie in die Kardiologie
  • Einführung in die Regelung des Blutzuckers
  • Funktion der Niere und Nierenersatztherapie
  • Darstellung der Regelungstechnik am konkreten Beatmungsgerät
  • Exkursion zu einem Medizintechnik-Unternehmen

Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache Ersatzschaltbilder für physiologische Abläufe hergeleitet und erklärt wie damit Sensoren, Regler und Aktoren gesteuert werden. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge.

Literatur
  • Leonhardt, S., & Walter, M. (2016). Medizintechnische Systeme. Berlin, Heidelberg: Springer Vieweg.
  • Werner, J. (2005). Kooperative und autonome Systeme der Medizintechnik. München: Oldenbourg.
  • Oczenski, W. (2017). Atmen : Atemhilfen ; Atemphysiologie und Beatmungstechnik: Georg Thieme Verlag KG.

Modul M0811: Bildgebende Systeme in der Medizin

Lehrveranstaltungen
Titel Typ SWS LP
Bildgebende Systeme in der Medizin (L0819) Vorlesung 4 6
Modulverantwortlicher Dr. Michael Grass
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können

  • den Systemaufbau sowie die Systemkomponenten der wesentlichen klinischen bildgebenden Systeme beschreiben;
  • die Funktionsweise der Systemkomponenten und des Gesamtsystems der bildgebenden Systeme erklären;
  • die physikalischen Prozesse, die eine Bildgebung ermöglichen, erklären sowie die grundlegenden physikalischen Gleichungen anwenden;  
  • die physikalischen Effekte, die für die Erzeugung von Bildkontrasten notwendig sind, benennen und beschreiben; 
  • erklären, wie man räumliche und zeitliche Auflösung beeinflussen kann und wie man die erzeugten Bilder charakterisiert;
  • erklären, welche Bildrekonstruktionsverfahren für die Erzeugung von Bildern verwendet werden;
  • die wesentlichen klinischen Anwendungen der verschiedenen Systeme darstellen und begründen.


Fertigkeiten

Studierende sind in der Lage:

  • die physikalischen Prozesse der Bildgebung zu erklären und die benötigten mathematischen bzw. physikalischen Grundgleichungen den Systemen zuzuordnen.
  • durch Anwendung der mathematischen bzw. physikalischen Grundgleichungen Kenngrößen bildgebender Systeme zu berechnen;
  • den Einfluss von verschiedenen Systemkomponenten auf die räumliche und zeitliche Auflösung bildgebender Systeme zu bestimmen;
  • die Bedeutung verschiedener bildgebender Systeme für einige klinische Applikationen zu erläutern;
  • ein geeignetes bildgebendes System für eine Applikation auszuwählen.
Personale Kompetenzen
Sozialkompetenz

keine

Selbstständigkeit

Studierende können:

  • verstehen, welche physikalischen Effekte in der medizinischen Bildgebung verwendet werden;
  • selbstständig entscheiden, für welche klinische Fragestellung ein Messsystem eingesetzt werden kann.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Mediziningenieurwesen: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0819: Bildgebende Systeme in der Medizin
Typ Vorlesung
SWS 4
LP 6
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Dozenten Dr. Michael Grass, Dr. Frank Michael Weber, Dr. Michael Helle, Dr. Sven Prevrhal
Sprachen DE
Zeitraum SoSe
Inhalt

Im Rahmen der Vorlesung werden die physikalischen Grundlagen, die Grundlagen der Bildgebung und die Hauptapplikationsgebiete der Magnetresonanz Tomographie (MR), der Bildgebung mittels Röntgenstrahlung (X-ray und CT), der nuklearen Bildgebung (SPECT und PET) und des Ultraschalls (US) vermittelt. Am Ende der Vorlesung sollte jeder Student ein Basisverständniss der verschiedenen Modalitäten, ihrer Hauptanwendungsgebiete in der Medizin und ihre Stärken und Schwächen erworben haben.

Die Vorlesung teilt sich in eine Einführung und fünf Blöcke auf:

In jedem Block werden die physikalischen Grundlagen der Modalität erklärt. Darauf aufbauend werden die Prinzipien der Signalerzeugung und ihrer Detektion diskutiert. Im folgenden, werden die resultierenden Bildkontraste veranschaulicht und die Basis der zweidimensionalen und dreidimensionalen Bildgebung vermittelt. Abschließend werden die prinzipiellen Limitierungen jeder Modalität und erwartete zukünftige Entwicklungen vorgestellt.

0: Einführungsvorlesung
1: medizinische Bildgebung mittels Ultraschalls
2: Projektionsröntgenbildgebung
3: Röntgen-Computertomographie
4: Magentresonanztomographie
5: Bildgebung mittels nuklearer Verfahren

  • Ultraschall: Physikalische Grundlagen, Aufbau und technische Realisierung eines Ultraschallsystems, Bildgebungsverfahren, Flußmessverfahren, medizinische Anwendungen.
  • Röntgen: Physikalische Grundlagen der Röntgenbildgebung, Aufbau von Röntgenröhren, Detektion von Röntgenstrahlung, Techniken der Bildaufnahme, Bildkontrast, Projektionsröntgen, Dosisquantifizierung.
  • Computer Tomographie (CT): Aufbau eines Computer-Tomographen, Datenakquisition, Bildrekonstruktion und Bildkontrast, ausgewählte medizinische Anwendungen.
  • Magnetresonanz Tomographie (MRT): Physikalische Grundlagen, Aufbau eines MR-Tomographen, Grundlagen der MR-Bildgebung, Relaxation und Bildkontrast, ausgewählte medizinische Anwendungen.
  • Nuklearmedizin: Kernphysikalische Grundlagen, Herstellung von Radionukleiden, Nuklearmedinische Meßtechnik, Szintigraphie, Single Photon Emission Computer Tomographie (SPECT), Positronen Emissions Tomographie (PET), medizinische Anwendungen.

Literatur

Primary book:

1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press

Secondary books:

- A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003.

- W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002.

- H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995.

- O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000.

Modul M1277: MED I: Einführung in die Anatomie

Lehrveranstaltungen
Titel Typ SWS LP
Einführung in die Anatomie (L0384) Vorlesung 2 3
Modulverantwortlicher Prof. Udo Schumacher
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Die Vorlesung kann auch ohne Vorkenntnisse besucht werden. Hilfreich ist das Schulwissen in den Fächern Biologie, Chemie/Biochemie, Physik und Latein.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Vorlesung gliedert sich in die mikroskopische Anatomie, welche den Feinaufbau von Geweben und Organen beschreibt, sowie die makroskopische Anatomie, welche sich mit Organen und Organsystemen beschäftigt. Zudem erfolgt eine Einführung zur Zellbiologie, menschlichen Entwicklung und zum Zentralnervensystem. Ebenso werden die Grundlagen der bildgebenden radiologischen Diagnostik vermittelt, welche die Anatomie mit Röntgen-Projektionsaufnahmen und Schnittbildern darstellt. Es werden dabei auch die lateinischen Fachbegriffe vermittelt.


Fertigkeiten

Am Ende der Vorlesung können die Studierenden den mikroskopischen und makroskopischen Aufbau und die Funktionsweise des menschlichen Körpers beschreiben. Durch eine Vermittlung der lateinischen Fachbegriffe sind sie in der Lage, medizinische Texte zu verstehen. Dies ist die grundlegende Voraussetzung, um später medizinische Apparate verstehen und weiterentwickeln zu können.

Ebenso ist ein Verständnis der Anatomie die Voraussetzung, um die Bedeutung von Struktur und Funktion bei einigen Volkskrankheiten erläutern und deren Auswirkungen auf den Körper einordnen zu können.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden werden in die Lage versetzt, aktuelle Diskussionen in Forschung und Medizin auf fachlicher Ebene zu verfolgen. Die lateinischen Termini sind die Voraussetzung für eine fachliche Kommunikation mit Ärztinnen und Ärzten.


Selbstständigkeit

Die Vorlesung dient als Einführung in die Anatomie und soll dazu anregen, das Fachwissen auf diesem Gebiet selbstständig weiter zu vertiefen. Es werden Hinweise gegeben, welche weiterführende Literatur dafür geeignet ist. Ebenso wird angeregt, biomedizinische Probleme zu erkennen und zu durchdenken.


Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Data Science: Vertiefung II. Anwendung: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Maschinenbau: Vertiefung Biomechanik: Pflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0384: Einführung in die Anatomie
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Tobias Lange, Dr. Thorsten Frenzel
Sprachen DE
Zeitraum SoSe
Inhalt

Allgemeine Anatomie

  1.     Woche: Die eukaryote Zelle
  2.     Woche: Die Gewebe
  3.     Woche: Zellteilung, Grundzüge der Entwicklung
  4.     Woche: Bewegungsapparat
  5.     Woche: Herz-Kreislaufsystem
  6.     Woche: Atmungssystem
  7.     Woche: Harnorgane, Geschlechtsorgane
  8.     Woche: Immunsystem
  9.     Woche: Verdauungsapparat I
  10. Woche: Verdauungsapparat II
  11. Woche: Endokrines System
  12. Woche: Nervensystem
  13. Woche: Abschlussprüfung



Literatur

Adolf Faller/Michael Schünke, Der Körper des Menschen, 17. Auflage, Thieme Verlag Stuttgart, 2016

Modul M1278: MED I: Einführung in die Radiologie und Strahlentherapie

Lehrveranstaltungen
Titel Typ SWS LP
Einführung in die Radiologie und Strahlentherapie (L0383) Vorlesung 2 3
Modulverantwortlicher Prof. Ulrich Carl
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Diagnose

Die Studierenden können die Geräte, die derzeitig in der Strahlentherapie verwendet werden bezüglich ihrer Einsatzgebiete unterscheiden.

Die Studierenden können die Therapieabläufe in der Strahlentherapie erklären. Die Studierenden können die Interdisziplinarität mit anderen Fachgruppen (z. B. Chirurgie/Innere Medizin) nachvollziehen.

Die Studierenden können den Durchlauf der Patienten vom Aufnahmetag bis zur Nachsorge skizzieren.

Diagnostik

Die Studierenden können die technische Basiskonzeption der Projektionsradiographie einschließlich Angiographie und Mammographie sowie der Schnittbildverfahren (CT, MRT, US) darstellen.

Der Student kann den diagnostischen sowie den therapeutisch interventionellen Einsatz der bildgebenden Verfahren erklären sowie das technische Prinzip der bildgebenden Verfahren erläutern.

Patientenbezogen kann der Student in Abhängigkeit von der klinischen Fragestellung das richtige Verfahren auswählen.

Gerätebezogenene technische Fehler sowie bildgebenden Resultate kann der Student erklären.

Basierend auf den bildgebenden Befunden bzw. dem Fehlerprotokoll kann der Student die richtigen Schlussfolgerungen ziehen.

Fertigkeiten Therapie

Der Student kann kurative und palliative Situationen abgrenzen und außerdem begründen, warum er sich für diese Einschätzung der Situation entschieden hat.

Der Student kann Therapiekonzepte entwickeln, die der Situation angemessen sind und dabei strahlenbiologische Aspekte sauber zuordnen.

Der Student kann das therapeutische Prinzip anwenden (Wirkung vs. Nebenwirkung)

Der Student kann die Strahlenarten für die verschiedenen Situationen (Tumorsitz) unterscheiden, auswählen und dann die entsprechende Energie wählen, die in der Situation angezeigt ist (Bestrahlungsplan).

Der Student kann einschätzen, wie ein psychosoziales Hilfsangebot individuell aussehen sollte [ z. B. Anschlussheilbehandlung (AHB), Sport, Sozialhilfegruppen, Selbsthilfegruppen, Sozialdienst, Psychoonkologie]

Diagnostik

Nach entsprechender Fehleranalyse kann der Student Lösungsvorschläge zur Reparatur von bildgebenden Einheiten unterbreiten. Aufgrund seiner Kenntnisse der Anatomie, Pathologie und Pathophysiologie kann er bildgebende Befunde in die zugehörigen Krankheitsgruppen einordnen.

Personale Kompetenzen
Sozialkompetenz Die Studierenden können die besondere soziale Situation vom Tumorpatienten erfassen und ihnen professionell begegnen.

Die Studierenden sind sich dem speziellen häufig angstdominierten Verhalten von kranken Menschen im Rahmen von diagnostischen und therapeutischen Eingriffen bewusst und können darauf angemessen reagieren.

Selbstständigkeit Die Studierenden können erlerntes Wissen und Fertigkeiten auf einen konkreten Therapiefall anwenden.

Die Studierenden können am Ende ihrer Ausbildung jüngere Studierende ihres Fachgebiets an den klinischen Alltag heranführen.

Die Studierenden können in diesem Bereich kompetent eine fachliche Konversation führen und sich das dafür benötigte Wissen selbstständig erarbeiten.

Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten - 20 offene Fragen
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Data Science: Vertiefung II. Anwendung: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Maschinenbau: Vertiefung Biomechanik: Pflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0383: Einführung in die Radiologie und Strahlentherapie
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Ulrich Carl, Prof. Thomas Vestring
Sprachen DE
Zeitraum SoSe
Inhalt

Den Studenten sollen die technischen Möglichkeiten im Bereich der bildgebenden Diagnostik, interventionelle Radiologie und Strahlentherapie/Radioonkologie nahe gebracht werden. Es wird davon ausgegangen, dass der Student zu Beginn der Veranstaltung bestenfalls das Wort "Röntgenstrahlen" gehört hat. Es wird zwischen zwei Armen: - die diagnostische (Prof. Dr. med. Thomas Vestring) und die therapeutische (Prof. Dr. med. Ulrich M. Carl) Anwendung von Röntgenstrahlen differenziert.

Beide Arme sind auf spezielle Großgeräte angewiesen, die einen vorgegebenen Ablauf in den jeweiligen Abteilungen bedingen.

  

Literatur
  • "Technik der medizinischen Radiologie"  von T. + J. Laubenberg –

    7. Auflage – Deutscher Ärzteverlag –  erschienen 1999

  • "Klinische Strahlenbiologie" von Th. Herrmann, M. Baumann und W. Dörr –

    4. Auflage - Verlag Urban & Fischer –  erschienen 02.03.2006

    ISBN: 978-3-437-23960-1

  • "Strahlentherapie und Onkologie für MTA-R" von R. Sauer –

             5. Auflage 2003 - Verlag Urban & Schwarzenberg – erschienen 08.12.2009

             ISBN: 978-3-437-47501-6

  • "Taschenatlas der Physiologie" von S. Silbernagel und A. Despopoulus‑                

    8. Auflage – Georg Thieme Verlag - erschienen 19.09.2012

    ISBN: 978-3-13-567708-8

  • "Der Körper des Menschen " von A. Faller  u. M. Schünke -

    16. Auflage 2004 – Georg Thieme Verlag –  erschienen 18.07.2012

    ISBN: 978-3-13-329716-5

  • „Praxismanual Strahlentherapie“ von Stöver / Feyer –

    1. Auflage - Springer-Verlag GmbH –  erschienen 02.06.2000



Modul M1696: Ausgewählte Aspekte der Medizintechnik

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Aspekte der Medizintechnik (L2698) Vorlesung 2 4
Ausgewählte Aspekte der Medizintechnik (L2699) Hörsaalübung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Lehrveranstaltung L2698: Ausgewählte Aspekte der Medizintechnik
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Dozenten des SD E
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt
Literatur
Lehrveranstaltung L2699: Ausgewählte Aspekte der Medizintechnik
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dozenten des SD E
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1279: MED II: Einführung in die Biochemie und Molekularbiologie

Lehrveranstaltungen
Titel Typ SWS LP
Einführung in die Biochemie und Molekularbiologie (L0386) Vorlesung 2 3
Modulverantwortlicher Prof. Hans-Jürgen Kreienkamp
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Keine. Das Modul deckt fachspezifische Lehrinhalte des Mediziningenieurwesens ab und erlaubt Studenten, die nicht Mediziningenieurwesen im Bachelor vertieft haben, den Master Mediziningenieurwesen zu belegen.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Die Studierenden können
  • grundlegende Biomoleküle beschreiben;
  • erklären wie genetische Information in DNA kodiert wird; 
  • den Zusammenhang zwischen DNA und Protein erläutern.
Fertigkeiten Die Studierenden können
  • die Bedeutung molekularer Parameter für ein Krankheitsgeschehen erkennen;
  • ausgewählte molekular-diagnostische Verfahren beschreiben; 
  • die Bedeutung dieser Verfahren für einige Krankheiten erläutern
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können aktuelle Diskussionen in Forschung und Medizin auf fachlicher Ebene führen.

Die Studierenden können aktuelle medizinische Probleme (z.B. Corona-Epidemie) besser verstehen, einordnen und anderen erklären. 


Selbstständigkeit

Die Studierenden können Themengebiete der LVs eigenständig aus der Fachliteratur erarbeiten.

Die Studierenden können Falschdarstellungen in den Medien zu Themen der medizinischen Forschung besser erkennen.


Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Maschinenbau: Vertiefung Biomechanik: Pflicht
Mechatronik: Vertiefung Medizintechnik: Pflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0386: Einführung in die Biochemie und Molekularbiologie
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Hans-Jürgen Kreienkamp
Sprachen DE
Zeitraum WiSe
Inhalt
  • Proteine - Struktur und Funktion
  • Enzyme
  • Nukleinsäuren: Struktur und Bedeutung
  • DNA; Replikation
  • RNA; Proteinbiosynthese
  • Gentechnologie; PCR; Klonierung
  • Hormone; Signaltransduktion
  • Energie-Stoffwechsel: Kohlehydrate; Fette
  • Stoffwechselregulation
  • Krebs; molekulare Ursachen
  • Genetische Erkrankungen
  • Immunologie; Viren (HIV)


Literatur

Müller-Esterl, Biochemie, Spektrum Verlag, 2010; 2. Auflage

Löffler, Basiswissen Biochemie, 7. Auflage, Springer, 2008




Modul M1249: Medizinische Bildgebung

Lehrveranstaltungen
Titel Typ SWS LP
Medizinische Bildgebung (L1694) Vorlesung 2 3
Medizinische Bildgebung (L1695) Gruppenübung 2 3
Modulverantwortlicher Prof. Tobias Knopp
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundkenntnisse in Linear Algebra, Numerik und Signalverarbeitung

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, Rekonstruktionsverfahren für verschiedene tomographische Bildgebungsmodalitäten wie die Computertomographie und die Magnetresonanztomographie zu beschreiben. Sie kennen die nötigen Grundlagen aus den Bereichen der Signalverarbeitung und der inversen Probleme und kennen sowohl analytische als auch iterative Bildrekonstruktionsmethoden. Die Studierenden verfügen über vertiefende Kenntnisse über die Bildgebungoperatoren der Computertomographie und die Magnetresonanztomographie.



Fertigkeiten

Die Studierenden sind dazu in der Lage, Rekonstruktionsverfahren zu implementieren und diese anhand von tomographischen Messdaten zu testen. Sie können die rekonstruierten Bilder visualisieren und die Qualität ihrer Daten und Resultate und beurteilen. Zudem können die Studierenden die zeitliche Komplexität von Bildgebungsalgorithmen abschätzen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in sowohl selbstständig als auch in Teams an komplexen Problemen arbeiten. Sie können sich untereinander austauschen und ihre individuellen Stärken zur Lösung des Problems einbringen.

Selbstständigkeit

Die Studierenden sind in der Lage ein komplexes Problem eigenständig zu untersuchen und einzuschätzen, welche Kompetenzen zur Lösung des Problems benötigt werden. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht
Data Science: Vertiefung III. Applications: Wahlpflicht
Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht
Interdisciplinary Mathematics: Vertiefung III. Computational Methods in Biomedical Imaging: Pflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Technomathematik: Vertiefung II. Informatik: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L1694: Medizinische Bildgebung
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Tobias Knopp
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Überblick über bekannte Bildgebungsverfahren
  • Signalverarbeitung
  • Inverse Probleme
  • Computertomographie
  • Magnetresonanztomographie
  • Compressed Sensing
  • Magnetic-Particle-Pmaging


Literatur

Bildgebende Verfahren in der Medizin; O. Dössel; Springer, Berlin, 2000

Bildgebende Systeme für die medizinische Diagnostik; H. Morneburg (Hrsg.); Publicis MCD, München, 1995

Introduction to the Mathematics of Medical Imaging; C. L.Epstein; Siam, Philadelphia, 2008

Medical Image Processing, Reconstruction and Restoration; J. Jan; Taylor and Francis, Boca Raton, 2006

Principles of Magnetic Resonance Imaging; Z.-P. Liang and P. C. Lauterbur; IEEE Press, New York, 1999

Lehrveranstaltung L1695: Medizinische Bildgebung
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Tobias Knopp
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1598: Bildverarbeitung

Lehrveranstaltungen
Titel Typ SWS LP
Bildverarbeitung (L2443) Vorlesung 2 4
Bildverarbeitung (L2444) Gruppenübung 2 2
Modulverantwortlicher Prof. Tobias Knopp
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Signal und Systeme
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden kennen

  • Visuelle Wahrnehmung
  • Mehrdimensionale Signalverarbeitung
  • Abtastung und Abtasttheorem
  • Filterung
  • Bildverbesserung
  • Kantendetektion
  • Mehrfachauflösende Verfahren: Gauss- und Laplace-Pyramide, Wavelets
  • Bildkompression
  • Segmentierung
  • Morphologische Bildverarbeitung
Fertigkeiten

Die Studierenden können

  • multidimensionale Bilddaten analysieren, bearbeiten, verbessern
  • einfache Kompressionsalgorithmen implementieren
  • eigene Filter für konkrete Anwendungen entwerfen
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in sowohl selbstständig als auch in Teams an komplexen Problemen arbeiten. Sie können sich untereinander austauschen und ihre individuellen Stärken zur Lösung des Problems einbringen.

Selbstständigkeit

Die Studierenden sind in der Lage ein komplexes Problem eigenständig zu untersuchen und einzuschätzen, welche Kompetenzen zur Lösung des Problems benötigt werden. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Data Science: Kernqualifikation: Wahlpflicht
Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht
Data Science: Vertiefung II. Computer Science: Wahlpflicht
Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L2443: Bildverarbeitung
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Tobias Knopp
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Visuelle Wahrnehmung
  • Mehrdimensionale Signalverarbeitung
  • Abtastung und Abtasttheorem
  • Filterung
  • Bildverbesserung
  • Kantendetektion
  • Mehrfachauflösende Verfahren: Gauss- und Laplace-Pyramide, Wavelets
  • Bildkompression
  • Segmentierung
  • Morphologische Bildverarbeitung
Literatur

Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011
Pratt, Digital Image Processing, Wiley, 2001
Bernd Jähne: Digitale Bildverarbeitung - Springer, Berlin 2005

Lehrveranstaltung L2444: Bildverarbeitung
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Tobias Knopp
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0623: Intelligent Systems in Medicine

Lehrveranstaltungen
Titel Typ SWS LP
Intelligente Systeme in der Medizin (L0331) Vorlesung 2 3
Intelligente Systeme in der Medizin (L0334) Projektseminar 2 2
Intelligente Systeme in der Medizin (L0333) Gruppenübung 1 1
Modulverantwortlicher Prof. Alexander Schlaefer
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • principles of math (algebra, analysis/calculus)
  • principles of stochastics
  • principles of programming, Java/C++ and R/Matlab
  • advanced programming skills
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students are able to analyze and solve clinical treatment planning and decision support problems using methods for search, optimization, and planning. They are able to explain methods for classification and their respective advantages and disadvantages in clinical contexts. The students can compare  different methods for representing medical knowledge. They can evaluate methods in the context of clinical data  and explain challenges due to the clinical nature of the data and its acquisition and due to privacy and safety requirements.

Fertigkeiten

The students can give reasons for selecting and adapting methods for classification, regression, and prediction. They can assess the methods based on actual patient data and evaluate the implemented methods.

Personale Kompetenzen
Sozialkompetenz

The students are able to grasp practical tasks in groups, develop solution strategies independently, define work processes and work on them collaboratively.
The students can critically reflect on the results of other groups, make constructive suggestions for improvement and also incorporate them into their own work.


Selbstständigkeit

The students can assess their level of knowledge and document their work results. They can critically evaluate the results achieved and present them in an appropriate argumentative manner to the other groups.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 10 % Referat
Ja 10 % Schriftliche Ausarbeitung
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht
Data Science: Vertiefung III. Applications: Wahlpflicht
Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Interdisciplinary Mathematics: Vertiefung III. Computational Methods in Biomedical Imaging: Pflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0331: Intelligent Systems in Medicine
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum WiSe
Inhalt

- methods for search, optimization,  planning,  classification, regression and prediction in a clinical context
- representation of medical knowledge
- understanding challenges due to clinical and patient related data and data acquisition
The students will work in groups to apply the methods introduced during the lecture using problem based learning.


Literatur

Russel & Norvig: Artificial Intelligence: a Modern Approach, 2012
Berner: Clinical Decision Support Systems: Theory and Practice, 2007
Greenes: Clinical Decision Support: The Road Ahead, 2007
Further literature will be given in the lecture


Lehrveranstaltung L0334: Intelligent Systems in Medicine
Typ Projektseminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0333: Intelligent Systems in Medicine
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0768: Microsystems Technology in Theory and Practice

Lehrveranstaltungen
Titel Typ SWS LP
Mikrosystemtechnologie (L0724) Vorlesung 2 4
Mikrosystemtechnologie (L0725) Projekt-/problembasierte Lehrveranstaltung 2 2
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basics in physics, chemistry, mechanics and semiconductor technology

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able

     to present and to explain current fabrication techniques for microstructures and especially methods for the fabrication of microsensors and microactuators, as well as the integration thereof in more complex systems

     to explain in details operation principles of microsensors and microactuators and

     to discuss the potential and limitation of microsystems in application.


Fertigkeiten

Students are capable

     to analyze the feasibility of microsystems,

     to develop process flows for the fabrication of microstructures and

     to apply them.




Personale Kompetenzen
Sozialkompetenz


Students are able to plan and carry out experiments in groups, as well as present and represent the results in front of others. These social skills are practiced both during the preparation phase, in which the groups work out and present the theory, and during the follow-up phase, in which the groups prepare, document and present their practical experiences.


Selbstständigkeit

The independence of the students is demanded and promoted in that they have to transfer and apply what they have learned to ever new boundary conditions. This requirement is communicated at the beginning of the semester and consistently practiced until the exam. Students are encouraged to work independently by not being given a solution, but by learning to work out the solution step by step by asking specific questions. Students learn to ask questions independently when they are faced with a problem. They learn to independently break down problems into manageable sub-problems. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung Studierenden führen in Kleingruppen ein Laborpraktikum durch. Jede Gruppe präsentiert und diskutiert die Theorie sowie die Ergebniise ihrer Labortätigkeit. vor dem gesamten Kurs.
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0724: Microsystems Technology
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Literatur

M. Madou: Fundamentals of Microfabrication, CRC Press, 2002

N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010

G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Lehrveranstaltung L0725: Microsystems Technology
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1525: Forschungsprojekt und Seminar in Medizintechnik

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Dozenten des SD E
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Fortgeschrittener Kenntnisstand im Master-Studium Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden kennen aktuelle Forschungsprojekte der Institute in der Vertiefungsrichtung. Sie können die grundlegenden wissenschaftlichen Methoden nennen, mit denen an diesen gearbeitet wird. Sie können weiterhinim Diskurs einschlägige Fachbegriffe verwenden und Forschungsthemen erläutern.

Fertigkeiten

Die Studierenden sind in der Lage, ein eigenständiges Teilprojekt in aktuell laufenden Forschungsprojekten der Institute in der Vertiefungsrichtung durchzuführen. Studierende können ihre Vorgehensweise zur Lösung einer Aufgabe begründen, aus den gewonnen Ergebnissen Schlussfolgerungen ziehen und wenn nötig neue Arbeitsmethoden finden. Studierende sind in der Lage, alternative Lösungskonzepte mit dem gewählten Ansatz bzgl. vorgegebener Kriterien zu vergleichen und zu beurteilen.

Die Studierenden können sich ein für sie neues Thema inhaltlich erschießen. Sie verknüpfen dazu die Inhalte ihres bisherigen Studiums mit dem vorgegebenen Thema und schließen Wissenslücken durch Fachgespräche mit wissenschaftlichen Mitarbeitern  und eigene Recherchen (z.B. im Internet oder in Fachliteratur). Sie können wissenschaftliche Veröffentlichungen zusammenfassen und präsentieren.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, mit Mitarbeitern der betreuenden Institute fachlich den Fortschritt der Arbeit zu diskutieren und ihre Endergebnisse adressatengerecht zu präsentieren.

Die Studierenden können in Zusammenarbeit mit wissenschaftlichen Mitarbeitern  aktuelle Themen aus der Forschung erarbeiten, diskutieren und reflektieren. Sie können Zusammenfassungen derselben in englischer Sprache vor einem Fachpublikum präsentieren und erläutern.

Selbstständigkeit

Die Studierenden sind in der Lage, anhand der im bisherigen Studium erworbenen Kompetenzen sich selbstständig aus aktuellen Forschungsprojekten sinnvolle Aufgaben zu definieren, dazu notwendiges Wissen zu erschließen sowie geeignete Lösungsmethoden auszuwählen.

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext des Seminars zu setzen. Sie erschließen sich eigenständig weitere Quellen im Internet. Sie können inhaltlich einen Bezug zu ihrer gewählten Vertiefungsrichtung herstellen.

Arbeitsaufwand in Stunden Eigenstudium 360, Präsenzstudium 0
Leistungspunkte 12
Studienleistung Keine
Prüfung Studienarbeit
Prüfungsdauer und -umfang gem. ASPO
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Medizintechnik: Pflicht

Modul M0548: Bioelektromagnetik: Prinzipien und Anwendungen

Lehrveranstaltungen
Titel Typ SWS LP
Bioelektromagnetik: Prinzipien und Anwendungen (L0371) Vorlesung 3 5
Bioelektromagnetik: Prinzipien und Anwendungen (L0373) Gruppenübung 2 1
Modulverantwortlicher Prof. Christian Schuster
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Physik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegenden Gesetzmäßigkeiten, Zusammenhänge und Methoden der Bioelektromagnetik, d.h. der Beschreibung und Anwendung des Verhaltens elektromagnetischer Felder in biologischer Materie,  erklären. Sie können die wesentlichen physikalischen Abläufe erläutern und nach Wellenlänge bzw. Frequenz der Felder einordnen. Sie können einen Überblick über messtechnische und numerische Methoden zur Charakterisierung elektromagnetischer Felder in der Praxis geben. Sie können therapeutische und diagnostische Anwendungen elektromagnetischer Felder in der Medizintechnik benennen.

Fertigkeiten

Die Studierenden können eine Reihe von Verfahren zur Beschreibung des Verhaltens elektromagnetischer Felder in biologischer Materie anwenden. Dafür können Sie auf elementare Lösungen der Maxwellschen Gleichungen Bezug nehmen und diese sinnvoll einsetzen. Sie können einschätzen, welche prinzipiellen Effekte diese Modelle in Bezug auf biologische Materie vorhersagen, können diese nach Wellenlänge bzw. Frequenz klassifizieren und quantitativ analysieren. Sie können Validierungsstrategien für ihre Vorhersagen entwickeln. Sie können Effekte elektromagnetischer Felder für therapeutische und diagnostische Anwendungen gegeneinander abwägen und auswählen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise auf Englisch präsentieren (z.B. während Kleingruppenübungen).




Selbstständigkeit

Die Studierenden sind in der Lage, Informationen aus einschlägigen Fachpublikationen zu gewinnen und in den Kontext der Vorlesung zu setzen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Theoretischer Elektrotechnik, Grundlagen der Elektrotechnik oder Physik) zu verknüpfen. Sie können Probleme und Effekte im Bereich der Bioelektromagnetik auf Englisch kommunizieren.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Referat
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Elektrotechnik: Vertiefung Wireless and Sensor Technologies: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0371: Bioelektromagnetik: Prinzipien und Anwendungen
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Grundlegende Eigenschaften elektromagnetischer Felder (Phänomene)

- Mathematische Beschreibung elektromagnetischer Felder (Maxwell-Gleichungen)

- Elektromagnetische Eigenschaften biologischer Materie

- Prinzipien der Energieabsorption in biologischer Materie, Dosimetrie

- Numerische Methoden zur Berechnung elektromagnetischer Felder (v.a. FDTD)

- Messtechnische Methoden zur Bestimmung elektromagnetischer Felder

- Verhalten elektromagnetischer Felder niedriger Frequenz in biologischer Materie

- Verhalten elektromagnetischer Felder mittlerer Frequenz in biologischer Materie

- Verhalten elektromagnetischer Felder hoher Frequenz in biologischer Materie

- Verhalten elektromagnetischer Felder sehr hoher Frequenz in biologischer Materie

- Diagnostische Anwendungen elektromagnetischer Felder in der Medizin

- Therapeutische Anwendungen elektromagnetischer Felder in der Medizin

- Der menschliche Körper als Generator elektromagnetischer Felder


Literatur

- C. Furse, D. Christensen, C. Durney, "Basic Introduction to Bioelectromagnetics", CRC (2009)

- A. Vorst, A. Rosen, Y. Kotsuka, "RF/Microwave Interaction with Biological Tissues", Wiley (2006)

- S. Grimnes, O. Martinsen, "Bioelectricity and Bioimpedance Basics", Academic Press (2008)

- F. Barnes, B. Greenebaum, "Bioengineering and Biophysical Aspects of Electromagnetic Fields", CRC (2006)


Lehrveranstaltung L0373: Bioelektromagnetik: Prinzipien und Anwendungen
Typ Gruppenübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Fachmodule der Vertiefung Nachrichten- und Kommunikationstechnik


Diese Vertiefungsrichtung bietet den Studierenden eine breite Modulpalette mit Bezug zu verschiedenen nachrichtentechnischen Konzepten, drahtlosen und drahtgebundenen Kommunikationssystemen sowie Methoden der digitalen Signalverarbeitung. Die Studierenden werden in die Lage versetzt, Eigenschaften von Übertragungskanälen und Prinzipien von Funksystemen im Detail zu verstehen. Darüber hinaus erhalten sie fundierte Kenntnisse über Funktionsweise, Strukturen und Modellierung von Kommunikationsnetzen. Außerdem wird ihnen Wissen im Bereich der digitalen Sprach-, Audio- und Bildverarbeitung vermittelt. Im Ergebnis verfügen die Studierenden über das Rüstzeug, moderne Kommunikationssysteme ganzheitlich zu analysieren, zu entwerfen und zu optimieren. Die erworbenen Kompetenzen sind im heutigen Informationszeitalter von zentraler Bedeutung in Industrie und Forschung.

Modul M0637: Advanced Concepts of Wireless Communications

Lehrveranstaltungen
Titel Typ SWS LP
Weiterführende Konzepte der drahtlosen Kommunikation (L0297) Vorlesung 3 4
Weiterführende Konzepte der drahtlosen Kommunikation (L0298) Hörsaalübung 2 2
Modulverantwortlicher Dr. Rainer Grünheid
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Lecture "Signals and Systems"
  • Lecture "Fundamentals of Telecommunications and Stochastic Processes"
  • Lecture "Digital Communications"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able to explain the general as well as advanced principles and techniques that are applied to wireless communications. They understand the properties of wireless channels and the corresponding mathematical description. Furthermore, students are able to explain the physical layer of wireless transmission systems. In this context, they are proficient in the concepts of multicarrier transmission (OFDM), modulation, error control coding, channel estimation and multi-antenna techniques (MIMO). Students can also explain methods of multiple access. On the example of contemporary communication systems (LTE, 5G) they can put the learnt content into a larger context.

The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems.

Fertigkeiten

Using the acquired knowledge, students are able to understand the design of current and future wireless systems. Moreover, given certain constraints, they can choose appropriate parameter settings of communication systems. Students are also able to assess the suitability of technical concepts for a given application.

Personale Kompetenzen
Sozialkompetenz Students can jointly elaborate tasks in small groups and present their results in an adequate fashion.
Selbstständigkeit Students are able to extract necessary information from given literature sources and put it into the perspective of the lecture. They can continuously check their level of expertise with the help of accompanying measures (such as online tests, clicker questions, exercise tasks) and, based on that, to steer their learning process accordingly. They can relate their acquired knowledge to topics of other lectures, e.g., "Fundamentals of Communications and Stochastic Processes" and "Digital Communications".
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten; Umfang: Inhalt von Vorlesung und Übung
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Lehrveranstaltung L0297: Advanced Concepts of Wireless Communications
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Dr. Rainer Grünheid
Sprachen EN
Zeitraum SoSe
Inhalt

The lecture deals with technical principles and related concepts of mobile communications. In this context, the main focus is put on the physical and data link layer of the ISO-OSI stack.

In the lecture, the transmission medium, i.e., the mobile radio channel, serves as the starting point of all considerations. The characteristics and the mathematical descriptions of the radio channel are discussed in detail. Subsequently, various physical layer aspects of wireless transmission are covered, such as channel coding, modulation/demodulation, channel estimation, synchronization, and equalization. Moreover, the different uses of multiple antennas at the transmitter and receiver, known as MIMO techniques, are described. Besides these physical layer topics, concepts of multiple access schemes in a cellular network are outlined.

In order to illustrate the above-mentioned technical solutions, the lecture will also provide a system view, highlighting the basics of some contemporary wireless systems, including LTE, LTE Advanced, and 5G New Radio.


Literatur

John G. Proakis, Masoud Salehi: Digital Communications. 5th Edition, Irwin/McGraw Hill, 2007

David Tse, Pramod Viswanath: Fundamentals of Wireless Communication. Cambridge, 2005

Bernard Sklar: Digital Communications: Fundamentals and Applications. Second Edition, Pearson, 2013

Stefani Sesia, Issam Toufik, Matthew Baker: LTE - The UMTS Long Term Evolution. Second Edition, Wiley, 2011

Erik Dahlman, Stefan Parkvall, Johan Sköld: 5G NR - The Next Generation Wireless Access Technology. Second Edition, Academic Press, 2021

Lehrveranstaltung L0298: Advanced Concepts of Wireless Communications
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Rainer Grünheid
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1700: Satellite Communications and Navigation

Lehrveranstaltungen
Titel Typ SWS LP
Funkbasierte Positionierung und Navigation (L2711) Vorlesung 2 3
Satellitenkommunikation (L2710) Vorlesung 3 3
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

The module is designed for a diverse audience, i.e. students with different background. Basic knowledge of communications engineering and signal processing are of advantage but not required. The course intends to provide the chapters on communications techniques such that on the one hand students with a communications engineering background learn additional concepts and examples (e.g. modulation and coding schemes or signal processing concepts) which have not or in a different way been treated in our other bachelor and master courses. On the other hand, students with other background shall be able to grasp the ideas but may not be able to understand in the same depth. The individual background of the students will be taken into consideration in the oral exam.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students are able to understand, compare and analyse digital satellite communications system as well as navigation techniques. They are familiar with principal ideas of the respective communications, signal processing and positioning methods. They can describe distortions and resulting limitations caused by transmission channels and hardware components. They can describe how fundamental communications and navigation techniques are applied in selected practical systems. 

The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems.



Fertigkeiten

The students are able to describe and analyse digital satellite communications systems and navigation systems. They are able to analyse transmission chains including link budget calculations. They are able to choose appropriate transmission technologies and system parameters for given scenarios. 

Personale Kompetenzen
Sozialkompetenz

The students can jointly solve specific problems.

Selbstständigkeit

The students are able to acquire relevant information from appropriate literature sources. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Lehrveranstaltung L2711: Radio-Based Positioning and Navigation
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Gerhard Bauch, Dr. Rico Mendrzik
Sprachen EN
Zeitraum SoSe
Inhalt
  • Information extraction from communication signals
    • Time-of-arrival principle
      • Ranging in additive white Gaussian noise (AWGN) channel
      • Correlation-based range estimation
      • Effect of multipath propagation on time-of-arrival principle
      • Zero-forcing range estimation in the presence of multipath
      • Optimum range estimation in the presence of multipath
      • Zero-forcing in presence of noise
    • Angle-of-arrival principle
      • Angle-of-arrival estimation in AWGN channel
      • Delay-and-sum estimator
      • Multiple Signal Classifier (MUSIC)
      • MUSIC-based angle-of-arrival estimation
      • Case study: Comparison of estimators in AWGN channels
      • Effect of multipath propagation on angle-of-arrival principle
      • Case study: Comparison of estimators in multipath channels
  • Information fusion of extracted signals 
    • Distance-based positioning
      • Principle of time-of-arrival positioning
      • Geometric interpretation
      • Positioning in the absence of noise
      • Linearization of the positioning problem
      • Positioning in the presence of noise
      • Optimality criteria
      • Least squares time-of-arrival positioning
      • Maximum likelihood time-of-arrival positioning
      • Interactive Matlab demo
      • Excursion: gradient descent solvers for nonlinear programs
      • Real-life positioning with embedded development board (Arduino)
      • Linearized least squares time-of-arrival positioning
      • Effect of clock offsets on distance-based positioning
      • Time-difference-of-arrival principle
      • Least squares time-difference-of-arrival positioning
      • Clock offset mitigation via two-way ranging
    • Performance limits of distance-based positioning
      • Fisher information and the Cramér-Rao lower bound
      • Fisher information in the AWGN case
      • Multi-variate Fisher information
      • Cramér-Rao lower bound for synchronized time-of-arrival positioning
      • Case study: Synchronized time-of-arrival positioning
      • Cramér-Rao lower bound for unsynchronized time-of-arrival positioning
      • Case study: Unsynchronized time-of-arrival positioning
    • Angle-based Positioning
      • Angle-of-arrival positioning principle
      • Geometric interpretation angle-of-arrival positioning principle
      • Noise-free angle-of-arrival positioning with known orientation
      • Effect of noise on angle-of-arrival positioning
      • Least squares angle-of-arrival positioning with known orientation
      • Linear least squares angle-of-arrival positioning
      • Effect of orientation uncertainty
      • Angle-difference-of-arrival positioning
      • Geometric interpretation angle difference of arrival positioning
      • Proof of angle-difference-of-arrival locus
      • Inscribed angle lemma
      • Case study: Angle-difference-of-arrival-positioning
    • Performance limits of angle-based positioning
      • Cramér-Rao lower bound for angle-of-arrival positioning with known orientation
      • Case study: Angle-of-arrival positioning with known orientation
  • Information Filtering
    • Bayesian filtering
      • Principle of Bayesian filtering
      • General Problem Formulation
      • Solution to the linear Gaussian case
      • State transition in the linear Gaussian case
      • Proof of predicted posterior distribution of the Kalman filter
      • State update in the linear Gaussian case
      • Proof of marginal posterior distribution of the Kalman filter
      • Working with Gaussian random variables
        • Proof: Affine transformation
        • Proof: Marginalization
        • Proof: Conditioning
      • Kalman filter: Optimum Inference in the linear Gaussian case
      • Modeling of process noise
      • Modeling of measurement noise
      • Case study: Kalman filtering in the linear Gaussian case
      • Interactive Kalman filtering in Matlab
      • Dealing with nonlinearities in Bayesian filtering
      • Nonlinear Gaussian case
      • Extended Kalman filter
      • Proof of predicted posterior distribution of the extended Kalman filter
      • Proof of marginal posterior distribution of the extended Kalman filter
      • Example: Nonlinear state transition
      • Case study: Extended Kalman filtering
      • Practical considerations for filter design
  • Satellite Navigation
    • Overview from positioning perspective
      • Earth-centered earth-fixed (ECEF) coordinate system
      • World geodetic system (WGS)
      • Satellite navigation systems
      • System-receiver clock offsets and pseudo-ranges
      • Unsynchronized time-of-arrival positioning revisited
    • GPS legacy signals and ranging
      • Signal overview
      • Time-of-arrival principle revisited
      • Direct sequence spread spectrum principle
      • Short and long codes
      • Satellite signal generation
      • Carriers and codes
      • Correlation properties of codes
      • Code division multiple access in flat fading channels
      • Navigation message
    • Velocity estimation
    • Hands-on case study: Design of an extended Kalman filter for satellite navigation based on recorded data
  • Robust navigation
    • Multipath-assisted positioning in millimeter wave multiple antenna systems
    • Multi-sensor fusion 
Literatur
Lehrveranstaltung L2710: Satellite Communications
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction to satellite communications
    • What is a satellite
    • Overview orbits, Van Allen Belt, components of a satellite
    • Satellite services
    • Frequency bands for satellite services
    • International Telecommunications Union (ITU)
    • Influence of atmospheric impairments
    • Milestones in satellite communications
  • Components of a satellite communications system
    • Ground segment
    • Space segment
    • Control segment
  • Communication links
    • Uplink, downlink
    • Forward link, reverse link
    • Intersatellite links
    • Multiple access
    • Performance measures
      • Effective isotropic radiated power (EIRP), antenna gain, figure of merit, G/T, carrier to noise ratio
      • Signal to noise power ratio vs. carrier to noise ratio
  • Single beam and multibeam satellites
    • Beam coverage
    • Examples for beam coverage of LEO and GEO satellites (Iridium, Viasat)
  • Transparent vs. regenerative payload
  • Orbits
    • Low earth orbot (LEO), medium earth orbit (MEO), geosynchroneous and geostationary orbits (GEO), highly elliptical orbits (HEO
    • Favourable orbits:
      • HEO orbits with 63-64o inclination, Molnya and Tundra orbits
      • Circular LEO orbits
      • Circular MEO Orbits (Intermediate Circular Orbits (ICO))
      • Equatorial orbits, geostationary orbit (GEO)
    • Important aspects of LEO, MEO and GEO satellites
  • Kepler’s laws of planetary motion
  • Gravitational force
  • Parameters of ellipses and elliptical orbits
    • Major and minor half axis
    • Foci
    • Eccentricity
    • Eccentric anomaly, mean anomaly, true anomaly
    • Area
    • Orbit period
    • Perigee, apogee
    • Distance of satellite from center of earth
    • Construction of ellipses according to de La Hire
    • Orbital plane in space, inclination, right ascension (longitude) of ascending node, Vernal equinox
  • Newton’s laws of motion
  • Newton’s universal law of gravitation
  • Energy of satellites: Potential energy, kinetic energy, total energy
  • Instantaneous speed of a satellite
  • Kepler’s equation
  • Satellite visibility, elevation
  • Required number of LEO, MEO or GEO satellites for continuous earth coverage
  • Satellite altitude and distance from a point on earth
  • Choice of orbits
    • LEO, HEO, GEO
    • Elliptical orbits with non-zero inclination, Molnya orbits, Tundra orbits
    • Geosynchronous orbits
      • Parameters of geosynchronous orbits
      • Circular geosynchronous orbits
      • Inclined geosynchronous orbits
      • Quasi-zenith satellite systems (QZSS)
      • Syb-synchronous circular equatorial orbits
      • Geostationary orbit
        • Parameters of the geostationary orbit
        • Visibility
        • Propagation delay
        • Applications and system examples
  • Perturbations of orbits
    • Station keeping
      • Station keeping box
      • Estimation of orbit parameters
  • Fundamentals of digital communications techniques
    • Components of a digital communications system
    • Principles of encryption
    • Scrambling
    • Scrambling vs. interleaving for randomization of data sequences
    • Interleaving: Block interleaver, convolutional interleaver, random interleaver
    • Digital modulation methods
      • Linear and non-linear digital modulation methods
      • Linear digital modulation methods
        • QAM modulator and demodulator
        • Pulse shaping, square-root raised-cosine pulses
        • Average power spectral density
        • Signal space constellation
        • Examples: M-ary phase shift keying (M-PSK), M-ary quadrature amplitude shift keying (M-QAM)
        • M-PSK in noisy channels
        • Bit error probabilities of M-PSK and M-QAM
        • M-PSK vs. M-QAM
        • M-ary amplitude and phase shift keying (M-APSK)
        • M-APSK vs. M-QAM
        • Differential phase shift keying (DPSK)

Error control coding (channel coding)

  • Error detecting and forward error correcting (FEC) codes
  • Principle of channel coding
  • Data rate, code rate, Baud rate, spectral efficiency of modulation and coding schemes
  • Bandwidth-power trade-off, bandwidth-limited vs. power-limited transmission
  • Coding and modulation for transparent vs. regenerative payload
  • Block codes and convolutional codes
  • Concatenated codes
  • Bit-interleaved coded modulation
  • Convolutional codes
  • Low density parity check (LDPC) codes, principle of message passing decoding, bit error rate performance
  • Cyclic block codes
    • Examples for cyclic block codes
    • Single errors vs. block errors, cyclic block codes for burst errors
    • Generator matrix, generator polynomials
    • Systematic encoding and syndrome determination with shift registers
    • Cyclic redundancy check (CRC) codes


  • Automatic repeat request (ARQ)
    • Principle of ARQ
    • Stop-and-wait ARQ
    • Go-back-N ARQ
    • Selective-repeat ARQ
  • Transmission gains and losses
    • Antenna gain
      • Antenna radiation pattern
      • Maximum antenna gain, 3dB beamwidth
      • Maximum antenna gain of circular aperture
      • Maximum antenna gain of a geostationary satellite with global coverage
    • Effective isotropic radiated power (EIRP)
    • Power flux density
    • Path loss
      • Free space loss, free space loss for geostationary satellites
      • Atmospheric loss
      • Received power
    • Losses in transmit and receive equipment
      • Feeder loss
      • Depointing loss
      • Polarization mismatch loss
    • Combined effect of losses
  • Noise
    • Origins of noise
    • White noise
    • Noise power spectral density and noise power
    • Additive white Gaussian noise (AWGN) channel model
    • Antenna noise temperature
    • Earth brightness temperature
    • Signal to noise ratios
  • Atmospheric distortions
    • Atmosphere of the earth: Troposphere, stratosphere, mesosphere, thermosphere, exosphere
    •  Attenuation and depolarization due to rain, fog, rain and ice clouds, sandstorms
    • Scintillation
    • Faraday effect
    • Multipath contributions
  • Link budget calculations
    • GEO clear sky uplink and downlink
    • GEO uplink and downlink under rain conditions
    • Transparent vs. regenerative payload
  • Link availability improvement through site diversity and adaptive transmission
    • Transparent vs. regenerative payload
      • Non-linear amplifiers
        • Saleh model, Rapp model
        • Input and output back-off factor
      • Single carrier and multicarrier operation
      • Dimensioning of transmission parameters
      • Sources of noise: Thermal noise, interference, intermodulation products
      • Signal to noise ratio and bit error probability
      • Robustness against interference and non-linear channels
  • Satellite networks
    • Satellite network reference architectures
    • Network topologies
    • Network connectivity
      • Types of network connectivity
      • On-board connectivity
      • Inter-satellite links
    • Broadcast networks
    • Satellite-based internet
  • Satellite communications systems and standards examples
    • The role of standards in satellite communications
    • The Digital Video Broadcast Satellite Standard: DVB-S, DVB-S2, DVB-S2X
    • Satellites in 3GPP mobile communications networks
    • LEO megaconstellations: SpaceX Starlink, Kuiper, OneWeb
    • Space debris
    • The German Heinrich Hertz mission


Literatur

Modul M0673: Information Theory and Coding

Lehrveranstaltungen
Titel Typ SWS LP
Informationstheorie und Codierung (L0436) Vorlesung 3 4
Informationstheorie und Codierung (L0438) Hörsaalübung 2 2
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Mathematics 1-3
  • Probability theory and random processes
  • Basic knowledge of communications engineering (e.g. from lecture "Fundamentals of Communications and Random Processes")
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students know the basic definitions for quantification of information in the sense of information theory. They know Shannon's source coding theorem and channel coding theorem and are able to determine theoretical limits of data compression and error-free data transmission over noisy channels. They understand the principles of source coding as well as error-detecting and error-correcting channel coding. They are familiar with the principles of decoding, in particular with modern methods of iterative decoding. They know fundamental coding schemes, their properties and decoding algorithms. 

The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems.

Fertigkeiten The students are able to determine the limits of data compression as well as of data transmission through noisy channels and based on those limits to design basic parameters of a transmission scheme. They can estimate the parameters of an error-detecting or error-correcting channel coding scheme for achieving certain performance targets. They are able to compare the properties of basic channel coding and decoding schemes regarding error correction capabilities, decoding delay, decoding complexity and to decide for a suitable method. They are capable of implementing basic coding and decoding schemes in software.
Personale Kompetenzen
Sozialkompetenz

The students can jointly solve specific problems.

Selbstständigkeit

The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Information and Communication Systems: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0436: Information Theory and Coding
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction to information theory and coding
  • Definitions of information: Self information, entropy
  • Binary entropy function
  • Source coding theorem
  • Entropy of continuous random variables: Differential entropy, differential entropy of uniformly and Gaussian distributed random variables
  • Source coding
    • Principles of lossless source coding
    • Optimal source codes
    • Prefix codes, prefix-free codes, instantaneous codes
    • Morse code
    • Huffman code
    • Shannon code
    • Bounds on the average codeword length
    • Relative entropy, Kullback-Leibler distance, Kullback-Leibler divergence
    • Cross entropy
    • Lempel-Ziv algorithm
    • Lempel-Ziv-Welch (LZW) algorithm
    • Text compression and image compression using variants of the Lempel-Ziv algorithm
  • Channel models
    • AWGN channel
    • Binary-input AWGN channel
    • Binary symmetric channel (BSC)
    • Relationship between AWGN channel and BSC
    • Binary error and erasure channel (BEEC)
    • Binary erasure channel (BEC)
    • Discrete memoryless channels (DMC)
  • Definitions of information for multiple random variables
    • Mutual information and channel capacity
    • Entropy, conditional entropy
    • Chain rules for entropy and mutual information
  • Channel coding theorem
  • Channel capacity of fundamental channels: BSC, BEC, AWGN channel, binary-input AWGN channel etc.
  • Power-limited vs. bandlimited transmission
  • Capacity of parallel AWGN channels
    • Waterfilling
    • Examples: Multiple input multiple output (MIMO) channels, complex equivalent baseband channels, orthogonal frequency division multiplex (OFDM)
  • Source-channel coding theorem, separation theorem
  • Multiuser information theory
    • Multiple access channel (MAC)
    • Broadcast channel
    • Principles of multiple access, time division multiple access (TDMA), frequency division multiple access (FDMA), non-orthogonal multiple access (NOMA), hybrid multiple access
    • Achievable rate regions of TDMA and FDMA with power constraint, energy constraint, power spectral density constraint, respectively
    • Achievable rate region of the two-user and K-user multiple access channels
    • Achievable rate region of the two-user and K user broadcast channels
    • Multiuser diversity
  • Channel coding
    • Principles and types of channel coding
    • Code rate, data rate, Hamming distance, minimum Hamming distance, Hamming weight, minimum Hamming weight
    • Error detecting and error correcting codes
    • Simple block codes: Repetition codes, single parity check codes, Hamming code, etc.
    • Syndrome decoding
    • Representations of binary data
    • Non-binary symbol alphabets and non-binary codes
    • Code and encoder, systematic and non-systematic encoders
    • Properties of Hamming distance and Hamming weight
    • Decoding spheres
    • Perfect codes
    • Linear codes
    • Decoding principles
      • Syndrome decoding
      • Maximum a posteriori probability (MAP) decoding and maximum likelihood (ML) decoding
      • Hard decision and soft decision decoding
      • Log-likelihood ratios (LLRs), boxplus operation
      • MAP and ML decoding using log-likelihood ratios
      • Soft-in soft-out decoders
    • Error rate performance comparison of codes in terms of SNR per info bit vs. SNR per code bit
    • Linear block codes
      • Generator matrix and parity check matrix, properties of generator matrix and parity check matrix
      • Dual codes
    • Low density parity check (LDPC) codes
      • Sparse parity check matrix
      • Tanner graphs, cycles and girth
      • Degree distributions
      • Code rate and degree distribution
      • Regular and irregular LDPC codes
      • Message passing decoding
        • Message passing decoding in binary erasure channels (BEC)
        • Systematic encoding using erasure message passing decoding
        • Message passing decoding in binary symmetric channels (BSC)
          • Extrinsic information
          • Bit-flipping decoding
          • Effects of short cycles in the Tanner graph
          • Alternative bit-flipping decoding
          • Soft decision message passing decoding: Sum product decoding
        • Bit error rate performance of LDPC codes
      • Repeat accumulate codes and variants of repeat accumulate codes
      • Message passing decoding and turbo decoding of repeat accumulate codes
    • Convolutional codes
      • Encoding using shift registers
      • Trellis representation
      • Hard decision and soft decision Viterbi decoding
      • Bit error rate performance of convolutional codes
      • Asymptotic coding gain
      • Viterbi decoding complexity
      • Free distance and optimum convolutional codes
      • Generator polynomial description and octal description
      • Catastrophic convolutional codes
      • Non-systematic and recursive systematic convolutional (RSC) encoders
      • Rate compatible punctured convolutional (RCPC) codes
      • Hybrid automatic repeat request (HARQ) with incremental redundancy
      • Unequal error protection with punctured convolutional codes
      • Error patterns of convolutional codes
    • Concatenated codes
      • Serial concatenated codes
      • Parallel concatenated codes, Turbo codes
      • Iterative decoding, turbo decoding
      • Bit error rate performance of turbo codes
      • Interleaver design for turbo codes
    • Coded modulation
      • Principle of coded modulation
      • Achievable rates with PSK/QAM modulation
      • Trellis coded modulation (TCM)
      • Set partitioning
      • Ungerböck codes
      • Multilevel coding
      • Bit-interleaved coded modulation


Literatur

Bossert, M.: Kanalcodierung. Oldenbourg.

Friedrichs, B.: Kanalcodierung. Springer.

Lin, S., Costello, D.: Error Control Coding. Prentice Hall.

Roth, R.: Introduction to Coding Theory.

Johnson, S.: Iterative Error Correction. Cambridge.

Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press.

Gallager, R. G.: Information theory and reliable communication. Whiley-VCH

Cover, T., Thomas, J.: Elements of information theory. Wiley.

Lehrveranstaltung L0438: Information Theory and Coding
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0837: Simulation of Communication Networks

Lehrveranstaltungen
Titel Typ SWS LP
Simulation von Kommunikationsnetzen (L0887) Projekt-/problembasierte Lehrveranstaltung 5 6
Modulverantwortlicher Prof. Andreas Timm-Giel
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Knowledge of computer and communication networks
  • Basic programming skills
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able to explain the necessary stochastics, the discrete event simulation technology and modelling of networks for performance evaluation.

Fertigkeiten

Students are able to apply the method of simulation for performance evaluation to different, also not practiced, problems of communication networks. The students can analyse the obtained results and explain the effects observed in the network. They are able to question their own results.

Personale Kompetenzen
Sozialkompetenz

Students are able to acquire expert knowledge in groups, present the results, and discuss solution approaches and results. They are able to work out solutions for new problems in small teams.

Selbstständigkeit

Students are able to transfer independently and in discussion with others the acquired method and expert knowledge to new problems. They can identify missing knowledge and acquire this knowledge independently.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht
Lehrveranstaltung L0887: Simulation of Communication Networks
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 5
LP 6
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Dozenten Prof. Andreas Timm-Giel
Sprachen EN
Zeitraum SoSe
Inhalt

In the course necessary basic stochastics and the discrete event simulation are introduced. Also simulation models for communication networks, for example, traffic models, mobility models and radio channel models are presented in the lecture. Students work with a simulation tool, where they can directly try out the acquired skills, algorithms and models. At the end of the course increasingly complex networks and protocols are considered and their performance is determined by simulation.

Literatur
  • Skript des Instituts für Kommunikationsnetze

Further literature is announced at the beginning of the lecture.

Modul M1248: Compiler für Eingebettete Systeme

Lehrveranstaltungen
Titel Typ SWS LP
Compiler für Eingebettete Systeme (L1692) Vorlesung 3 4
Compiler für Eingebettete Systeme (L1693) Projekt-/problembasierte Lehrveranstaltung 1 2
Modulverantwortlicher Prof. Heiko Falk
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Modul "Eingebettete Systeme"

C/C++ Programmierkenntnisse

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Bedeutung Eingebetteter Systeme steigt von Jahr zu Jahr. Innerhalb Eingebetteter Systeme steigt der Software-Anteil, der auf Prozessoren ausgeführt wird, aufgrund geringerer Kosten und höherer Flexibilität ebenso kontinuierlich. Wegen der besonderen Einsatzgebiete Eingebetteter Systeme kommen hier hochgradig spezialisierte Prozessoren zum Einsatz, die applikationsspezifisch auf ihr jeweiliges Einsatzgebiet ausgerichtet sind. Diese hochgradig spezialisierten Prozessoren stellen hohe Anforderungen an einen Compiler, der Code von hoher Qualität generieren soll. Nach erfolgreichem Besuch der Veranstaltung sind die Studierenden in der Lage,

  • Struktur und Aufbau derartiger Compiler aufzuzeigen,
  • interne Zwischendarstellungen auf verschiedenen Abstraktionsniveaus zu unterscheiden und zu erklären, und
  • Probleme und Optimierungen in allen Compilerphasen zu beurteilen.

Wegen der hohen Anforderungen an Compiler für Eingebettete Systeme sind effektive Optimierungen unerlässlich. Die Studierenden lernen insbes.,

  • welche Arten von Optimierungen es auf Quellcode-Niveau gibt,
  • wie die Übersetzung von der Quellsprache nach Assembler abläuft,
  • welche Arten von Optimierungen auf Assembler-Niveau durchzuführen sind,
  • wie die Registerallokation vonstatten geht, und
  • wie Speicherhierarchien effizient ausgenutzt werden.

Da Compiler für Eingebettete Systeme oft verschiedene Zielfunktionen optimieren sollen (z.B. durchschnittliche oder worst-case Laufzeit, Energieverbrauch, Code-Größe), lernen die Studierenden den Einfluss von Optimierungen auf diese verschiedenen Zielfunktionen zu beurteilen.

Fertigkeiten

Studierende werden in die Lage versetzt, hochsprachlichen Programmcode in Maschinensprache zu übersetzen. Die Studierenden erwerben die Fähigkeit zu beurteilen, welche Art von Code-Optimierung innerhalb eines Compilers am effektivsten auf welchem Abstraktionsniveau (bspw. Quell- oder Assemblercode) durchzuführen ist.

Während der Übungen erwerben die Studierenden die Fähigkeit, einen funktionierenden Compiler mitsamt Optimierungen zu implementieren.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren.

Selbstständigkeit

Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L1692: Compiler für Eingebettete Systeme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Heiko Falk
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einleitung und Motivation
  • Compiler für Eingebettete Systeme - Anforderungen und Abhängigkeiten
  • Interne Struktur von Compilern
  • Pre-Pass Optimierungen
  • HIR Optimierungen und Transformationen
  • Code-Generierung
  • LIR Optimierungen und Transformationen
  • Register-Allokation
  • WCET-bewusste Code-Generierung
  • Ausblick
Literatur
  • Peter Marwedel. Embedded System Design - Embedded Systems Foundations of Cyber-Physical Systems. 2nd Edition, Springer, 2012.
  • Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.
  • Andrew W. Appel. Modern compiler implementation in C. Oxford University Press, 1998.
Lehrveranstaltung L1693: Compiler für Eingebettete Systeme
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Heiko Falk
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1785: Machine Learning in Electrical Engineering and Information Technology

Lehrveranstaltungen
Titel Typ SWS LP
General Introduction Machine Learning (L3004) Vorlesung 1 2
Machine Learning Applications in Electric Power Systems (L3008) Vorlesung 1 1
Machine Learning in Electromagnetic Compatibility (EMC) Engineering (L3006) Vorlesung 1 1
Machine Learning in High-Frequency Technology and Radar (L3007) Vorlesung 1 1
Machine Learning in Wireless Communications (L3005) Vorlesung 1 1
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

The module is designed for a diverse audience, i.e. students with different background. It shall be suitable for both students with deeper knowledge in machine learning methods but less knowledge in electrical engineering, e.g. math or computer science students, and students with deeper knowledge in electrical engineering but less knowledge in machine learning methods, e.g. electrical engineering students. Machine learning methods will be explained on a relatively high level indicating mainly principle ideas. The focus is on specific applications in electrical engineering and information technology. 

The chapters of the course will be understandable in different depth depending on the individual background of the student. The individual background of the students will be taken into consideration in the oral exam.


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht
Lehrveranstaltung L3004: General Introduction Machine Learning
Typ Vorlesung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Dr. Maximilian Stark
Sprachen EN
Zeitraum SoSe
Inhalt
  • From Rule-Based Systems to Machine Learning
    • Brief overview recent advances in ML in various domain
    • Outline and expected learning outcomes
    • Basics statistical inference and statistics
    • Basics of information theory
  • The Notions of Learning in Machine Learning
    • Unsupervised and supervised machine learning
    • Model-based and data-driven machine learning
    • Hybrid modelling
    • Online/offline/meta/transfer learning
    • General loss functions
  • Introduction to Deep Learning
    • Variants of neural networks
    • MLP
    • Conv. neural networks
    • Recurrent neural networks
    • Training neural networks
    • (Stochastic) Gradient Descent
  • Regression vs. Classification
    • Classification as supervised learning problem
    • Hands-On Session
  • Representation Learning and Generative Models
    • AutoEncoders
    • Directed Generative Models
    • Undirected Generative Models
    • Generative Adversarial Neural Networks
  • Probabilistic Graphical Models
    • Bayesian Networks
    • Variational inference (variational autoencoder)
Literatur
Lehrveranstaltung L3008: Machine Learning Applications in Electric Power Systems
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Becker, Dr. Davood Babazadeh
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L3006: Machine Learning in Electromagnetic Compatibility (EMC) Engineering
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster, Dr. Cheng Yang
Sprachen EN
Zeitraum SoSe
Inhalt

Electromagnetic Compatibility (EMC) Engineering deals with design, simulation, measurement, and certification of electronic and electric components and systems in such a way that their operation is safe, reliable, and efficient in any possible application. Safety is hereby understood as safe with respect to parasitic effects of electromagnetic fields on humans as well as on the operation of other components and systems nearby. Examples for components and systems range from the wiring in aircraft and ships to high-speed interconnects in server systems and wirless interfaces for brain implants. In this part of the course we will give an introduction to the physical basics of EMC engineering and then show how methods of Machine Learning (ML) can be applied to expand todays physcis-based approaches in EMC Engineering.

Literatur
Lehrveranstaltung L3007: Machine Learning in High-Frequency Technology and Radar
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Kölpin, Dr. Fabian Lurz
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L3005: Machine Learning in Wireless Communications
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Maximilian Stark
Sprachen EN
Zeitraum SoSe
Inhalt
  • Supervised Learning Application - Channel Coding
    • Recap channel coding and block codes
    • Block codes as trainable neural networks
    • Tanner graph with trainable weights
    • Hands-on session
  • Supervised Learning Application - Modulation Detection
    • Recap wireless modulation schemes
    • Convolutional neuronal networks for blind detection of modulation schemes
    • Hands-on session
  • Autoencoder Application - Constellation Shaping I
    • Recap channel capacity and constellation shaping, 
    • Capacity achieving machine learning systems
    • Information theoretical explanation of the autoencoder training
    • Hands-on session
  • Autoencoder Application - Constellation Shaping II
    • Training without a channel model
    • Mutual information neural estimator
    • Hands-on session
  • Generative Adversarial Network Application - Channel Modelling
    • Recap realistic channels with non-linear hardware impairments
    • Training a digital twin of a realistic channel with insufficient training data
    • Hands-on session
  • Recurrent Neural Network Application - Channel prediction
    • Recap time-varying channel models
    • Recurrent neural networks for temporal prediction
    • Hands-on session
Literatur

Modul M0924: Software für Eingebettete Systeme

Lehrveranstaltungen
Titel Typ SWS LP
Software für Eingebettete Systeme (L1069) Vorlesung 2 3
Software für Eingebettete Systeme (L1070) Gruppenübung 3 3
Modulverantwortlicher Prof. Bernd-Christian Renner
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Sehr gute Kenntnisse und praktische Erfahrung in der Programmiersprache C
  • Grundkenntnisse in Softwaretechnik
  • Prinzipielles Verständnis von Assembler Sprachen
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können die grundlegende Prinzipien und Vorgehensweisen für die Erstellung von Software für eingebettete Systeme erklären. Sie sind in der Lage, ereignisbasierte Programmiertechniken mittels Interrupts zu beschreiben. Sie kennen den Aufbau und Funktion eines konkreten Mikrocontrollers. Die Teilnehmer sind in der Lage, Anforderungen an Echtzeitsysteme zu erläutern. Sie können mindestens drei Scheduling Algorithmen für Echzeitbetriebssysteme erläutern (einschließlich Vor- und Nachteile)

Fertigkeiten Studierende erstellen interrupt-basierte Programme für einen konkreten Mikrocontroller. Sie erstellen und benutzen einen preemptiven scheduler. Sie setzen periphere Komponenten (Timer, ADCs, EEPROM) für komplexe Aufgaben eingebetteter System ein. Für den Anschluss externer Komponenten setzen sie serielle Protokolle ein.
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 10 % Testate
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L1069: Software für Eingebettete Systeme
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bernd-Christian Renner
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • General-Purpose Processors
  • Programming the Atmel AVR
  • Interrupts
  • C für Embedded Systems
  • Standard Single Purpose Processors: Peripherals
  • Finite-State Machines
  • Speicher
  • Betriebssystem für Eingebettete Systeme
  • Echtzeit Eingebettete Systeme
Literatur
  1. Embedded System Design,  F. Vahid and T. Givargis,  John Wiley
  2. Programming Embedded Systems: With C and Gnu Development Tools, M. Barr and A. Massa, O'Reilly

  3. C und C++ für Embedded Systems,  F. Bollow, M. Homann, K. Köhn,  MITP
  4. The Art of Designing  Embedded Systems, J. Ganssle, Newnses

  5. Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie,  G. Schmitt, Oldenbourg
  6. Making Embedded Systems: Design Patterns for Great Software, E. White, O'Reilly

Lehrveranstaltung L1070: Software für Eingebettete Systeme
Typ Gruppenübung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Bernd-Christian Renner
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1697: Ausgewählte Aspekte der Nachrichten- und Kommunikationstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Aspekte der Nachrichten- und Kommunikationstechnik (L2700) Vorlesung 2 4
Ausgewählte Aspekte der Nachrichten- und Kommunikationstechnik (L2701) Hörsaalübung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Lehrveranstaltung L2700: Ausgewählte Aspekte der Nachrichten- und Kommunikationstechnik
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Dozenten des SD E
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt
Literatur
Lehrveranstaltung L2701: Ausgewählte Aspekte der Nachrichten- und Kommunikationstechnik
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dozenten des SD E
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0836: Communication Networks

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Themen der Kommunikationsnetze (L0899) Projekt-/problembasierte Lehrveranstaltung 2 2
Kommunikationsnetze (L0897) Vorlesung 2 2
Übung Kommunikationsnetze (L0898) Projekt-/problembasierte Lehrveranstaltung 1 2
Modulverantwortlicher Prof. Andreas Timm-Giel
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Fundamental stochastics
  • Basic understanding of computer networks and/or communication technologies is beneficial
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able to describe the principles and structures of communication networks in detail. They can explain the formal description methods of communication networks and their protocols. They are able to explain how current and complex communication networks work and describe the current research in these examples.

Fertigkeiten

Students are able to evaluate the performance of communication networks using the learned methods. They are able to work out problems themselves and apply the learned methods. They can apply what they have learned autonomously on further and new communication networks.

Personale Kompetenzen
Sozialkompetenz

Students are able to define tasks themselves in small teams and solve these problems together using the learned methods. They can present the obtained results. They are able to discuss and critically analyse the solutions.

Selbstständigkeit

Students are able to obtain the necessary expert knowledge for understanding the functionality and performance capabilities of new communication networks independently.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Referat
Prüfungsdauer und -umfang 1,5 Stunden Kolloquium mit je drei Prüflingen, also ca. 30 min je Prüfling. Inhalt des Kolloquiums sind die Poster der vorhergehenden Postersession sowie die Lehrinhalte.
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L0899: Selected Topics of Communication Networks
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Koojana Kuladinithi
Sprachen EN
Zeitraum WiSe
Inhalt Example networks selected by the students will be researched on in a PBL course by the students in groups and will be presented in a poster session at the end of the term.
Literatur
  • see lecture
Lehrveranstaltung L0897: Communication Networks
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Koojana Kuladinithi
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur
  • Skript des Instituts für Kommunikationsnetze
  • Tannenbaum, Computernetzwerke, Pearson-Studium


Further literature is announced at the beginning of the lecture.

Lehrveranstaltung L0898: Communication Networks Excercise
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Dr. Koojana Kuladinithi
Sprachen EN
Zeitraum WiSe
Inhalt Part of the content of the lecture Communication Networks are reflected in computing tasks in groups, others are motivated and addressed in the form of a PBL exercise.
Literatur
  • announced during lecture

Modul M0638: Modern Wireless Systems

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Themen moderner Funksysteme (L1982) Projekt-/problembasierte Lehrveranstaltung 2 3
Moderne Funksysteme (L0296) Vorlesung 3 3
Modulverantwortlicher Dr. Rainer Grünheid
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Lecture "Digital Communications"
  • Lecture "Advanced Concepts of Wireless Communications"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students have an overview of a variety of contemporary wireless systems of different size and complexity. They understand the technical solutions from the perspective of the physical and data link layer. They have developed a system view and are aware of the technical arguments, considering the respective applications and associated constraints. For several examples (e.g., 5G New Radio), students are able to explain different concepts in a very deep technical detail.

The students are familiar with the contents of lecture and PBL course. They can explain and apply them to new problems.

Fertigkeiten Students have developed a system view. They can transfer their knowledge to evaluate other systems, not discussed in the lecture, and to understand the respective technical solutions. Given specific contraints and technical requirements, students are in a position to make proposals for certain design aspects by an appropriate assessment and the consideration of alternatives.
Personale Kompetenzen
Sozialkompetenz

Students can jointly elaborate tasks in small groups and present their results in an adequate fashion.

Selbstständigkeit

Students are able to extract necessary information from given literature sources and put it into the perspective of the lecture. They can continuously check their level of expertise with the help of accompanying measures (such as online tests, clicker questions, exercise tasks) and, based on that, to steer their learning process accordingly. They can relate their acquired knowledge to topics of other lectures, e.g., "Digital Communications" and "Advanced Topics of Wireless Communications".

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung PBL-Kurs mit Posterpräsentation
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 40 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht
Lehrveranstaltung L1982: Selected Topics of Modern Wireless Systems
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Rainer Grünheid
Sprachen EN
Zeitraum WiSe
Inhalt

In this course, selected "hot" topics of modern wireless systems will be covererd. For that purpose, students work in small groups to elaborate a given subject, including a quantitative analysis with provided simulation tools. The results will be presented in a poster session or a talk towards the end of the semester. Possible topics can include various system concepts and related technical principles, such as:

  • WLAN sytems
  • 5G systems
  • Millimeter wave communication
  • Visible light communication
  • Cooperative Multipoint
  • Massive MIMO
  • Massive machine-type communication
  • Interference cancellation
  • Non-orthogonal multiple access
  • Heterogeneous networks
  • ...




Literatur will be provided, depending on the given topics
Lehrveranstaltung L0296: Modern Wireless Systems
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Dr. Rainer Grünheid
Sprachen EN
Zeitraum WiSe
Inhalt

The lecture gives an overview of contemporary wireless communication concepts and related techniques from a system point of view. For that purpose, different systems, ranging from Wireless Personal to Wide Area Networks, are covered, mainly discussing the physical and data link layer.

Systems under consideration include:

- Near Field Communication (NFC)
- ZigBee / IEEE 802.15.4
- Bluetooth
- IEEE 802.11 family

- L-band Digital Aeronautical Communication System (LDACS)
- Long Term Evolution (LTE) and LTE Advanced
- 5G New Radio

A special focus is placed on 4th and 5th generation networks; in particular, an in-depth view into the technical principles of the 5G New Radio standard is given.

Literatur

John G. Proakis, Masoud Salehi: Digital Communications. 5th Edition, Irwin/McGraw Hill, 2007

Stefani Sesia, Issam Toufik, Matthew Baker: LTE - The UMTS Long Term Evolution. Second Edition, Wiley, 2011

Erik Dahlman, Stefan Parkvall, Johan Sköld: 5G NR - The Next Generation Wireless Access Technology. Second Edition, Academic Press, 2021



Modul M0839: Traffic Engineering

Lehrveranstaltungen
Titel Typ SWS LP
Seminar Traffic Engineering (L0902) Seminar 2 2
Traffic Engineering (L0900) Vorlesung 2 2
Traffic Engineering Übung (L0901) Gruppenübung 1 2
Modulverantwortlicher Prof. Andreas Timm-Giel
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Fundamentals of communication or computer networks
  • Stochastics
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able to describe methods for planning, optimisation and performance evaluation of communication networks.

Fertigkeiten

Students are able to solve typical planning and optimisation tasks for communication networks. Furthermore they are able to evaluate the network performance using queuing theory.

Students are able to apply independently what they have learned to other and new problems. They can present their results in front of experts and discuss them.

Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit

Students are able to acquire the necessary expert knowledge to understand the functionality and performance of new communication networks independently.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht
Lehrveranstaltung L0902: Seminar Traffic Engineering
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Andreas Timm-Giel, Dr. Phuong Nga Tran
Sprachen EN
Zeitraum WiSe
Inhalt Selected applications of methods for planning, optimization, and performance evaluation of communication networks, which have been introduced in the traffic engineering lecture are prepared by the students and presented in a seminar.
Literatur
  • U. Killat, Entwurf und Analyse von Kommunikationsnetzen, Vieweg + Teubner
  • further literature announced in the lecture
Lehrveranstaltung L0900: Traffic Engineering
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Andreas Timm-Giel, Dr. Phuong Nga Tran
Sprachen EN
Zeitraum WiSe
Inhalt

Network Planning and Optimization
• Linear Programming (LP)
• Network planning with LP solvers
• Planning of communication networks
Queueing Theory for Communication Networks
• Stochastic processes
• Queueing systems
• Switches (circuit- and packet switching)
• Network of queues

Literatur

Literatur:
U. Killat, Entwurf und Analyse von Kommunikationsnetzen, Springer
Weitere Literatur wird in der Lehrveranstaltung bekanntgegeben
/
 Literature:
U. Killat, Entwurf und Analyse von Kommunikationsnetzen, Springer
further literature announced in the lecture

Lehrveranstaltung L0901: Traffic Engineering Exercises
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Andreas Timm-Giel
Sprachen EN
Zeitraum WiSe
Inhalt

Accompanying exercise for the traffic engineering course

Literatur

Literatur:
U. Killat, Entwurf und Analyse von Kommunikationsnetzen, Springer
Weitere Literatur wird in der Lehrveranstaltung bekanntgegeben / Literature:
U. Killat, Entwurf und Analyse von Kommunikationsnetzen, Springer
further literature announced in the lecture

Modul M1526: Forschungsprojekt und Seminar in Nachrichten- und Kommunikationstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Dozenten des SD E
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Fortgeschrittener Kenntnisstand im Master-Studium Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden kennen aktuelle Forschungsprojekte der Institute in der Vertiefungsrichtung. Sie können die grundlegenden wissenschaftlichen Methoden nennen, mit denen an diesen gearbeitet wird. Sie können weiterhinim Diskurs einschlägige Fachbegriffe verwenden und Forschungsthemen erläutern.

Fertigkeiten

Die Studierenden sind in der Lage, ein eigenständiges Teilprojekt in aktuell laufenden Forschungsprojekten der Institute in der Vertiefungsrichtung durchzuführen. Studierende können ihre Vorgehensweise zur Lösung einer Aufgabe begründen, aus den gewonnen Ergebnissen Schlussfolgerungen ziehen und wenn nötig neue Arbeitsmethoden finden. Studierende sind in der Lage, alternative Lösungskonzepte mit dem gewählten Ansatz bzgl. vorgegebener Kriterien zu vergleichen und zu beurteilen.

Die Studierenden können sich ein für sie neues Thema inhaltlich erschießen. Sie verknüpfen dazu die Inhalte ihres bisherigen Studiums mit dem vorgegebenen Thema und schließen Wissenslücken durch Fachgespräche mit wissenschaftlichen Mitarbeitern  und eigene Recherchen (z.B. im Internet oder in Fachliteratur). Sie können wissenschaftliche Veröffentlichungen zusammenfassen und präsentieren.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, mit Mitarbeitern der betreuenden Institute fachlich den Fortschritt der Arbeit zu diskutieren und ihre Endergebnisse adressatengerecht zu präsentieren.

Die Studierenden können in Zusammenarbeit mit wissenschaftlichen Mitarbeitern  aktuelle Themen aus der Forschung erarbeiten, diskutieren und reflektieren. Sie können Zusammenfassungen derselben in englischer Sprache vor einem Fachpublikum präsentieren und erläutern.

Selbstständigkeit

Die Studierenden sind in der Lage, anhand der im bisherigen Studium erworbenen Kompetenzen sich selbstständig aus aktuellen Forschungsprojekten sinnvolle Aufgaben zu definieren, dazu notwendiges Wissen zu erschließen sowie geeignete Lösungsmethoden auszuwählen.

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext des Seminars zu setzen. Sie erschließen sich eigenständig weitere Quellen im Internet. Sie können inhaltlich einen Bezug zu ihrer gewählten Vertiefungsrichtung herstellen.

Arbeitsaufwand in Stunden Eigenstudium 360, Präsenzstudium 0
Leistungspunkte 12
Studienleistung Keine
Prüfung Studienarbeit
Prüfungsdauer und -umfang gem. ASPO
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Pflicht

Modul M1598: Bildverarbeitung

Lehrveranstaltungen
Titel Typ SWS LP
Bildverarbeitung (L2443) Vorlesung 2 4
Bildverarbeitung (L2444) Gruppenübung 2 2
Modulverantwortlicher Prof. Tobias Knopp
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Signal und Systeme
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden kennen

  • Visuelle Wahrnehmung
  • Mehrdimensionale Signalverarbeitung
  • Abtastung und Abtasttheorem
  • Filterung
  • Bildverbesserung
  • Kantendetektion
  • Mehrfachauflösende Verfahren: Gauss- und Laplace-Pyramide, Wavelets
  • Bildkompression
  • Segmentierung
  • Morphologische Bildverarbeitung
Fertigkeiten

Die Studierenden können

  • multidimensionale Bilddaten analysieren, bearbeiten, verbessern
  • einfache Kompressionsalgorithmen implementieren
  • eigene Filter für konkrete Anwendungen entwerfen
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in sowohl selbstständig als auch in Teams an komplexen Problemen arbeiten. Sie können sich untereinander austauschen und ihre individuellen Stärken zur Lösung des Problems einbringen.

Selbstständigkeit

Die Studierenden sind in der Lage ein komplexes Problem eigenständig zu untersuchen und einzuschätzen, welche Kompetenzen zur Lösung des Problems benötigt werden. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Data Science: Kernqualifikation: Wahlpflicht
Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht
Data Science: Vertiefung II. Computer Science: Wahlpflicht
Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L2443: Bildverarbeitung
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Tobias Knopp
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Visuelle Wahrnehmung
  • Mehrdimensionale Signalverarbeitung
  • Abtastung und Abtasttheorem
  • Filterung
  • Bildverbesserung
  • Kantendetektion
  • Mehrfachauflösende Verfahren: Gauss- und Laplace-Pyramide, Wavelets
  • Bildkompression
  • Segmentierung
  • Morphologische Bildverarbeitung
Literatur

Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011
Pratt, Digital Image Processing, Wiley, 2001
Bernd Jähne: Digitale Bildverarbeitung - Springer, Berlin 2005

Lehrveranstaltung L2444: Bildverarbeitung
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Tobias Knopp
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Fachmodule der Vertiefung Nanoelektronik und Mikrosystemtechnik

Die Studierenden werden in dieser Vertiefungsrichtung in den Entwurf von CMOS-Schaltungen und deren Herstellungstechnologie eingeführt. In Lehr-Projekten erwerben sie Kenntnisse und Kompetenzen im Umgang mit den wichtigsten Software-Tools für die Simulation der Schaltungen am Rechner und über deren Strukturierung. Zu den Kompetenzen zählt auch ein solides Verständnis von möglichen Problemen, die die Zuverlässigkeit der Schaltungen gefährden können, und deren Lösungen. Weiterhin erhalten die Studierenden in dem Gebiet der Mikrosystemtechnik Kompetenzen in der Herstellungstechnologie von Mikrosystemen und in der Anwendung von Software zum Design dieser Systeme. Den Studierenden wird so das erforderliche Rüstzeug vermittelt, sowohl anspruchsvolle integrierte Schaltungen als auch Mikrosysteme zu entwickeln und zu innovativen Einheiten zusammenzufügen.

Modul M0643: Optoelectronics I - Wave Optics

Lehrveranstaltungen
Titel Typ SWS LP
Optoelektronik I: Wellenoptik (L0359) Vorlesung 2 3
Optoelektronik I: Wellenoptik (Übung) (L0361) Gruppenübung 1 1
Modulverantwortlicher Dr. Alexander Petrov
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basics in electrodynamics, calculus


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can explain the fundamental mathematical and physical relations of freely propagating optical waves.
They can give an overview on wave optical phenomena such as diffraction, reflection and refraction, etc. 
Students can describe waveoptics based components such as electrooptical modulators in an application oriented way.



Fertigkeiten

Students can generate models and derive mathematical descriptions in relation to free optical wave propagation.
They can derive approximative solutions and judge factors influential on the components' performance.


Personale Kompetenzen
Sozialkompetenz

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Selbstständigkeit

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Leistungspunkte 4
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Materialwissenschaft: Vertiefung Nano- und Hybridmaterialien: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Lehrveranstaltung L0359: Optoelectronics I: Wave Optics
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction to optics
  • Electromagnetic theory of light
  • Interference
  • Coherence
  • Diffraction
  • Fourier optics
  • Polarisation and Crystal optics
  • Matrix formalism
  • Reflection and transmission
  • Complex refractive index
  • Dispersion
  • Modulation and switching of light
Literatur

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 
Hecht, E., Optics, Benjamin Cummings, 2001
Goodman, J.W. Statistical Optics, Wiley, 2000
Lauterborn, W., Kurz, T., Coherent Optics: Fundamentals and Applications, Springer, 2002

Lehrveranstaltung L0361: Optoelectronics I: Wave Optics (Problem Solving Course)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum SoSe
Inhalt see lecture Optoelectronics 1 - Wave Optics
Literatur

see lecture Optoelectronics 1 - Wave Optics

Modul M0747: Microsystem Design

Lehrveranstaltungen
Titel Typ SWS LP
Mikrosystementwurf (L0683) Vorlesung 2 3
Mikrosystementwurf (L0684) Laborpraktikum 3 3
Modulverantwortlicher Dr. Thomas Kusserow
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Mathematical Calculus, Linear Algebra, Microsystem Engineering

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students know about the most important and most common simulation and design methods used in microsystem design. The scientific background of finite element methods and the basic theory of these methods are known.

Fertigkeiten

Students are able to apply simulation methods and commercial simulators in a goal oriented approach to complex design tasks. Students know to apply the theory in order achieve estimates of expected accuracy and can judge and verify the correctness of results. Students are able to develop a design approach even if only incomplete information about material data or constraints are available. Student can make use of approximate and reduced order models in a preliminary design stage or a system simulation.

Personale Kompetenzen
Sozialkompetenz

Students are able to solve specific problems alone or in a group and to present the results accordingly. Students can develop and explain their solution approach and subdivide the design task to subproblems which are solved separately by group members.

Selbstständigkeit

Students are able to acquire particular knowledge using specialized literature and to integrate and associate this knowledge with other fields.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Schriftliche Ausarbeitung
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0683: Microsystem Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Timo Lipka
Sprachen EN
Zeitraum SoSe
Inhalt

Finite difference methods

Approximation error

Finite element method

Order of convergence

Error estimation, mesh refinement

Makromodeling

Reduced order modeling

Black-box models

System identification

Multi-physics systems

System simulation

Levels of simulation, network simulation

Transient problems

Non-linear problems

Introduction to Comsol

Application to thermal, electric, electromagnetic, mechanical and fluidic problems

Literatur

M. Kasper: Mikrosystementwurf, Springer (2000)

S. Senturia: Microsystem Design, Kluwer (2001)

Lehrveranstaltung L0684: Microsystem Design
Typ Laborpraktikum
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Dr. Timo Lipka
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0919: Laboratory: Digital Circuit Design

Lehrveranstaltungen
Titel Typ SWS LP
Praktischer Schaltungsentwurf - Digital (L0694) Projekt-/problembasierte Lehrveranstaltung 2 6
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Basic knowledge of semiconductor devices and circuit design
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the structure and philosophy of the software framework for circuit design.
  • Students can determine all necessary input parameters for circuit simulation.
  • Students are able to explain the functions of the logic gates of their digital design.
  • Students can explain the algorithms of checking routines.
  • Students are able to select the appropriate transistor models for fast and accurate simulations.


Fertigkeiten
  • Students can activate and execute all necessary checking routines for verification of proper circuit functionality.
  • Students are able to run the input desks for definition of their electronic circuits.
  • Students can define the building blocks of digital systems.


Personale Kompetenzen
Sozialkompetenz
  • Students are trained to work through complex circuits in teams.
  • Students are able to share their knowledge for efficient design work.
  • Students can help each other to understand all the details and options of the design software.
  • Students are aware of their limitations regarding circuit design, so they do not go ahead, but they involve experts when required.
  • Students can present their design approaches for easy checking by more experienced experts.


Selbstständigkeit
  • Students are able to realistically judge the status of their knowledge and to define actions for improvements when necessary.
  • Students can break down their design work in sub-tasks and can schedule the design work in a realistic way.
  • Students can handle the complex data structures of their design task and document it in consice but understandable way.
  • Students are able to judge the amount of work for a major design project.


Arbeitsaufwand in Stunden Eigenstudium 152, Präsenzstudium 28
Leistungspunkte 6
Studienleistung Keine
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0694: Laboratory: Digital Circuit Design
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 6
Arbeitsaufwand in Stunden Eigenstudium 152, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum SoSe
Inhalt
  • Definition of specifications
  • Architecture studies
  • Digital simulation flow
  • Philosophy of standard cells
  • Placement and routing of standard cells
  • Layout generation
  • Design checking routines


Literatur Handouts will be distributed

Modul M0761: Halbleitertechnologie

Lehrveranstaltungen
Titel Typ SWS LP
Halbleitertechnologie (L0722) Vorlesung 4 4
Halbleitertechnologie (L0723) Laborpraktikum 2 2
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen in Physik, Chemie, Werkstoffen und Halbleiterbauelemente

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen


Die Studierenden können

     die aktuellen Herstellungsmethoden für Si- und GaAs- Substrate beschreiben und erklären,

     die wesentlichen Prozesse, ihre Abfolge und Auswirkungen zur Herstellung von Halbleiterbauelementen und hochintegrierten Schaltungen erläutern und

     integrierte Prozessabläufe darstellen.


Fertigkeiten


Studierenden sind in der Lage,

     eine Analyse der Einflüsse von Prozessparametern auf die Prozessierung durchzuführen,

     Prozesse auszuwählen und zu bewerten sowie

    Prozessfolgen für die Herstellung von Halbleiterbauelementen zu entwerfen.


Personale Kompetenzen
Sozialkompetenz


Studierenden können in Gruppen Versuche planen, durchführen sowie die Ergebnisse präsentieren und vor anderen vertreten. Das Üben dieser sozialen Kompetenzen erfolgt sowohl während der Vorbereitungsphase, in der die Gruppen die Theorie erarbeiten und präsentieren, als auch in der Nachbereitungsphase, in der die Gruppen ihre praktischen Erfahrungen aufbereiten, dokumentieren und präsentieren. 


Selbstständigkeit

Die Selbständigkeit der Studierenden wird gefordert und gefördert, in dem sie das Erlernte auf immer neue Randbedingungen übertragen und anwenden müssen. Dieser Anspruch wird zum Anfang des Semesters kommuniziert und konsequent bis zur Prüfung praktiziert. Studierenden werden zu dieser Selbständigkeit dadurch gefördert, dass Lösungswege nicht vorgegeben werden, sondern Studierenden lernen über gezielte Fragen Schritt für Schritt die Lösung zu erarbeiten. Studierenden lernen, selbständig Fragen zu stellen, wenn sie vor einem Problem stehen. Sie lernen eigenständig Probleme in überschaubare Teilprobleme herunter zu brechen. 

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0722: Halbleitertechnologie
Typ Vorlesung
SWS 4
LP 4
Arbeitsaufwand in Stunden Eigenstudium 64, Präsenzstudium 56
Dozenten Prof. Hoc Khiem Trieu
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einführung (historische Betrachtung und Trends in der Mikroelektronik)
  • Werkstoffgrundlagen (Halbleiter, Kristalle, Miller-Indizes, Kristallfehler)
  • Kristallherstellung (Kristallzucht für Si und GaAs: Verunreinigungen, Reinigung, Czochralski-, Bridgeman- und Zonenschmelz-Verfahren)
  • Waferherstellung (Prozessabfolge, Parameter, SOI)
  • Prozessgrundlagen
  • Dotierung (Bändermodell, Dotierung, Dotierung durch Legieren, Dotierung durch Diffusion: Transportprozesse, Dotierungsprofile, Effekte höherer Ordnung und Prozesstechnik, Ionenimplantation: Theorie, Implantationsprofile, Channeling, Implantationsschäden, Ausheilprozesse und Anlagentechnik)

  • Oxidation (Siliziumdioxid: Struktur, elektrische Eigenschaften und Ladungen im Oxid, thermische Oxidation: Reaktionen, Kinetik, Einflüsse auf Wachstumsrate und Prozess- und Anlagentechnik, anodische Oxidation, Plasmaoxidation, thermische Oxidation von GaAs)

  • Abscheideverfahren (Theorie: Keimbildung, Schichtwachstum und Strukturzonenmodell, Wachstumsprozess, Reaktionskinetik, Temperatureinfluss und Reaktorbau; Epitaxie: Gasphasen-, Flüssigphasen-, Molekularstrahl-Epitaxie; CVD-Verfahren: APCVD, LPCVD, Abscheidung von Metallsiliziden, PECVD und LECVD; Grundlagen des Plasma, Anlagentechnik, PVD-Verfahren: Hochvakuum-Aufdampfen, Kathodenzerstäuben)

  • Strukturierungsverfahren (subtraktive Verfahren, Photolithographie: Lackeigenschaften, Belichtungsverfahren, Kontakt-, Abstand- und Projektionsbelichtung, Auflösungsgrenze, Probleme in der Praxis und Belichtungseinrichtungen, additive Verfahren: Abhebetechnik und galvanische Abscheidung, Auflösungsverbesserung: Excimerlaser-Lichtquelle, Immersions- und Phasenkontrast-Lithographie, Elektronenstrahl-Lithographie, Röntgen-Lithographie, EUV-Lithographie, Ionenstrahl-Lithographie, nasschemisches Ätzen: isotrop und anisotrop, Eckenunterätzung, Kompensationsmasken und Ätzstoppverfahren; Trockenätzen: plasmaunterstütztes Ätzen, Rücksputtern, Ionenätzen, chemisches Trockenätzen, RIE, Seitenwandpassivierung)

  • Prozess-Integration (CMOS-Prozess, Bipolar-Prozess)
  • Aufbau- und Verbindungstechnik (Integrationshierarchien, Gehäuse, Chip-on-Board, Chip-Montagetechnik, Verbindungstechniken: Drahtbonden, TAB und Flipchip-Technik, Waferlevel-Package, 3D-Stacking)

 

Literatur

S.K. Ghandi: VLSI Fabrication principles - Silicon and Gallium Arsenide, John Wiley & Sons

S.M. Sze: Semiconductor Devices - Physics and Technology, John Wiley & Sons

U. Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag

H. Beneking: Halbleitertechnologie - Eine Einführung in die Prozeßtechnik von Silizium und III-V-Verbindungen, Teubner Verlag

K. Schade: Mikroelektroniktechnologie, Verlag Technik Berlin

S. Campbell: The Science and Engineering of Microelectronic Fabrication, Oxford University Press

P. van Zant: Microchip Fabrication - A Practical Guide to Semiconductor Processing, McGraw-Hill

Lehrveranstaltung L0723: Halbleitertechnologie
Typ Laborpraktikum
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Hoc Khiem Trieu
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0925: Digital Circuit Design

Lehrveranstaltungen
Titel Typ SWS LP
Entwurf Digitaler Schaltungen (L0698) Vorlesung 2 3
Erweiterter Digitaler Schaltungsentwurf (L0699) Vorlesung 2 3
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 40 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L0698: Digital Circuit Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Volkhard Klinger
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur
Lehrveranstaltung L0699: Advanced Digital Circuit Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Volkhard Klinger
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur

Modul M0918: Advanced IC Design

Lehrveranstaltungen
Titel Typ SWS LP
Erweiterter IC-Entwurf (L0766) Vorlesung 2 3
Erweiterter IC-Entwurf (L1057) Projekt-/problembasierte Lehrveranstaltung 2 3
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Fundamentals of electrical engineering, electronic devices and circuits
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the basic structure of the circuit simulator SPICE.
  • Students are able to describe the differences between the MOS transistor models of the circuit simulator SPICE.
  • Students can discuss the different concept for realization the hardware of electronic circuits.
  • Students can exemplify the approaches for “Design for Testability”.
  • Students can specify models for calculation of the reliability of electronic circuits.


Fertigkeiten
  • Students can determine the input parameters for the circuit simulation program SPICE.
  • Students can select the most appropriate MOS modelling approaches for circuit simulations.
  • Students can quantify the trade-off of different design styles.
  • Students can determine the lot sizes and costs for reliability analysis.


Personale Kompetenzen
Sozialkompetenz
  • Students can compile design studies by themselves or together with partners.
  • Students are able to select the most efficient design methodology for a given task.
  • Students are able to define the work packages for design teams.


Selbstständigkeit
  • Students are able to assess the strengths and weaknesses of their design work in a self-contained manner.
  • Students can name and bring together all the tools required for total design flow.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0766: Advanced IC Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum SoSe
Inhalt
  • Circuit-Simulator SPICE 
  • SPICE-Models for MOS transistors
  • IC design
  • Technology of MOS circuits
  • Standard cell design
  • Design of gate arrays
  • CMOS transconductance and transimpedance amplifiers
  • frequency behavior of CMOS circuits
  • Techniques for improved circuit behaviour (e.g. cascodes, gain boosting, folding, ...)
  • Examples for realization of ASICs in the institute of nanoelectronics
  • Reliability of integrated circuits
  • Testing of integrated circuits
Literatur

R. J. Baker, „CMOS-Circuit Design, Layout, and Simulation“, Wiley & Sons, IEEE Press, 2010 

B. Razavi,"Design of Analog CMOS Integrated Circuits", McGraw-Hill Education Ltd, 2000


X. Liu, VLSI-Design Methodology Demystified; IEEE, 2009


Lehrveranstaltung L1057: Advanced IC Design
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl, Weitere Mitarbeiter
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1698: Ausgewählte Aspekte der Nanoelektronik und Mikrosystemtechnik

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Aspekte der Nanoelektronik und Mikrosystemtechnik (L2702) Vorlesung 2 4
Ausgewählte Aspekte der Nanoelektronik und Mikrosystemtechnik (L2703) Hörsaalübung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Lehrveranstaltung L2702: Ausgewählte Aspekte der Nanoelektronik und Mikrosystemtechnik
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Dozenten des SD E
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt
Literatur
Lehrveranstaltung L2703: Ausgewählte Aspekte der Nanoelektronik und Mikrosystemtechnik
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dozenten des SD E
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0644: Optoelectronics II - Quantum Optics

Lehrveranstaltungen
Titel Typ SWS LP
Optoelektronik II: Quantenoptik (L0360) Vorlesung 2 3
Optoelektronik II: Quantenoptik (Übung) (L0362) Gruppenübung 1 1
Modulverantwortlicher Dr. Alexander Petrov
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basic principles of electrodynamics, optics and quantum mechanics

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can explain the fundamental mathematical and physical relations of quantum optical phenomena such as absorption, stimulated and spontanous emission. They can describe material properties as well as technical solutions. They can give an overview on quantum optical components in technical applications.

Fertigkeiten

Students can generate models and derive mathematical descriptions in relation to quantum optical phenomena and processes. They can derive approximative solutions and judge factors influential on the components' performance.


Personale Kompetenzen
Sozialkompetenz

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Selbstständigkeit

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Leistungspunkte 4
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Materialwissenschaft: Vertiefung Nano- und Hybridmaterialien: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0360: Optoelectronics II: Quantum Optics
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum WiSe
Inhalt
  • Generation of light
  • Photons
  • Thermal and nonthermal light
  • Laser amplifier
  • Noise
  • Optical resonators
  • Spectral properties of laser light
  • CW-lasers (gas, solid state, semiconductor)
  • Pulsed lasers
Literatur

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007
Demtröder, W., Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, 2002
Kasap, S.O., Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2001
Yariv, A., Quantum Electronics, Wiley, 1988
Wilson, J., Hawkes, J., Optoelectronics: An Introduction, Prentice Hall, 1997, ISBN: 013103961X
Siegman, A.E., Lasers, University Science Books, 1986

Lehrveranstaltung L0362: Optoelectronics II: Quantum Optics (Problem Solving Course)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum WiSe
Inhalt see lecture Optoelectronics 1 - Wave Optics
Literatur

see lecture Optoelectronics 1 - Wave Optics

Modul M0768: Microsystems Technology in Theory and Practice

Lehrveranstaltungen
Titel Typ SWS LP
Mikrosystemtechnologie (L0724) Vorlesung 2 4
Mikrosystemtechnologie (L0725) Projekt-/problembasierte Lehrveranstaltung 2 2
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basics in physics, chemistry, mechanics and semiconductor technology

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able

     to present and to explain current fabrication techniques for microstructures and especially methods for the fabrication of microsensors and microactuators, as well as the integration thereof in more complex systems

     to explain in details operation principles of microsensors and microactuators and

     to discuss the potential and limitation of microsystems in application.


Fertigkeiten

Students are capable

     to analyze the feasibility of microsystems,

     to develop process flows for the fabrication of microstructures and

     to apply them.




Personale Kompetenzen
Sozialkompetenz


Students are able to plan and carry out experiments in groups, as well as present and represent the results in front of others. These social skills are practiced both during the preparation phase, in which the groups work out and present the theory, and during the follow-up phase, in which the groups prepare, document and present their practical experiences.


Selbstständigkeit

The independence of the students is demanded and promoted in that they have to transfer and apply what they have learned to ever new boundary conditions. This requirement is communicated at the beginning of the semester and consistently practiced until the exam. Students are encouraged to work independently by not being given a solution, but by learning to work out the solution step by step by asking specific questions. Students learn to ask questions independently when they are faced with a problem. They learn to independently break down problems into manageable sub-problems. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung Studierenden führen in Kleingruppen ein Laborpraktikum durch. Jede Gruppe präsentiert und diskutiert die Theorie sowie die Ergebniise ihrer Labortätigkeit. vor dem gesamten Kurs.
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0724: Microsystems Technology
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Literatur

M. Madou: Fundamentals of Microfabrication, CRC Press, 2002

N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010

G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Lehrveranstaltung L0725: Microsystems Technology
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1527: Forschungsprojekt und Seminar in Nanoelektronik und Mikrosystemtechnik

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Dozenten des SD E
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Fortgeschrittener Kenntnisstand im Master-Studium Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden kennen aktuelle Forschungsprojekte der Institute in der Vertiefungsrichtung. Sie können die grundlegenden wissenschaftlichen Methoden nennen, mit denen an diesen gearbeitet wird. Sie können weiterhinim Diskurs einschlägige Fachbegriffe verwenden und Forschungsthemen erläutern.

Fertigkeiten

Die Studierenden sind in der Lage, ein eigenständiges Teilprojekt in aktuell laufenden Forschungsprojekten der Institute in der Vertiefungsrichtung durchzuführen. Studierende können ihre Vorgehensweise zur Lösung einer Aufgabe begründen, aus den gewonnen Ergebnissen Schlussfolgerungen ziehen und wenn nötig neue Arbeitsmethoden finden. Studierende sind in der Lage, alternative Lösungskonzepte mit dem gewählten Ansatz bzgl. vorgegebener Kriterien zu vergleichen und zu beurteilen.

Die Studierenden können sich ein für sie neues Thema inhaltlich erschießen. Sie verknüpfen dazu die Inhalte ihres bisherigen Studiums mit dem vorgegebenen Thema und schließen Wissenslücken durch Fachgespräche mit wissenschaftlichen Mitarbeitern  und eigene Recherchen (z.B. im Internet oder in Fachliteratur). Sie können wissenschaftliche Veröffentlichungen zusammenfassen und präsentieren.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, mit Mitarbeitern der betreuenden Institute fachlich den Fortschritt der Arbeit zu diskutieren und ihre Endergebnisse adressatengerecht zu präsentieren.

Die Studierenden können in Zusammenarbeit mit wissenschaftlichen Mitarbeitern  aktuelle Themen aus der Forschung erarbeiten, diskutieren und reflektieren. Sie können Zusammenfassungen derselben in englischer Sprache vor einem Fachpublikum präsentieren und erläutern.

Selbstständigkeit

Die Studierenden sind in der Lage, anhand der im bisherigen Studium erworbenen Kompetenzen sich selbstständig aus aktuellen Forschungsprojekten sinnvolle Aufgaben zu definieren, dazu notwendiges Wissen zu erschließen sowie geeignete Lösungsmethoden auszuwählen.

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext des Seminars zu setzen. Sie erschließen sich eigenständig weitere Quellen im Internet. Sie können inhaltlich einen Bezug zu ihrer gewählten Vertiefungsrichtung herstellen.

Arbeitsaufwand in Stunden Eigenstudium 360, Präsenzstudium 0
Leistungspunkte 12
Studienleistung Keine
Prüfung Studienarbeit
Prüfungsdauer und -umfang gem. ASPO
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Pflicht

Modul M0781: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme

Lehrveranstaltungen
Titel Typ SWS LP
EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme (L0770) Vorlesung 3 4
EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme (L0771) Gruppenübung 1 1
EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme (L0774) Laborpraktikum 1 1
Modulverantwortlicher Prof. Christian Schuster
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegenden Gesetzmäßigkeiten, Zusammenhänge und Methoden der Signalintegrität und der Güte der Spannungsversorgung (Powerintegrität) elektronischer Systeme erklären und in den Kontext des störungsfreien Aufbaus bzw. der elektromagnetischen Verträglichkeit solcher Systeme setzen. Sie können das prinzipielle Verhalten von Signalen und Spannungsversorgung vor dem Hintergrund der typischen Aufbau- und Verbindungstechnik erläutern.  Sie können Lösungsstrategien für Probleme der Signal- und Powerintegrität vorschlagen und beschreiben. Sie können einen Überblick über messtechnische und numerische Methoden zur Charakterisierung der Signal- und Powerintegrität in der elektrotechnischen Praxis geben.


Fertigkeiten

Die Studierenden können eine Reihe von Verfahren zur Modellbildung zur Beschreibung des elektromagnetischen Verhaltens typischer Aufbau- und Verbindungstechnik elektronischer Systeme anwenden. Sie können einschätzen, welche prinzipiellen Effekte diese Modelle in Bezug auf die Signal- und Powerintegrität vorhersagen, können diese klassifizieren und quantitativ analysieren. Sie können Lösungsstrategien aus diesen Vorhersagen ableiten und für die Anwendung in der elektrotechnischen Praxis dimensionieren. Sie können verschiedene Lösungsstrategien gegeneinander abwägen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise auf Englisch präsentieren (z.B. während der CAD-Übungen).


Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Theoretischer Elektrotechnik, Nachrichtentechnik und Halbleiterschaltungstechnik) verknüpfen. Sie können Probleme und Lösungen im Bereich der Signal- und Powerintegrität der Aufbau- und Verbindungstechnik auf Englisch kommunizieren.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Referat
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung Wireless and Sensor Technologies: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0770: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Die Rolle von Packages und Interconnects in elektronischen Systemen

- Komponenten der Aufbau- und Verbindungstechnik elektronischer Systeme

- Hauptziele und Konzepte der Signal- und Powerintegrität elektronischer Systeme

- Wiederholung relevanter Konzepte der elektromagnetischen Feldtheorie

- Eigenschaften digitaler Signale und Systeme

- Entwurf und Charakterisierung der Signalintegrität

- Entwurf und Charakterisierung der Spannungsversorgung

- Techniken und Geräte zur Messung in Zeit- und Frequenzbereich

- CAD-Werkzeuge für elektrische Analyse und Entwurf von Packages und Interconnects

- Bezug zur gesamten elektromagnetischen Verträglichkeit von elektronischen Systemen


Literatur

- J. Franz, "EMV: Störungssicherer Aufbau elektronischer Schaltungen", Springer (2012)

- R. Tummala, "Fundamentals of Microsystems Packaging", McGraw-Hill (2001)

- S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994)

- S. Thierauf, "Understanding Signal Integrity", Artech House (2010)

- M. Swaminathan, A. Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Prentice-Hall (2007)


Lehrveranstaltung L0771: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0774: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Die Rolle von Packages und Interconnects in elektronischen Systemen

- Komponenten der Aufbau- und Verbindungstechnik elektronischer Systeme

- Hauptziele und Konzepte der Signal- und Powerintegrität elektronischer Systeme

- Wiederholung relevanter Konzepte der elektromagnetischen Feldtheorie

- Eigenschaften digitaler Signale und Systeme

- Entwurf und Charakterisierung der Signalintegrität

- Entwurf und Charakterisierung der Spannungsversorgung

- Techniken und Geräte zur Messung in Zeit- und Frequenzbereich

- CAD-Werkzeuge für elektrische Analyse und Entwurf von Packages und Interconnects

- Bezug zur gesamten elektromagnetischen Verträglichkeit von elektronischen Systemen


Literatur

- J. Franz, "EMV: Störungssicherer Aufbau elektronischer Schaltungen", Springer (2012)

- R. Tummala, "Fundamentals of Microsystems Packaging", McGraw-Hill (2001)

- S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994)

- S. Thierauf, "Understanding Signal Integrity", Artech House (2010)

- M. Swaminathan, A. Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Prentice-Hall (2007)


Modul M1048: Integrated Circuit Design

Lehrveranstaltungen
Titel Typ SWS LP
Entwurf Integrierter Schaltungen (L0691) Vorlesung 3 4
Entwurf Integrierter Schaltungen (L0998) Gruppenübung 1 2
Modulverantwortlicher NN
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basic knowledge of (solid-state) physics and mathematics.

Knowledge in fundamentals of electrical engineering and electrical networks.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain basic concepts of electron transport in semiconductor devices (energy bands, generation/recombination, carrier concentrations, drift and diffusion current densities, semiconductor device equations).  
  • Students are able to explain functional principles of pn-diodes, MOS capacitors, and MOSFETs using energy band diagrams.
  • Students can present and discuss current-voltage relationships and small-signal equivalent circuits of these devices.
  • Students can explain the physics and current-voltage behavior transistors based on charged carrier flow.
  • Students are able to explain the basic concepts for static and dynamic logic gates for integrated circuits
  • Students can exemplify approaches for low power consumption on the device and circuit level
  • Students can describe the potential and limitations of analytical expression for device and circuit analysis.
  • Students can explain characterization techniques for MOS devices.


Fertigkeiten
  • Students can qualitatively construct energy band diagrams of the devices for varying applied voltages.
  • Students are able to qualitatively determine electric field, carrier concentrations, and charge flow from energy band diagrams.
  • Students can understand scientific publications from the field of semiconductor devices.
  • Students can calculate the dimensions of MOS devices in dependence of the circuits properties
  • Students can design complex electronic circuits and anticipate possible problems.
  • Students know procedure for optimization regarding high performance and low power consumption


Personale Kompetenzen
Sozialkompetenz
  • Students can team up with other experts in the field to work out innovative solutions.
  • Students are able to work by their own or in small groups for solving problems and answer scientific questions.
  • Students have the ability to critically question the value of their contributions to working groups.


Selbstständigkeit
  • Students are able to assess their knowledge in a realistic manner.
  • Students are able to define their personal approaches to solve challenging problems


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0691: Integrated Circuit Design
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum WiSe
Inhalt
  • Electron transport in semiconductors
  • Electronic operating principles of diodes, MOS capacitors, and MOS field-effect transistors
  • MOS transistor as four terminal device
  • Performace degradation due to short channel effects
  • Scaling-down of MOS technology
  • Digital logic circuits
  • Basic analog circuits
  • Operational amplifiers
  • Bipolar and BiCMOS circuits


Literatur


  • Yuan Taur, Tak H. Ning:  Fundamentals of Modern VLSI Devices, Cambridge University Press 1998
  • R. Jacob Baker: CMOS, Circuit Design, Layout and Simulation,  IEEE Press, Wiley Interscience, 3rd Edition, 2010
  • Neil H.E. Weste and David Money Harris, Integrated Circuit Design, Pearson, 4th International Edition, 2013
  • John E. Ayers, Digital Integrated Circuits: Analysis and Design, CRC Press, 2009
  • Richard C. Jaeger and Travis N. Blalock: Microelectronic Circuit Design, Mc Graw-Hill, 4rd. Edition, 2010


Lehrveranstaltung L0998: Integrated Circuit Design
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1589: Laboratory: Analog Circuit Design

Lehrveranstaltungen
Titel Typ SWS LP
Praktischer Schaltungsentwurf - Analog (L0692) Projekt-/problembasierte Lehrveranstaltung 2 6
Modulverantwortlicher NN
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basic knowledge of semiconductor devices and circuit design

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the structure and philosophy of the software framework for circuit design.
  • Students can determine all necessary input parameters for circuit simulation.
  • Students know the basics physics of the analog behavior.
  • Students can explain the algorithms of circuit verification.
  • Students are able to select the appropriate transistor models for fast and accurate simulations.

Fertigkeiten
  • Students can activate and execute all necessary checking routines for verification of proper circuit functionality.
  • Students can define the specifications of the electronic circuits to be designed.
  • Students can optimize the electronic circuits for low-noise and low-power.
  • Students can develop analog circuits for specific applications. 



Personale Kompetenzen
Sozialkompetenz
  • Students are trained to work through complex circuits in teams.
  • Students are able to share their knowledge for efficient design work.
  • Students can help each other to understand all the details and options of the design software.
  • Students are aware of their limitations regarding circuit design, so they do not go ahead, but they involve experts when required.
  • Students can present their design approaches for easy checking by more experienced experts.



Selbstständigkeit
  • Students are able to realistically judge the status of their knowledge and to define actions for improvements when necessary.
  • Students can break down their design work in sub-tasks and can schedule the design work in a realistic way.
  • Students can handle the complex data structures of their design task and document it in consice but understandable way.
  • Students are able to judge the amount of work for a major design project.



Arbeitsaufwand in Stunden Eigenstudium 152, Präsenzstudium 28
Leistungspunkte 6
Studienleistung Keine
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0692: Laboratory: Analog Circuit Design
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 6
Arbeitsaufwand in Stunden Eigenstudium 152, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl, Weitere Mitarbeiter
Sprachen EN
Zeitraum WiSe
Inhalt
  • Input desk for circuits
  • Algorithms for simulation
  • MOS transistor model
  • Simulation of analog circuits
  • Placement and routing     
  • Generation of layouts
  • Design checking routines
  • Postlayout simulations



Literatur Handouts to be distributed

Modul M0913: Mixed-signal Circuit Design

Lehrveranstaltungen
Titel Typ SWS LP
Mixed-signal Schaltungsentwurf (L0764) Vorlesung 2 3
Mixed-signal Schaltungsentwurf (L1063) Projekt-/problembasierte Lehrveranstaltung 2 3
Modulverantwortlicher NN
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Advanced knowledge of analog or digital MOS devices and circuits
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the descriptive parameters of mixed-signal systems
  • Students can explain various architectures of analog-to-digital and digital-to-analog converters
  • Students are able to explain the fundamental limitations of different analog-to-digital and digital-to-analog converters
Fertigkeiten
  • Students can derive the fundamental limitations of different analog-to-digital and digital-to-analog converters
  • Students can select the most suitable architecture for a specific mixed-signal task
  • Students can describe complex mixed-signal systems by their functional blocks.
  • Students can calculate the specifications of mixed-signal circuits
Personale Kompetenzen
Sozialkompetenz
  • Students can team up with one or several partners who may have different professional backgrounds
  • Students are able to work by their own or in small groups for solving problems and answer scientific questions.


Selbstständigkeit
  • Students are able to assess their knowledge in a realistic manner.
  • Students are able to draw scenarios for estimation of the impact of an increase of data vs. an increase of energy on the future lifestyle of the society.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 5 % Fachtheoretisch-fachpraktische Studienleistung
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0764: Mixed-signal Circuit Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum WiSe
Inhalt
  • Differences between analog and digital filtering of electrical signals
  • Quantization error and its consideration in electrical circuits
  • Architectures of state-of-the-art digital-to-analog converters
  • Architectures of state-of-the-art analog-to-digital converters
  • Differentiation between Nyquist and oversampling converters
  • noise in ADCs and DACs 
Literatur
  • R. J. Baker, „CMOS-Circuit Design, Layout, and Simulation“, Wiley & Sons, IEEE Press, 2010 
  • B. Razavi,"Design of Analog CMOS Integrated Circuits", McGraw-Hill Education Ltd, 2000
Lehrveranstaltung L1063: Mixed-signal Circuit Design
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1749: Energieeffizienz in eingebetteten Systemen

Lehrveranstaltungen
Titel Typ SWS LP
Energieeffizienz in eingebetteten Systemen (L2870) Vorlesung 2 3
Energieeffizienz in eingebetteten Systemen (L2872) Projekt-/problembasierte Lehrveranstaltung 2 2
Energieeffizienz in eingebetteten Systemen (L2871) Hörsaalübung 1 1
Modulverantwortlicher Prof. Ulf Kulau
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Technische Informatik (notwendig)
  • Programmierkenntnisse in C (notwendig)
  • Rechnerarchitekturen (empfohlen)
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Motivation:

Auf dem Gebiet der Informatik haben wir nur eingeschränkte Möglichkeiten auf die Effizienz der Hardware direkt einzuwirken, bzw. sind abhängig von den Herstellern (bspw. von Mikrocontrollern). Um jedoch das volle Potential der uns gestellten Hardware auf Systemebene auszunutzen, benötigen wir ein tiefergehendes Verständnis über die Hintergründe, Prozesse und Mechanismen von Verlustleistungen in eingebetteten Systemen. Woher kommt die Verlustleistung, was passiert auf Hardware-Ebene, welche Mechanismen kann ich direkt/indirekt nutzen, welchen Tradeoff zwischen Flexibilität und Effizienz habe ich,... sind nur einige Fragen, welche in dieser Veranstaltung erarbeitet und diskutiert werden sollen.

Lehrinhalte:
  • Motivation und Verlustleistung von Halbleitern
  • Verlustleistung digitaler Schaltungen, insbesondere CMOS
  • Power Management in Hard- und Software (Sleep Modes, DVS, FS, Undervolting)
  • Energieeffizientes Systemdesign (Anwendungen)
  • Energy Harvesting und Transiently Powered Computing (TPC)
Fertigkeiten

Nach Abschluss dieses Moduls besitzen die Studierenden ein tiefergehendes Verständnis von Hard- uns Software-Mechanismen zur Bewertung und Entwicklung energieeffizienter eingebetteter Systeme:

  • Sie besitzen ein tieferes Verständnis für die elektrotechnischen Grundlagen der Verlustleistung digitaler Systeme
  • Sie können die Verlustleistung von Systemen auf jeder Ebene analysieren und geeignete Methoden zur Erhöhung der Effizienz anwenden
  • Sie können eine Vielfalt von Standardtechniken anwenden, um „Energy-Efficiency by Design“ zu erreichen.
  • Sie können Energie-autonome modellieren, bewerten und implementieren.
Personale Kompetenzen
Sozialkompetenz Als Teil des Moduls sollen in Kleingruppen erlernte Konzepte auf einer Hardwareplattform umgesetzt werden. Studierende lernen dabei im Team zu agieren und gemeinsam Lösungen zu erarbeiten. Spezifische Aufgaben werden innerhalb der Gruppe bearbeitet, wobei auch eine Gruppen-übergreifende Zusammenarbeit (Austausch) stattfindet. Als zweiter Teil erfolgt ein Challenge-Based Project, bei dem die Gruppen in einem gesunden Wettbewerb zueinander möglichst energieeffiziente Lösungen finden. Dies stärkt den Zusammenhalt in den Gruppen und stärkt die gegenseitige Motivation, Unterstüzung und Kreativität.
Selbstständigkeit

Nach Abschluss dieses Moduls sind die Studierenden in der Lage aus dem erlernten Wissen und weiterführender Fachliteratur selbstständig Lösungen für eingebette Systeme zu entwickeln, zu optimieren und zu bewerten. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung Wireless and Sensor Technologies: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L2870: Energieeffizienz in eingebetteten Systemen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Ulf Kulau
Sprachen DE/EN
Zeitraum WiSe
Inhalt Motivation:

Auf dem Gebiet der Informatik haben wir nur eingeschränkte Möglichkeiten auf die Effizienz der Hardware direkt einzuwirken, bzw. sind abhängig von den Herstellern (bspw. von Mikrocontrollern). Um jedoch das volle Potential der uns gestellten Hardware auf Systemebene auszunutzen, benötigen wir ein tiefergehendes Verständnis über die Hintergründe, Prozesse und Mechanismen von Verlustleistungen in eingebetteten Systemen. Woher kommt die Verlustleistung, was passiert auf Hardware-Ebene, welche Mechanismen kann ich direkt/indirekt nutzen, welchen Tradeoff zwischen Flexibilität und Effizienz habe ich,... sind nur einige Fragen, welche in dieser Veranstaltung erarbeitet und diskutiert werden sollen.

Lehrinhalte:
  • Motivation und Verlustleistung von Halbleitern
  • Verlustleistung digitaler Schaltungen, insbesondere CMOS
  • Power Management in Hard- und Software (Sleep Modes, DVS, FS, Undervolting)
  • Energieeffizientes Systemdesign (Anwendungen)
  • Energy Harvesting und Transiently Powered Computing (TPC)
Literatur

DE: Die Vorlesung basiert af einer Vielzahl von Quellen, welche in [1.] angegeben sind.

ENG: The lecture is based on multiple sources which are listed in [1.].

  1. Kulau, Ulf: Course: Energy Efficiency in Embedded Systems-A System-Level Perspective for Computer Scientists, EWME, 2018.
  2. Harris, David, and N. Weste: CMOS VLSI Design ed., Pearson Education, 2010
  3. Rabaey, Jan: Low Power Design Essentials (Integrated Circuits and Systems), Springer, 2009
Lehrveranstaltung L2872: Energieeffizienz in eingebetteten Systemen
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Ulf Kulau
Sprachen DE/EN
Zeitraum WiSe
Inhalt

In dieser Projektbasierten Übung werden die erlernten Aspekte zur Erreichung von energieffizienten eingebetten Systemen in praxisnahen Umgebungen in einem kleinen Projekt imlementiert und gefestigt. Dabei wird zunächst durch definietre Aufgaben ein Tool-Set für die Implementierung von Energieeffizienzmechanismen in gemeinsamen Übungen implementiert. Im zweitenTeil erfolgt eine Challenge-Based Übung, bei der ein möglichst effizientes System eigenständig implementiert werden soll. Zur Anwendung kommt ein System basierend auf einem AVR Mikro-Controller, welcher durch einen Solar-Energy Harvester autonom betrieben werden kann.

  1. Aufgabenphase: 6 "hands-on" Aufgaben um Erfahrungen zu ammeln und eine SW Bibliothek zu erstellen
  2. Projekphase: Implementierung eines Energieautonomen Systems mit dem Ziel größtmögliche Energieefizienz (Challenge)
Literatur
Lehrveranstaltung L2871: Energieeffizienz in eingebetteten Systemen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Ulf Kulau
Sprachen DE/EN
Zeitraum WiSe
Inhalt

In der Hörsaalübung werden die in der Vorlesung gelehrten theoertischen Grundlagen vertieft. Dies geschiet durch vertiefende Diskussion relevanter Asekte, aber auch durch Rechenbeispiele, bei denen ein tiefergehendes verständnis zu der thematik der Energieefizienz in eingebeteten Systemen eröangt wird. Übungsaufgaben werden im Vorfeld verteilt und Lösungen in der Hörsaalübung vorgestellt. Inhalte der Übung sind wie folgt:

  • Grundlagen und Berechnung von verlustleistung auf Halbleitern
  • Verlustleistung von CMOS am Beispiel eines Inverters
  • Einfluss des Aktivitätsfaktors und externer Komponenten
  • DVS und Scheduling
  • Evaluation zur Darstellung des Nutzen von Undervolting
  • Aspekte des Energy-Harvesting (MPPT)
Literatur

Fachmodule der Vertiefung Regelungs- und Energiesystemtechnik

Diese Vertiefungsrichtung bietet den Studierenden eine breite Modulpalette mit Bezug zu verschiedenen regelungs- sowie energietechnischen Konzepten, Prozessmess- und
-automatisierungstechnik, Robotik, Kommunikationsnetzen sowie Methoden der digitalen Signalverarbeitung. 

Die Studierenden werden einerseits in die Lage versetzt, komplexe dynamische Systeme wie Elektroenergiesysteme zu analysieren, zu modellieren und zu simulieren. Sie erhalten andererseits fundierte Kenntnisse über vielfältige Verfahren, komplexe Systeme zu überwachen, zu steuern und zu regeln und ihr dynamisches Verhalten zielgerichtet zu beeinflussen. Darüber hinaus werden ausführliche Kenntnisse zu modernen Informationssystemen der elektrischen Energietechnik und Smart Grids vermittelt.

Im Ergebnis verfügen die Studierenden über das Rüstzeug, moderne Regelungs- und elektrische Energiesysteme ganzheitlich zu analysieren, zu entwerfen und zu optimieren. Die erworbenen Kompetenzen sind angesichts wachsender Digitalisierung und Automatisierung in vielen Industriezweigen sowie einer nachhaltigen elektrischen Energieversorgung von zentraler Bedeutung in Industrie und Forschung.

Modul M0692: Approximation und Stabilität

Lehrveranstaltungen
Titel Typ SWS LP
Approximation und Stabilität (L0487) Vorlesung 3 4
Approximation und Stabilität (L0488) Gruppenübung 1 2
Modulverantwortlicher Prof. Marko Lindner
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Lineare Algebra: lin. Gleichungssystem, lin. Ausgleichsproblem, Eigenwerte, Singulärwerte
  • Analysis: Folgen, Reihen, Differential- und Integralrechnung
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

  • funktionalanalytische Grundlagen (Hilbertraum, Operatoren) skizzieren und gegenüberstellen
  • Approximationsverfahren benennen und verstehen
  • Stabilitätsresultate angeben
  • spektrale Größen, Konditionszahlen, Regularisierungsmethoden diskutieren
Fertigkeiten

Die Studierenden können

  • funktionalanalytische Grundlagen (Hilbertraum, Operatoren) anwenden,
  • Approximationsverfahren anwenden,
  • Stabilitätsresultate anwenden,
  • spektrale Größen berechnen,
  • Regularisierungsmethoden anwenden


 
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können fachspezifische Aufgaben gemeinsam bearbeiten und ihre Ergebnisse in geeigneter Weise vor der Gruppe präsentieren (z.B. als Seminarvortrag).

Selbstständigkeit
  • Studierende können eigenständig ihr Verständnis mathematischer Konzepte überprüfen, noch offene Fragen auf den Punkt bringen und sich gegebenenfalls gezielt Hilfe holen.
  • Studierende haben eine genügend hohe Ausdauer entwickelt, um auch über längere Zeiträume an schwierigen Problemstellungen zu arbeiten.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Referat
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Technomathematik: Vertiefung I. Mathematik: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L0487: Approximation und Stabilität
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Marko Lindner
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Es geht um die Lösung folgender Grundprobleme der linearen Algebra

  • lineare Gleichungssysteme,
  • lineare Ausgleichsprobleme,
  • Eigenwertprobleme

in Funktionenräumen (d.h. in Vektorräumen mit unendlicher Dimension) durch stabile Approximation des Problems in einem Raum mit endlicher Dimension.


Ablauf:

  • Crashkurs Hilbertraum: Metrik, Norm, Skalarprodukt, Vollständigkeit
  • Crashkurs Operatoren: Beschränktheit, Norm, Kompaktheit, Projektoren
  • gleichmäßige vs. starke Konvergenz, Approximationsverfahren
  • Anwendbarkeit / Stabilität von Approx.verfahren, Satz von Polski
  • Galerkinverfahren, Kollokation, Splineinterpolation, Abschneideverfahren
  • Faltungs- und Toeplitzoperatoren
  • Crashkurs C*-Algebren
  • Konvergenz von Konditionszahlen
  • Konvergenz spektraler Größen: Spektrum, Eigenwerte, Singulärwerte, Pseudospektrum
  • Regularisierungsverfahren (truncated SVD, Tichonov)
Literatur
  • R. Hagen, S. Roch, B. Silbermann: C*-Algebras in Numerical Analysis
  • H. W. Alt: Lineare Funktionalanalysis
  • M. Lindner: Infinite matrices and their finite sections
Lehrveranstaltung L0488: Approximation und Stabilität
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Marko Lindner
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0838: Linear and Nonlinear System Identifikation

Lehrveranstaltungen
Titel Typ SWS LP
Lineare und Nichtlineare Systemidentifikation (L0660) Vorlesung 2 3
Modulverantwortlicher Prof. Herbert Werner
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Classical control (frequency response, root locus)
  • State space methods
  • Discrete-time systems
  • Linear algebra, singular value decomposition
  • Basic knowledge about stochastic processes
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the general framework of the prediction error method and its application to a variety of linear and nonlinear model structures
  • They can explain how multilayer perceptron networks are used to model nonlinear dynamics
  • They can explain how an approximate predictive control scheme can be based on neural network models
  • They can explain the idea of subspace identification and its relation to Kalman realisation theory
Fertigkeiten
  • Students are capable of applying the predicition error method to the experimental identification of linear and nonlinear models for dynamic systems
  • They are capable of implementing a nonlinear predictive control scheme based on a neural network model
  • They are capable of applying subspace algorithms to the experimental identification of linear models for dynamic systems
  • They can do the above using standard software tools (including the Matlab System Identification Toolbox)
Personale Kompetenzen
Sozialkompetenz

Students can work in mixed groups on specific problems to arrive at joint solutions. 

Selbstständigkeit

Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. 

Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0660: Linear and Nonlinear System Identification
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum SoSe
Inhalt
  • Prediction error method
  • Linear and nonlinear model structures
  • Nonlinear model structure based on multilayer perceptron network
  • Approximate predictive control based on multilayer perceptron network model
  • Subspace identification
Literatur
  • Lennart Ljung, System Identification - Theory for the User, Prentice Hall 1999
  • M. Norgaard, O. Ravn, N.K. Poulsen and L.K. Hansen, Neural Networks for Modeling and Control of Dynamic Systems, Springer Verlag, London 2003
  • T. Kailath, A.H. Sayed and B. Hassibi, Linear Estimation, Prentice Hall 2000

Modul M0840: Optimal and Robust Control

Lehrveranstaltungen
Titel Typ SWS LP
Optimale und robuste Regelung (L0658) Vorlesung 2 3
Optimale und robuste Regelung (L0659) Gruppenübung 2 3
Modulverantwortlicher Prof. Herbert Werner
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Classical control (frequency response, root locus)
  • State space methods
  • Linear algebra, singular value decomposition
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the significance of the matrix Riccati equation for the solution of LQ problems.
  • They can explain the duality between optimal state feedback and optimal state estimation.
  • They can explain how the H2 and H-infinity norms are used to represent stability and performance constraints.
  • They can explain how an LQG design problem can be formulated as special case of an H2 design problem.
  • They  can explain how model uncertainty can be represented in a way that lends itself to robust controller design
  • They can explain how - based on the small gain theorem - a robust controller can guarantee stability and performance for an uncertain plant.
  • They understand how analysis and synthesis conditions on feedback loops can be represented as linear matrix inequalities.
Fertigkeiten
  • Students are capable of designing and tuning LQG controllers for multivariable plant models.
  • They are capable of representing a H2 or H-infinity design problem in the form of a generalized plant, and of using standard software tools for solving it.
  • They are capable of translating time and frequency domain specifications for control loops into constraints on closed-loop sensitivity functions, and of carrying out a mixed-sensitivity design.
  • They are capable of constructing an LFT uncertainty model for an uncertain system, and of designing a mixed-objective robust controller.
  • They are capable of formulating analysis and synthesis conditions as linear matrix inequalities (LMI), and of using standard LMI-solvers for solving them.
  • They can carry out all of the above using standard software tools (Matlab robust control toolbox).
Personale Kompetenzen
Sozialkompetenz Students can work in small groups on specific problems to arrive at joint solutions. 
Selbstständigkeit

Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. 


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0658: Optimal and Robust Control
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum SoSe
Inhalt
  • Optimal regulator problem with finite time horizon, Riccati differential equation
  • Time-varying and steady state solutions, algebraic Riccati equation, Hamiltonian system
  • Kalman’s identity, phase margin of LQR controllers, spectral factorization
  • Optimal state estimation, Kalman filter, LQG control
  • Generalized plant, review of LQG control
  • Signal and system norms, computing H2 and H∞ norms
  • Singular value plots, input and output directions
  • Mixed sensitivity design, H∞ loop shaping, choice of weighting filters
  • Case study: design example flight control
  • Linear matrix inequalities, design specifications as LMI constraints (H2, H∞ and pole region)
  • Controller synthesis by solving LMI problems, multi-objective design
  • Robust control of uncertain systems, small gain theorem, representation of parameter uncertainty
Literatur
  • Werner, H., Lecture Notes: "Optimale und Robuste Regelung"
  • Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan "Linear Matrix Inequalities in Systems and Control", SIAM, Philadelphia, PA, 1994
  • Skogestad, S. and I. Postlewhaite "Multivariable Feedback Control", John Wiley, Chichester, England, 1996
  • Strang, G. "Linear Algebra and its Applications", Harcourt Brace Jovanovic, Orlando, FA, 1988
  • Zhou, K. and J. Doyle "Essentials of Robust Control", Prentice Hall International, Upper Saddle River, NJ, 1998
Lehrveranstaltung L0659: Optimal and Robust Control
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0714: Numerik gewöhnlicher Differentialgleichungen

Lehrveranstaltungen
Titel Typ SWS LP
Numerik gewöhnlicher Differentialgleichungen (L0576) Vorlesung 2 3
Numerik gewöhnlicher Differentialgleichungen (L0582) Gruppenübung 2 3
Modulverantwortlicher Prof. Daniel Ruprecht
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Mathematik I, II, III für Ingenieurstudierende (deutsch oder englisch) oder Analysis & Lineare Algebra I + II sowie Analysis III für Technomathematiker
  • Grundkenntnisse in MATLAB, Python oder einer vergleichbaren Programmiersprache
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können

  • numerische Verfahren zur Lösung gewöhnlicher Differentialgleichungen benennen und deren Kernideen erläutern,
  • Konvergenzaussagen (inklusive der an das zugrundeliegende Problem gestellten Voraussetzungen) zu den behandelten numerischen Verfahren wiedergeben,

  • Aspekte der praktischen Durchführung numerischer Verfahren erklären,
  • passende numerische Methoden für konkrete Probleme auswählen, implementieren und die numerischen Ergebnisse interpretieren


Fertigkeiten

Studierende sind in der Lage,

  • numerische Methoden zur Lösung gewöhnlicher Differentialgleichungen zu implementieren, anzuwenden und zu vergleichen,
  • das Konvergenzverhalten numerischer Methoden in Abhängigkeit vom gestellten Problem und des verwendeten Lösungsalgorithmus zu begründen,
  • zu gegebener Problemstellung einen geeigneten Lösungsansatz zu entwickeln, gegebenenfalls durch Zusammensetzen mehrerer Algorithmen, diesen durchzuführen und die Ergebnisse kritisch auszuwerten.
Personale Kompetenzen
Sozialkompetenz

Studierende können

  • in heterogen zusammengesetzten Teams (d.h. aus unterschiedlichen Studiengängen und mit unterschiedlichem Hintergrundwissen) zusammenarbeiten, sich theoretische Grundlagen erklären sowie bei praktischen Implementierungsaspekten der Algorithmen unterstützen.
Selbstständigkeit

Studierende sind fähig,

  • selbst einzuschätzen, ob sie die begleitenden theoretischen und praktischen Übungsaufgaben besser allein oder im Team lösen,
  • ihren Lernstand konkret zu beurteilen und gegebenenfalls gezielt Fragen zu stellen und Hilfe zu suchen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Computer Science: Vertiefung III. Mathematik: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Interdisciplinary Mathematics: Vertiefung II. Numerical - Modelling Training: Pflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Technomathematik: Vertiefung I. Mathematik: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0576: Numerik gewöhnlicher Differentialgleichungen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Daniel Ruprecht
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Numerische Verfahren für Anfangswertprobleme

  • Einschrittverfahren
  • Mehrschrittverfahren
  • Steife Probleme
  • Differentiell-algebraische Gleichungen vom Index 1

Numerische Verfahren für Randwertaufgaben

  • Mehrzielmethode
  • Differenzenverfahren
Literatur
  • E. Hairer, S. Noersett, G. Wanner: Solving Ordinary Differential Equations I: Nonstiff Problems.
  • E. Hairer, G. Wanner: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems.
  • D. Griffiths, D. Higham: Numerical Methods for Ordinary Differential Equations.
Lehrveranstaltung L0582: Numerik gewöhnlicher Differentialgleichungen
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Daniel Ruprecht
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1236: Elektrische Energiesysteme III: Dynamik und Stabilität elektrischer Energiesysteme

Lehrveranstaltungen
Titel Typ SWS LP
Elektrische Energiesysteme III: Dynamik und Stabilität elektrischer Energiesysteme (L1683) Vorlesung 3 4
Elektrische Energiesysteme III: Dynamik und Stabilität elektrischer Energiesysteme (L1684) Hörsaalübung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik,

Grundlagen der Regelungstechnik,

Mathematik I, II, III

Elektrische Energiesysteme I, II

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können Verfahren zur Modellbildung, Regelung und Stabilitätsanalysen elektrischer Energiesysteme detailliert erläutern und kritisch bewerten.

Fertigkeiten

Mit Abschluss dieses Moduls sind die Studierenden in der Lage, das dynamische Verhalten und die Stabilität realer elektrischer Energiesysteme anhand geeigneter Modellierungen eigenständig zu berechnen und zu analysieren sowie Spannungs-/Blindleistungs- und Wirkleistungs-/Frequenz-Regelungen zu entwerfen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten. 

Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen sowie im Rahmen weiterführender Forschungsaktivitäten nutzbar machen. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Lehrveranstaltung L1683: Elektrische Energiesysteme III: Dynamik und Stabilität elektrischer Energiesysteme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum SoSe
Inhalt
  • Modellbildung für dynamische Vorgänge und Stabilitätsuntersuchungen in elektrischen Energieübertragungssystemen
  • Statische Winkelstabilität
    • Einmaschinenproblem
    • Mehrmaschinenproblem
  • Transiente Winkelstabilität
    • Zweiachsentheorie der Synchronmaschine
    • Flächenkriterium
    • Stabilitätsanalyse nach Ljapunov
    • Mehrmaschinenproblem
  • Dynamische Simulation
    • Grundlagen der Modellbildung
    • Numerische Lösungsverfahren
  • Frequenzregelung
    • Inselnetz
    • Frequenz-Leistungsregelung in Verbundnetzen
    • Netzregelstrukturen, Energieaustausch in Netzen
  • Spannungsregelung
  • Spannungsstabilität
  • Netzdynamik mit leistungselektronischen Betriebsmitteln (FACTS & HGÜ)
Literatur

E. Handschin: Elektrische Energieübertragungssysteme, Hüthig Verlag

P. Kundur: Power System Stability and Control, McGraw-Hill, 1994

Lehrveranstaltung L1684: Elektrische Energiesysteme III: Dynamik und Stabilität elektrischer Energiesysteme
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0932: Prozessmesstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Prozessmesstechnik (L1077) Vorlesung 2 3
Prozessmesstechnik (L1083) Hörsaalübung 1 1
Modulverantwortlicher Prof. Roland Harig
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik und der Messtechnik


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden besitzen ein Verständnis für prozessmesstechnische Zusammenhänge und Messtechnik weitverzweigter Anlagen. Die Studierenden kennen übliche Verfahren zur Verarbeitung und Übertragung von Signalen.


Fertigkeiten

Die Studierenden können komplexe Sensor- und Messdatenübertragungssysteme modellieren und bewerten. Hierbei steht insbesondere das systemorientierte Denken im Vordergrund.


Personale Kompetenzen
Sozialkompetenz

Technische Zusammenhänge können in englischer Sprache kommuniziert werden.



Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen kontinuierlich reflektieren und auf dieser Basis ihren Lernprozess steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Grundlagen der Elektrotechnik, Analysis, Stochastische Prozesse, Nachrichtenübertragung) verknüpfen.

Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Leistungspunkte 4
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Lehrveranstaltung L1077: Prozessmesstechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Roland Harig
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Prozessmesstechnik im Rahmen der Prozessleittechnik
    • Aufgaben der Prozessmesstechnik
    • Instrumentierung von Prozessen
    • Klassifizierung der Aufnehmer
  • Systemtheorie in der Prozessmesstechnik
    • Allgemeine lineare Beschreibung der Aufnehmer
    • Mathematische Beschreibung von allgemeinen Zweitoren
    • Fourier- und Laplace-Transformation
  • Korrelationsmesstechnik
    • Bedeutung von Breitbandsignalen für die Korrelationsmesstechnik
    • Auto- und Kreuzkorrelationsfunktion, sowie Anwendungen
    • Störfestigkeit von Korrelationsverfahren
  • Übertragung von analogen und digitalen Messsignalen in der Prozessmesstechnik
    • Modulationsverfahren (Amplituden-/Frequenzmodulation)
    • Multiplexverfahren zur Datenübertragung
    • Analog-Digital-Wandler


Literatur

- Färber: „Prozeßrechentechnik“, Springer-Verlag 1994

- Kiencke, Kronmüller: „Meßtechnik“, Springer Verlag Berlin Heidelberg, 1995

- A. Ambardar: „Analog and Digital Signal Processing“ (1), PWS Publishing Company, 1995, NTC 339

- A. Papoulis: „Signal Analysis“ (1), McGraw-Hill, 1987, NTC 312 (LB)

- M. Schwartz: „Information Transmission, Modulation and Noise“ (3,4), McGraw-Hill, 1980, 2402095

- S. Haykin: „Communication Systems“ (1,3), Wiley&Sons, 1983, 2419072

- H. Sheingold: „Analog-Digital Conversion Handbook“ (5), Prentice-Hall, 1986, 2440072

- J. Fraden: „AIP Handbook of Modern Sensors“ (5,6), American Institute of Physics, 1993, MTB 346


Lehrveranstaltung L1083: Prozessmesstechnik
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Roland Harig
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0939: Control Lab A

Lehrveranstaltungen
Titel Typ SWS LP
Praktikum Regelungstechnik I (L1093) Laborpraktikum 1 1
Praktikum Regelungstechnik II (L1291) Laborpraktikum 1 1
Praktikum Regelungstechnik III (L1665) Laborpraktikum 1 1
Praktikum Regelungstechnik IV (L1666) Laborpraktikum 1 1
Modulverantwortlicher Prof. Herbert Werner
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • State space methods
  • LQG control
  • H2 and H-infinity optimal control
  • uncertain plant models and robust control
  •  LPV control
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the difference between validation of a control lop in simulation and experimental validation

Fertigkeiten
  • Students are capable of applying basic system identification tools (Matlab System Identification Toolbox) to identify a dynamic model that can be used for controller synthesis
  • They are capable of using standard software tools (Matlab Control Toolbox) for the design and implementation of LQG controllers
  • They are capable of using standard software tools (Matlab Robust Control Toolbox) for the mixed-sensitivity design and the implementation of H-infinity optimal controllers
  • They are capable of representing model uncertainty, and of designing and implementing a robust controller
  • They are capable of using standard software tools (Matlab Robust Control Toolbox) for the design and the implementation of LPV gain-scheduled controllers
Personale Kompetenzen
Sozialkompetenz
  • Students can work in teams to conduct experiments and document the results
Selbstständigkeit
  • Students can independently carry out simulation studies to design and validate control loops
Arbeitsaufwand in Stunden Eigenstudium 64, Präsenzstudium 56
Leistungspunkte 4
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 1
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L1093: Control Lab I
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt One of the offered experiments in control theory.
Literatur

Experiment Guides


Lehrveranstaltung L1291: Control Lab II
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt One of the offered experiments in control theory.
Literatur

Experiment Guides

Lehrveranstaltung L1665: Control Lab III
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt One of the offered experiments in control theory.
Literatur

Experiment Guides

Lehrveranstaltung L1666: Control Lab IV
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt One of the offered experiments in control theory.
Literatur

Experiment Guides

Modul M1425: Leistungselektronik

Lehrveranstaltungen
Titel Typ SWS LP
Leistungselektronik (L2053) Vorlesung 2 4
Leistungselektronik (L2054) Gruppenübung 2 2
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Den Studierenden werden die Grundlagen der Stromrichtertechnik und der modernen Leistungselektronik vermittelt. Ferner werden die wesentlichen Eigenschaften konventioneller und moderner Leistungshalbleiter vorgestellt und deren Ansteuerverfahren präsentiert. Ebenso lernen die Studierenden die wichtigsten Schaltungstopologien der selbstgeführten Stromrichter und deren Steuerverfahren kennen.
Fertigkeiten Neben den Grundlagen der Stromrichterkommutierung lernen die Studierenden Methoden zur Bestimmung der Durchlass- und Schaltverluste der Bauelemente kennen. An einfachen Beispielen lernen die Teilnehmer Methoden zur mathematischen Beschreibung des Übertragungsverhaltens leistungselektronischer Schaltungen kennen.
Personale Kompetenzen
Sozialkompetenz Die Studierenden können Problemstellungen in angrenzenden Themengebieten im Bereich der Photovoltaik und Leistungselektronik mit Kommilitonen diskutieren.
Selbstständigkeit Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und das erlangte Wissen auf weitere Bereich übertragen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Lehrveranstaltung L2053: Leistungselektronik
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Klaus Hoffmann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Grundlagen der Leistungselektronik
    • Einteilung der Stromrichter nach ihrer inneren und äußeren Wirkungsweise
    • Vorstellung von modernen Umrichtersystemen
  • Einführung Leistungshalbleiter
    • Einsatzgebiete und Einsatzgrenzen moderner Leistungshalbleiter
    • Leistungsdioden und konventionelle Leistungshalbleiter (Thyristor und GTO)
    • Moderne Leistungshalbleiter: Leistungs-MOSFET, IGBT und IGCT
    • Durchlass- und Schaltverluste
    • Kommutierungsvorgänge in modernen Stromrichterschaltungen
    • Entwicklungstrends im Bereich Leistungshalbleiter
  • Einführung in selbstgeführte Stromrichterschaltungen
    • Gleichstromwandler mit abschaltbaren Leistungshalbleitern
    • Steuerverfahren (Pulsweitenmodulation, Toleranzbandregelung)
    • H-Brückentopologie mit modernen abschaltbaren Leistungshalbleitern in getakteten Wechselrichter-und Gleichrichterbetrieb
    • Dreiphasige Brückenschaltung mit modernen abschaltbaren Leistungshalbleitern
  • Kurze Einführung in die netzgeführten Stromrichterschaltungen
Literatur

Hilfsblätter und Literaturhinweise werden im Rahmen der Vorlesung ausgeteilt.

Lehrveranstaltung L2054: Leistungselektronik
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Klaus Hoffmann
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0845: Regelungstechnische Methoden für die Medizintechnik

Lehrveranstaltungen
Titel Typ SWS LP
Regelungstechnische Methoden für die Medizintechnik (L0664) Vorlesung 2 3
Modulverantwortlicher Johannes Kreuzer
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Regelungstechnik, Grundlagen der Physiologie

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Vorlesung arbeitet das spannende Gebiet der Medizintechnik ingenieurtechnisch auf und vermittelt dem Ingenieur Grundlagenkenntnisse der Physiologie sowie das Verständnis für die Komplexität des menschlichen Körpers.
Es gibt eine Einführung in körpereigene Regulationsalgorithmen der Beatmung und des Herzens. Das Potential insbesondere der Automatisierungs- und Regelungstechnik für die Medizintechnik  wird vermittelt. 
Die Studierenden wissen, welche zusätzlichen Schritte notwendig sind, um die erlernte Theorie der Regelungstechnik in der Praxis nutzen zu können und welche Stolpersteine dort lauern.

Fertigkeiten

Die Studierenden sind in der Lage, physiologische Problemstellung in Modelle zu übersetzen, die u.a. zur Simulation genutzt werden können. Mit Hilfe dieser Simulationen können die Studierenden Regler und Strategien entwerfen und diskutieren. Die Studierenden können analoge Signale praxisgerecht digitalisieren und damit den Transfer der Theorie in die reale Regelungstechnik bewältigen.



Personale Kompetenzen
Sozialkompetenz

Die Studierenden müssen sich mit den unterschiedlichen Ausdrucks- und Sichtweisen von Medizinern und Ingenieuren auseinandersetzen und zwischen diesen vermitteln.
Durch die Exkursion in einen Industriebetrieb und den Austausch mit erfahrenen Regelungstechnik-Ingenieuren lernen sie ihr zukünftiges Arbeitsumfeld kennen.


Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Die notwendigen Tools, wie Matlab, vertiefen die Studierenden eigenständig um die gestellten Aufgaben zu lösen.
Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (prüfungsnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Regelungstechnik, Physiologie) verknüpfen.


Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Johannes Kreuzer, Christian Neuhaus
Sprachen DE
Zeitraum SoSe
Inhalt

Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt:

  • Einleitung in die Thematik
  • Grundlagen der physiologischen Modellbildung
  • Einführung in die Atmung und Beatmung
  • Physiologie und Pathologie in die Kardiologie
  • Einführung in die Regelung des Blutzuckers
  • Funktion der Niere und Nierenersatztherapie
  • Darstellung der Regelungstechnik am konkreten Beatmungsgerät
  • Exkursion zu einem Medizintechnik-Unternehmen

Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache Ersatzschaltbilder für physiologische Abläufe hergeleitet und erklärt wie damit Sensoren, Regler und Aktoren gesteuert werden. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge.

Literatur
  • Leonhardt, S., & Walter, M. (2016). Medizintechnische Systeme. Berlin, Heidelberg: Springer Vieweg.
  • Werner, J. (2005). Kooperative und autonome Systeme der Medizintechnik. München: Oldenbourg.
  • Oczenski, W. (2017). Atmen : Atemhilfen ; Atemphysiologie und Beatmungstechnik: Georg Thieme Verlag KG.

Modul M1302: Angewandte Humanoide Robotik

Lehrveranstaltungen
Titel Typ SWS LP
Angewandte Humanoide Robotik (L1794) Projekt-/problembasierte Lehrveranstaltung 6 6
Modulverantwortlicher Patrick Göttsch
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Objektorientierte Programmierung, Algorithmen und Datenstrukturen
  • Grundlagen der Regelungstechnik
  • Control systems theory and design
  • Mechanik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können Eigenschaften der humanoiden Robotik nennen und erläutern.
  • Die Studierenden können die grundlegenden Theorien, Zusammenhänge und Methoden der Vorwärts- & Rückwärtskinematik von humanoiden Robotersystemen erklären.
  • Die Studierenden können Regelkonzepte für verschiedene Aufgaben der Humanoiden Robotik anwenden.
Fertigkeiten
  • Die Studierenden können die Modelle der Systeme der humanoiden Robotik in Matlab und C++ implementieren und diese Modelle für Bewegungen des Roboters oder andere Aufgaben nutzen.
  • Sie sind in der Lage die Modelle in Matlab für Simulationen zu nutzen und dann ggf. auch mit C++ Code auf dem realen Robotersystem zu testen.
  • Sie sind darüber hinaus in der Lage, für eine abstrakte Aufgabenstellung, für die es keine standardisierte Lösung gibt, Methoden auszuwählen, die zu gewünschten Ergebnissen führen.
Personale Kompetenzen
Sozialkompetenz
  • Die Studierenden können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten.
  • Sie sind in der Lage angemessenes Feedback zu geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umzugehen.
Selbstständigkeit
  • Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Lehrveranstaltung zu setzen.
  • Sie können sich eigenständig Aufgaben definieren und geeignete Mittel zur Umsetzung einsetzen.
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 5-10 Seiten
Zuordnung zu folgenden Curricula Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L1794: Angewandte Humanoide Robotik
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 6
LP 6
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Dozenten Patrick Göttsch
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt
  • Grundlagen der Kinematik
  • Grundlagen der statischen und dynamischen Stabilität humanoider Robotersysteme
  • Verknüpfung verschiedener Entwicklungsumgebungen (Matlab, C++, etc.)
  • Einarbeitung in die notwendigen Frameworks
  • Bearbeitung einer Projektaufgabe im Team
  • Präsentation und Demonstration von Zwischen- und Endergebnissen
Literatur
  • B. Siciliano, O. Khatib. "Handbook of Robotics. Part A: Robotics Foundations", Springer (2008)

Modul M1785: Machine Learning in Electrical Engineering and Information Technology

Lehrveranstaltungen
Titel Typ SWS LP
General Introduction Machine Learning (L3004) Vorlesung 1 2
Machine Learning Applications in Electric Power Systems (L3008) Vorlesung 1 1
Machine Learning in Electromagnetic Compatibility (EMC) Engineering (L3006) Vorlesung 1 1
Machine Learning in High-Frequency Technology and Radar (L3007) Vorlesung 1 1
Machine Learning in Wireless Communications (L3005) Vorlesung 1 1
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

The module is designed for a diverse audience, i.e. students with different background. It shall be suitable for both students with deeper knowledge in machine learning methods but less knowledge in electrical engineering, e.g. math or computer science students, and students with deeper knowledge in electrical engineering but less knowledge in machine learning methods, e.g. electrical engineering students. Machine learning methods will be explained on a relatively high level indicating mainly principle ideas. The focus is on specific applications in electrical engineering and information technology. 

The chapters of the course will be understandable in different depth depending on the individual background of the student. The individual background of the students will be taken into consideration in the oral exam.


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht
Lehrveranstaltung L3004: General Introduction Machine Learning
Typ Vorlesung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Dr. Maximilian Stark
Sprachen EN
Zeitraum SoSe
Inhalt
  • From Rule-Based Systems to Machine Learning
    • Brief overview recent advances in ML in various domain
    • Outline and expected learning outcomes
    • Basics statistical inference and statistics
    • Basics of information theory
  • The Notions of Learning in Machine Learning
    • Unsupervised and supervised machine learning
    • Model-based and data-driven machine learning
    • Hybrid modelling
    • Online/offline/meta/transfer learning
    • General loss functions
  • Introduction to Deep Learning
    • Variants of neural networks
    • MLP
    • Conv. neural networks
    • Recurrent neural networks
    • Training neural networks
    • (Stochastic) Gradient Descent
  • Regression vs. Classification
    • Classification as supervised learning problem
    • Hands-On Session
  • Representation Learning and Generative Models
    • AutoEncoders
    • Directed Generative Models
    • Undirected Generative Models
    • Generative Adversarial Neural Networks
  • Probabilistic Graphical Models
    • Bayesian Networks
    • Variational inference (variational autoencoder)
Literatur
Lehrveranstaltung L3008: Machine Learning Applications in Electric Power Systems
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Becker, Dr. Davood Babazadeh
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L3006: Machine Learning in Electromagnetic Compatibility (EMC) Engineering
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster, Dr. Cheng Yang
Sprachen EN
Zeitraum SoSe
Inhalt

Electromagnetic Compatibility (EMC) Engineering deals with design, simulation, measurement, and certification of electronic and electric components and systems in such a way that their operation is safe, reliable, and efficient in any possible application. Safety is hereby understood as safe with respect to parasitic effects of electromagnetic fields on humans as well as on the operation of other components and systems nearby. Examples for components and systems range from the wiring in aircraft and ships to high-speed interconnects in server systems and wirless interfaces for brain implants. In this part of the course we will give an introduction to the physical basics of EMC engineering and then show how methods of Machine Learning (ML) can be applied to expand todays physcis-based approaches in EMC Engineering.

Literatur
Lehrveranstaltung L3007: Machine Learning in High-Frequency Technology and Radar
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Kölpin, Dr. Fabian Lurz
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L3005: Machine Learning in Wireless Communications
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Maximilian Stark
Sprachen EN
Zeitraum SoSe
Inhalt
  • Supervised Learning Application - Channel Coding
    • Recap channel coding and block codes
    • Block codes as trainable neural networks
    • Tanner graph with trainable weights
    • Hands-on session
  • Supervised Learning Application - Modulation Detection
    • Recap wireless modulation schemes
    • Convolutional neuronal networks for blind detection of modulation schemes
    • Hands-on session
  • Autoencoder Application - Constellation Shaping I
    • Recap channel capacity and constellation shaping, 
    • Capacity achieving machine learning systems
    • Information theoretical explanation of the autoencoder training
    • Hands-on session
  • Autoencoder Application - Constellation Shaping II
    • Training without a channel model
    • Mutual information neural estimator
    • Hands-on session
  • Generative Adversarial Network Application - Channel Modelling
    • Recap realistic channels with non-linear hardware impairments
    • Training a digital twin of a realistic channel with insufficient training data
    • Hands-on session
  • Recurrent Neural Network Application - Channel prediction
    • Recap time-varying channel models
    • Recurrent neural networks for temporal prediction
    • Hands-on session
Literatur

Modul M1699: Ausgewählte Aspekte der Regelungs- und Energiesystemtechnik

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Aspekte der Regelungs- und Energiesystemtechnik (L2704) Vorlesung 2 4
Ausgewählte Aspekte der Regelungs- und Energiesystemtechnik (L2705) Hörsaalübung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Lehrveranstaltung L2704: Ausgewählte Aspekte der Regelungs- und Energiesystemtechnik
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Dozenten des SD E
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt
Literatur
Lehrveranstaltung L2705: Ausgewählte Aspekte der Regelungs- und Energiesystemtechnik
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dozenten des SD E
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0633: Industrial Process Automation

Lehrveranstaltungen
Titel Typ SWS LP
Prozessautomatisierungstechnik (L0344) Vorlesung 2 3
Prozessautomatisierungstechnik (L0345) Gruppenübung 2 3
Modulverantwortlicher Prof. Alexander Schlaefer
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

mathematics and optimization methods
principles of automata 
principles of algorithms and data structures
programming skills

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students can evaluate and assess discrete event systems. They can evaluate properties of processes and explain methods for process analysis. The students can compare methods for process modelling and select an appropriate method for actual problems. They can discuss scheduling methods in the context of actual problems and give a detailed explanation of advantages and disadvantages of different programming methods. The students can relate process automation to methods from robotics and sensor systems as well as to recent topics like 'cyberphysical systems' and 'industry 4.0'.


Fertigkeiten

The students are able to develop and model processes and evaluate them accordingly. This involves taking into account optimal scheduling, understanding algorithmic complexity, and implementation using PLCs.

Personale Kompetenzen
Sozialkompetenz

The students can independently define work processes within their groups, distribute tasks within the group and develop solutions collaboratively.



Selbstständigkeit

The students are able to assess their level of knowledge and to document their work results adequately.



Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 10 % Übungsaufgaben
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0344: Industrial Process Automation
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum WiSe
Inhalt

- foundations of problem solving and system modeling, discrete event systems
- properties of processes, modeling using automata and Petri-nets
- design considerations for processes (mutex, deadlock avoidance, liveness)
- optimal scheduling for processes
- optimal decisions when planning manufacturing systems, decisions under uncertainty
- software design and software architectures for automation, PLCs

Literatur

J. Lunze: „Automatisierungstechnik“, Oldenbourg Verlag, 2012
Reisig: Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien; Vieweg+Teubner 2010
Hrúz, Zhou: Modeling and Control of Discrete-event Dynamic Systems; Springer 2007
Li, Zhou: Deadlock Resolution in Automated Manufacturing Systems, Springer 2009
Pinedo: Planning and Scheduling in Manufacturing and Services, Springer 2009

Lehrveranstaltung L0345: Industrial Process Automation
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0836: Communication Networks

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Themen der Kommunikationsnetze (L0899) Projekt-/problembasierte Lehrveranstaltung 2 2
Kommunikationsnetze (L0897) Vorlesung 2 2
Übung Kommunikationsnetze (L0898) Projekt-/problembasierte Lehrveranstaltung 1 2
Modulverantwortlicher Prof. Andreas Timm-Giel
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Fundamental stochastics
  • Basic understanding of computer networks and/or communication technologies is beneficial
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able to describe the principles and structures of communication networks in detail. They can explain the formal description methods of communication networks and their protocols. They are able to explain how current and complex communication networks work and describe the current research in these examples.

Fertigkeiten

Students are able to evaluate the performance of communication networks using the learned methods. They are able to work out problems themselves and apply the learned methods. They can apply what they have learned autonomously on further and new communication networks.

Personale Kompetenzen
Sozialkompetenz

Students are able to define tasks themselves in small teams and solve these problems together using the learned methods. They can present the obtained results. They are able to discuss and critically analyse the solutions.

Selbstständigkeit

Students are able to obtain the necessary expert knowledge for understanding the functionality and performance capabilities of new communication networks independently.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Referat
Prüfungsdauer und -umfang 1,5 Stunden Kolloquium mit je drei Prüflingen, also ca. 30 min je Prüfling. Inhalt des Kolloquiums sind die Poster der vorhergehenden Postersession sowie die Lehrinhalte.
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L0899: Selected Topics of Communication Networks
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Koojana Kuladinithi
Sprachen EN
Zeitraum WiSe
Inhalt Example networks selected by the students will be researched on in a PBL course by the students in groups and will be presented in a poster session at the end of the term.
Literatur
  • see lecture
Lehrveranstaltung L0897: Communication Networks
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Koojana Kuladinithi
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur
  • Skript des Instituts für Kommunikationsnetze
  • Tannenbaum, Computernetzwerke, Pearson-Studium


Further literature is announced at the beginning of the lecture.

Lehrveranstaltung L0898: Communication Networks Excercise
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Dr. Koojana Kuladinithi
Sprachen EN
Zeitraum WiSe
Inhalt Part of the content of the lecture Communication Networks are reflected in computing tasks in groups, others are motivated and addressed in the form of a PBL exercise.
Literatur
  • announced during lecture

Modul M0677: Digital Signal Processing and Digital Filters

Lehrveranstaltungen
Titel Typ SWS LP
Digitale Signalverarbeitung und Digitale Filter (L0446) Vorlesung 3 4
Digitale Signalverarbeitung und Digitale Filter (L0447) Hörsaalübung 2 2
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Mathematics 1-3
  • Signals and Systems
  • Fundamentals of signal and system theory as well as random processes.
  • Fundamentals of spectral transforms (Fourier series, Fourier transform, Laplace transform)
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students know and understand basic algorithms of digital signal processing. They are familiar with the spectral transforms of discrete-time signals and are able to describe and analyse signals and systems in time and image domain. They know basic structures of digital filters and can identify and assess important properties including stability. They are aware of the effects caused by quantization of filter coefficients and signals. They are familiar with the basics of adaptive filters. They can perform traditional and parametric methods of spectrum estimation, also taking a limited observation window into account.

The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems.

Fertigkeiten The students are able to apply methods of digital signal processing to new problems. They can choose and parameterize suitable filter striuctures. In particular, the can design adaptive filters according to the minimum mean squared error (MMSE) criterion and develop an efficient implementation, e.g. based on the LMS or RLS algorithm.  Furthermore, the students are able to apply methods of spectrum estimation and to take the effects of a limited observation window into account.
Personale Kompetenzen
Sozialkompetenz

The students can jointly solve specific problems.

Selbstständigkeit

The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L0446: Digital Signal Processing and Digital Filters
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum WiSe
Inhalt
  • Transforms of discrete-time signals:

    • Discrete-time Fourier Transform (DTFT)

    • Discrete Fourier-Transform (DFT), Fast Fourier Transform (FFT)

    • Z-Transform

  • Correspondence of continuous-time and discrete-time signals, sampling, sampling theorem

  • Fast convolution, Overlap-Add-Method, Overlap-Save-Method

  • Fundamental structures and basic types of digital filters

  • Characterization of digital filters using pole-zero plots, important properties of digital filters

  • Quantization effects

  • Design of linear-phase filters

  • Fundamentals of stochastic signal processing and adaptive filters

    • MMSE criterion

    • Wiener Filter

    • LMS- and RLS-algorithm

  • Traditional and parametric methods of spectrum estimation

Literatur

K.-D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung. Vieweg Teubner.

V. Oppenheim, R. W. Schafer, J. R. Buck: Zeitdiskrete Signalverarbeitung. Pearson StudiumA. V.

W. Hess: Digitale Filter. Teubner.

Oppenheim, R. W. Schafer: Digital signal processing. Prentice Hall.

S. Haykin:  Adaptive flter theory.

L. B. Jackson: Digital filters and signal processing. Kluwer.

T.W. Parks, C.S. Burrus: Digital filter design. Wiley.

Lehrveranstaltung L0447: Digital Signal Processing and Digital Filters
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1229: Control Lab B

Lehrveranstaltungen
Titel Typ SWS LP
Praktikum Regelungstechnik V (L1667) Laborpraktikum 1 1
Praktikum Regelungstechnik VI (L1668) Laborpraktikum 1 1
Modulverantwortlicher NN
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • State space methods
  • LQG control
  • H2 and H-infinity optimal control
  • uncertain plant models and robust control
  •  LPV control
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the difference between validation of a control lop in simulation and experimental validation
Fertigkeiten
  • Students are capable of applying basic system identification tools (Matlab System Identification Toolbox) to identify a dynamic model that can be used for controller synthesis
  • They are capable of using standard software tools (Matlab Control Toolbox) for the design and implementation of LQG controllers
  • They are capable of using standard software tools (Matlab Robust Control Toolbox) for the mixed-sensitivity design and the implementation of H-infinity optimal controllers
  • They are capable of representing model uncertainty, and of designing and implementing a robust controller
  • They are capable of using standard software tools (Matlab Robust Control Toolbox) for the design and the implementation of LPV gain-scheduled controllers
Personale Kompetenzen
Sozialkompetenz
  • Students can work in teams to conduct experiments and document the results
Selbstständigkeit
  • Students can independently carry out simulation studies to design and validate control loops
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Leistungspunkte 2
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 1
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Lehrveranstaltung L1667: Control Lab V
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt One of the offered experiments in control theory.
Literatur

Experiment Guides

Lehrveranstaltung L1668: Control Lab VI
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt One of the offered experiments in control theory.
Literatur

Experiment Guides

Modul M1213: Avionik sicherheitskritischer Systeme

Lehrveranstaltungen
Titel Typ SWS LP
Avionik sicherheitskritischer Systeme (L1640) Vorlesung 2 3
Avionik sicherheitskritischer Systeme (L1641) Gruppenübung 1 1
Avionik sicherheitskritischer Systeme (L1652) Laborpraktikum 1 2
Modulverantwortlicher Dr. Martin Halle
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Elektrotechnik
  • Informatik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:

  • die wichtigsten Komponenten und Konzepte sicherheitskritischer Avionik beschreiben
  • die Prozesse und Standards der sicherheitskritischen  Softwareentwicklung benennen
  • das Prinzip der Integrierten Modularen Avionik darstellen
  • Avionik-relevante Hardware und Bussysteme vergleichen 
  • die Schwierigkeiten bei der Entwicklung eines sicherheitskritischen Avionikssystems richtig einschätzen


Fertigkeiten

Studierende können:

  • Echtzeithardware und  -simulationen bedienen
  • A653-Applikationen programmieren
  • Avionikarchitekturen im begrenzten Maße planen
  • Testskripte entwickeln und Testergebnisse beurteilen


Personale Kompetenzen
Sozialkompetenz

Studierende können:

  • in gemischten Teams gemeinschaftlich Lösungen erarbeiten
  • sich formal mit andern Teams austauschen
  • Entwicklungsergebnisse geeignet vorstellen


Selbstständigkeit

Studierende können:

  • Systemanforderungen an avionische Systeme verstehen
  • selbständig System-Lösungen für sicherheitskritische Avionik konzipieren


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L1640: Avionik sicherheitskritischer Systeme
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Martin Halle
Sprachen DE
Zeitraum WiSe
Inhalt

Avionik als Flugelektronik ist die Grundlage für alle Flugzeugfunktionen und eine  Hauptquelle  für Innovationen. Da es sich bei Flugsteuerung und anderen Systemkontrollern um hochgradig sicherheitskritische Funktionen handelt, unterliegen die Entwicklung von Hardware und Software besonderen Einschränkungen, Techniken und Prozessen. Diese zu verstehen und anzuwenden ist unabdingbar für jeden Systementwickler oder Informationstechniken in der Luftfahrt. Praxisnah werden Risiken und Techniken von sicherheitskritischer Hard- und Softwareentwicklung,  Avionikkomponenten, sowie Integration und Test vermittelt. Ein Schwerpunkt ist die Integrierten Modularen Avionik (IMA). Die Vorlesung wird begleitet von einer Pflichtübung mit Laborversuchen.

Inhalt:

  1. Überblick und Grundlagen
  2. Geschichte und Flugsteuerung
  3. Konzepte und Redundanz
  4. Digitale Rechner
  5. Schnittstellen und Signale
  6. Busse
  7. Netzwerke
  8. Flugzeug-Cockpit
  9. Softwareentwicklung
  10. Modellbasierte Entwicklung
  11. Integrierte Modulare Avionik 1
  12. Integrierte Modulare Avionik 2
Literatur
  • Moir, I.; Seabridge, A. & Jukes, M., Civil Avionics Systems Civil Avionics Systems, John Wiley & Sons, Ltd, 2013
  • Spitzer, C. R. Spitzer, Digital Avionics Handbook, CRC Press, 2007
  • FAA, Advanced Avionics Handbook U.S. Department of Transportation Federal Aviation Administration, 2009
  • Moir, I. & Seabridge, A. Aircraft Systems, Wiley, 2008, 3
Lehrveranstaltung L1641: Avionik sicherheitskritischer Systeme
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Martin Halle
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1652: Avionik sicherheitskritischer Systeme
Typ Laborpraktikum
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Dr. Martin Halle
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1155: Flugzeug-Kabinensysteme

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeug-Kabinensysteme (L1545) Vorlesung 3 4
Flugzeug-Kabinensysteme (L1546) Hörsaalübung 1 2
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• die Betriebsabläufe in der Flugzeugkabine, deren Ausrüstung und Systeme beschreiben
• die funktionalen und nicht-funktionalen Anforderungen an Kabinensysteme erläutern
• die Notwendigkeit der Kabinenbetriebs- und Notfallsysteme erklären
• die Herausforderungen der Mensch-Technik-Interaktion in der Kabine einschätzen

Fertigkeiten

Studierende können:
• das Kabinenlayout für ein vorgegebenes Geschäftsmodell einer Fluggesellschaft erstellen
• Kabinensysteme für den sicheren Kabinenbetrieb auslegen
• Notfallsysteme für eine zuverlässige Mensch-Systeminteraktion gestalten
• Lösungen für Komfortanforderungen und Unterhaltungssysteme in der Kabine entwerfen

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• bestehende Systemlösungen nachvollziehen und anhand bstehender Anforderungen erklären
• mit Experten in Fachsprache diskutieren
• Systemfunktionen erklären
• die Kritikalität von Funktionen einstufen
• bekannte Systeme beschreiben



Selbstständigkeit

Studierende können:
• Vorlesungsinhalte und Expertenvorträge eigenständig reflektieren
• sich selbstandig vertiefende Inhalte erschließen
• weiterführende Wissensgebiete erkennen




Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden.

Die Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie, Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt:
• Werkstoffe in der Kabine
• Ergonomie und Human Factors
• Kabinen-Innenausstattung und nicht-elektrische Systeme
• Kabinenelektrik und Beleuchtung
• Kabinenelektronik, Kommunikations-, Informations- und Unterhaltungssysteme
• Kabinen- und Passagierprozesse
• RFID-Kennzeichnung von Flugzeugbauteilen
• Energiequellen und Energiewandlung für den Betrieb

Literatur

- Skript zur Vorlesung
- Jenkinson, L.R., Simpkin, P., Rhodes, D.: Civil Jet Aircraft Design. London: Arnold, 1999
- Rossow, C.-C., Wolf, K., Horst, P. (Hrsg.): Handbuch der Luftfahrzeugtechnik. Carl Hanser Verlag, 2014
- Moir, I., Seabridge, A.: Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Wiley 2008
- Davies, M.: The standard handbook for aeronautical and astronautical engineers. McGraw-Hill, 2003
- Kompendium der Flugmedizin. Verbesserte und ergänzte Neuauflage, Nachdruck April 2006. Fürstenfeldbruck, 2006
- Campbell, F.C.: Manufacturing Technology for Aerospace Structural Materials. Elsevier Ltd., 2006

Lehrveranstaltung L1546: Flugzeug-Kabinensysteme
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1306: Control Lab C

Lehrveranstaltungen
Titel Typ SWS LP
Praktikum Regelungstechnik IX (L1836) Laborpraktikum 1 1
Praktikum Regelungstechnik VII (L1834) Laborpraktikum 1 1
Praktikum Regelungstechnik VIII (L1835) Laborpraktikum 1 1
Modulverantwortlicher Prof. Herbert Werner
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • State space methods
  • LQG control
  • H2 and H-infinity optimal control
  • uncertain plant models and robust control
  •  LPV control
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the difference between validation of a control lop in simulation and experimental validation
Fertigkeiten
  • Students are capable of applying basic system identification tools (Matlab System Identification Toolbox) to identify a dynamic model that can be used for controller synthesis
  • They are capable of using standard software tools (Matlab Control Toolbox) for the design and implementation of LQG controllers
  • They are capable of using standard software tools (Matlab Robust Control Toolbox) for the mixed-sensitivity design and the implementation of H-infinity optimal controllers
  • They are capable of representing model uncertainty, and of designing and implementing a robust controller
  • They are capable of using standard software tools (Matlab Robust Control Toolbox) for the design and the implementation of LPV gain-scheduled controllers
Personale Kompetenzen
Sozialkompetenz
  • Students can work in teams to conduct experiments and document the results
Selbstständigkeit
  • Students can independently carry out simulation studies to design and validate control loops
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Leistungspunkte 3
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 1
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L1836: Control Lab IX
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt

One of the offered experiments in control theory.

Literatur

Experiment Guides

Lehrveranstaltung L1834: Control Lab VII
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Herbert Werner, Patrick Göttsch
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt

One of the offered experiments in control theory.

Literatur

Experiment Guides

Lehrveranstaltung L1835: Control Lab VIII
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt

One of the offered experiments in control theory.

Literatur

Experiment Guides

Modul M1523: Forschungsprojekt und Seminar in Regelungs- und Energiesystemtechnik

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Dozenten des SD E
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Fortgeschrittener Kenntnisstand im Master-Studium Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden kennen aktuelle Forschungsprojekte der Institute in der Vertiefungsrichtung. Sie können die grundlegenden wissenschaftlichen Methoden nennen, mit denen an diesen gearbeitet wird. Sie können weiterhinim Diskurs einschlägige Fachbegriffe verwenden und Forschungsthemen erläutern.



Fertigkeiten

Die Studierenden sind in der Lage, ein eigenständiges Teilprojekt in aktuell laufenden Forschungsprojekten der Institute in der Vertiefungsrichtung durchzuführen. Studierende können ihre Vorgehensweise zur Lösung einer Aufgabe begründen, aus den gewonnen Ergebnissen Schlussfolgerungen ziehen und wenn nötig neue Arbeitsmethoden finden. Studierende sind in der Lage, alternative Lösungskonzepte mit dem gewählten Ansatz bzgl. vorgegebener Kriterien zu vergleichen und zu beurteilen.

Die Studierenden können sich ein für sie neues Thema inhaltlich erschießen. Sie verknüpfen dazu die Inhalte ihres bisherigen Studiums mit dem vorgegebenen Thema und schließen Wissenslücken durch Fachgespräche mit wissenschaftlichen Mitarbeitern  und eigene Recherchen (z.B. im Internet oder in Fachliteratur). Sie können wissenschaftliche Veröffentlichungen zusammenfassen und präsentieren.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, mit Mitarbeitern der betreuenden Institute fachlich den Fortschritt der Arbeit zu diskutieren und ihre Endergebnisse adressatengerecht zu präsentieren.

Die Studierenden können in Zusammenarbeit mit wissenschaftlichen Mitarbeitern  aktuelle Themen aus der Forschung erarbeiten, diskutieren und reflektieren. Sie können Zusammenfassungen derselben in englischer Sprache vor einem Fachpublikum präsentieren und erläutern.

Selbstständigkeit

Die Studierenden sind in der Lage, anhand der im bisherigen Studium erworbenen Kompetenzen sich selbstständig aus aktuellen Forschungsprojekten sinnvolle Aufgaben zu definieren, dazu notwendiges Wissen zu erschließen sowie geeignete Lösungsmethoden auszuwählen.

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext des Seminars zu setzen. Sie erschließen sich eigenständig weitere Quellen im Internet. Sie können inhaltlich einen Bezug zu ihrer gewählten Vertiefungsrichtung herstellen.

Arbeitsaufwand in Stunden Eigenstudium 360, Präsenzstudium 0
Leistungspunkte 12
Studienleistung Keine
Prüfung Studienarbeit
Prüfungsdauer und -umfang gem. ASPO
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Pflicht

Modul M0832: Advanced Topics in Control

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Themen der Regelungstechnik (L0661) Vorlesung 2 3
Ausgewählte Themen der Regelungstechnik (L0662) Gruppenübung 2 3
Modulverantwortlicher NN
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse H-infinity optimal control, mixed-sensitivity design, linear matrix inequalities 
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the advantages and shortcomings of the classical gain scheduling approach
  • They can explain the representation of nonlinear systems in the form of quasi-LPV systems
  • They can explain how stability and performance conditions for LPV systems can be formulated as LMI conditions
  • They can explain how gridding techniques can be used to solve analysis and synthesis problems for LPV systems
  • They are familiar with polytopic and LFT representations of LPV systems and some of the basic synthesis techniques associated with each of these model structures
  • Students can explain how graph theoretic concepts are used to represent the communication topology of multiagent systems
  • They can explain the convergence properties of first order consensus protocols
  • They can explain analysis and synthesis conditions for formation control loops involving either LTI or LPV agent models
  • Students can explain concepts behind linear and qLPV Model Predictive Control (MPC)
Fertigkeiten
  • Students can construct LPV models of nonlinear plants and carry out a mixed-sensitivity design of gain-scheduled controllers; they can do this using polytopic, LFT or general LPV models 
  • They can use standard software tools (Matlab robust control toolbox) for these tasks
  • Students can design distributed formation controllers for groups of agents with either LTI or LPV dynamics, using Matlab tools provided
  • Students can design MPC controllers for linear and non-linear systems using Matlab tools
Personale Kompetenzen
Sozialkompetenz Students can work in small groups and arrive at joint results.
Selbstständigkeit

Students can find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. 


 
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L0661: Advanced Topics in Control
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum WiSe
Inhalt
  • Linear Parameter-Varying (LPV) Gain Scheduling

    - Linearizing gain scheduling, hidden coupling
    - Jacobian linearization vs. quasi-LPV models
    - Stability and induced L2 norm of LPV systems
    - Synthesis of LPV controllers based on the two-sided projection lemma
    - Simplifications: controller synthesis for polytopic and LFT models
    - Experimental identification of LPV models
    - Controller synthesis based on input/output models
    - Applications: LPV torque vectoring for electric vehicles, LPV control of a robotic manipulator
  • Control of Multi-Agent Systems

    - Communication graphs
    - Spectral properties of the graph Laplacian
    - First and second order consensus protocols
    - Formation control, stability and performance
    - LPV models for agents subject to nonholonomic constraints
    - Application: formation control for a team of quadrotor helicopters

  • Linear and Nonlinear Model Predictive Control based on LMIs
Literatur
  • Werner, H., Lecture Notes "Advanced Topics in Control"
  • Selection of relevant research papers made available as pdf documents via StudIP
Lehrveranstaltung L0662: Advanced Topics in Control
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1710: Smart-Grid-Technologien

Lehrveranstaltungen
Titel Typ SWS LP
Smart-Grid-Technologien (L2706) Vorlesung 3 4
Smart-Grid-Technologien (L2707) Projekt-/problembasierte Lehrveranstaltung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik,

Grundlagen der Regelungstechnik,

Mathematik I, II, III

Elektrische Energiesysteme I

Elektrische Energiesysteme II

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können Verfahren und Technologien zum Betrieb von Smart Grids (intelligente Verteilernetze) detailliert erläutern und kritisch bewerten.

Fertigkeiten

Mit Abschluss dieses Moduls sind die Studierenden in der Lage, die Auswirkungen neuer Technologien (z. B. erneuerbare Energien, Energiespeicher und Demand-Response) auf das Stromnetz zu analysieren. Sie können Techniken der "Computational Intelligence" verstehen und auf Probleme des Verteilnetzbetriebs anwenden. Sie können auch erklären, welche IKT-Technologien (wie digitale Zwillinge und IoT) für den Betrieb von Verteilernetzen relevant und geeignet sind. 

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten.

Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen sowie im Rahmen weiterführender Forschungsaktivitäten nutzbar machen.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Referat
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Lehrveranstaltung L2706: Smart-Grid-Technologien
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christian Becker, Dr. Davood Babazadeh
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt

Vorstellung von Smart Grids

  • Intelligente Verteilnetze
  • Paradigmenwechsel: Digitalisierung & Nachhaltigkeit

Aufstrebende Technologien in Verteilnetzen

  • Dezentrale Energieversorgung (DER)
  • Batterie-Energiespeicher-Technologien (BES)
  • Sektorenkopplung & EV/V2G
  • Microgrids, Wechselrichter-basierte Systeme
  • Modellierung und Steuerung von PV & BESS

Verteilnetzmanagement & Analyse

  • Verteilnetzstruktur (Beispiel Hamburg)
  • Architektur und Funktionen des Verteilnetzmanagements und -betriebs
    • Fehlererkennung, Isolierung & Wiederherstellung
    • Selbstheilung in Verteilnetzen
    • Volt-Var-Optimierung
    • Lastfluss in Verteilnetzen
  • Demand Side Management & Demand Response
  • Laborübung (Smart Grid Betrieb)

Rechnerische Intelligenz und Optimierungstechniken

  • Rechnerische Herausforderungen im Smart Grid
  • Heuristische & analytische Optimierungsmethoden
  • Intelligente Systeme (Expertensysteme, ML/AL)
  • Anwendungen (optimaler Lastfluss, Platzierung reaktiver Kondensatoren)
  • Laborübung (Optimierungsformulierung)

ICT-Technologien für intelligente Stromnetze

  • Fortschrittliche Metering-Technologien: Intelligente Zähler, RTU, PMU 
  • Telekommunikationssysteme in Smart Grids (Netzwerkgrundlagen und -technologien)
  • Interoperabilität in Smart Grids
    • Smart-Grid-Architekturmodell
    • Automatisierungs- und Kommunikationsstandards (IEC 61850, c37.118)
  • Cyber-Sicherheit
  • Laborübung (Grid-Automatisierungsprotokolle)

Praktische Erfahrungen: Stromnetz Hamburg (SNH) Perspektive

  • Definition von Smart Grid und dessen Anforderungen aus Sicht der Industrie
  • Netzdigitalisierung - Beispiele von Industrieprojekten
  • Flexibles Lastmanagement
  • Integration von Elektromobilität & Verkehrssektor

Studienbesuche:

  • Digitales Umspannwerk in Harburg
  • Elektrobus-Ladestation 
  • Stromnetz Hamburg Leitstand
Literatur
  • Buchholz and Styczynski - 2020 - “Smart Grids: Fundamentals and Technologies in Electric Power Systems of the Future”, Springer
  • Bernardon and Garcia - 2018 - “Smart Operation for Power Distribution Systems: Concepts and Applications”, Springer
  • Momoh, 2012; “Smart Grid: Fundamentals of Design and Analysis”, Wiley
Lehrveranstaltung L2707: Smart-Grid-Technologien
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Christian Becker, Dr. Davood Babazadeh
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Thesis

Modul M1801: Masterarbeit im dualen Studium

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Professoren der TUHH
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die dual Studierenden ...

  • ... setzen das Spezialwissen (Fakten, Theorien und Methoden) ihres Studienfaches und das erworbene berufliche Wissen sicher zur Bearbeitung fachlicher und berufspraktischer Fragestellungen ein.
  • ... können in einem oder mehreren Spezialbereichen ihres Faches die relevanten Ansätze und Terminologien in der Tiefe erklären, aktuelle Entwicklungen beschreiben und kritisch Stellung beziehen.
  • ... formulieren für eine berufliche Fragestellung eine eigene Forschungsaufgabe und verorten diese in ihrem Fachgebiet. Sie erheben den aktuellen Forschungsstand und schätzen diesen kritisch ein.
Fertigkeiten

Die dual Studierenden ...

  • ... sind in der Lage, für die jeweilige fachlich-berufspraktische Problemstellung geeignete Methoden auszuwählen, anzuwenden und nach Bedarf weiterzuentwickeln. 
  • ... beurteilen im Studium (inklusive Praxisphasen) erworbenes Wissen und erlernte Methoden und wenden ihre Fachkompetenzen auf komplexe und/oder unvollständig definierte Problemstellungen lösungs- und anwendungsorientiert an. 
  • ... erarbeiten sich in ihrem Fachgebiet neue wissenschaftliche Erkenntnisse und beurteilen diese kritisch.
Personale Kompetenzen
Sozialkompetenz

Die dual Studierenden ...

  • ... können eine berufliche Problemstellung in Form einer wissenschaftlichen Fragestellung sowohl für ein Fachpublikum als auch für berufliche Anspruchsgruppen schriftlich und mündlich strukturiert, verständlich und sachlich richtig darstellen.
  • ... antworten in einer Fachdiskussion Fragen fachkundig und zugleich adressatengerecht. Eigene Standpunkte und Einschätzungen vertreten sie dabei überzeugend.
Selbstständigkeit

Die dual Studierenden ...

  • ... sind in der Lage, ein eigenes Projekt in Arbeitspakete zu strukturieren, auf wissenschaftlichem Niveau abzuarbeiten und hinsichtlich umsetzbarer Handlungsoptionen für die Berufspraxis zu reflektieren.
  • ... arbeiten sich in ein teilweise unbekanntes Arbeitsgebiet des Studienfachs vertieft ein und erschließen sich die dafür benötigten Informationen.
  • ... wenden die Techniken des wissenschaftlichen Arbeitens umfassend in einer eigenen Forschungsarbeit mit einer betrieblichen Problem- und Fragestellung an.
Arbeitsaufwand in Stunden Eigenstudium 900, Präsenzstudium 0
Leistungspunkte 30
Studienleistung Keine
Prüfung Abschlussarbeit
Prüfungsdauer und -umfang laut ASPO
Zuordnung zu folgenden Curricula Bauingenieurwesen: Abschlussarbeit: Pflicht
Bioverfahrenstechnik: Abschlussarbeit: Pflicht
Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht
Computer Science: Abschlussarbeit: Pflicht
Data Science: Abschlussarbeit: Pflicht
Elektrotechnik: Abschlussarbeit: Pflicht
Energietechnik: Abschlussarbeit: Pflicht
Environmental Engineering: Abschlussarbeit: Pflicht
Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht
Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht
Information and Communication Systems: Abschlussarbeit: Pflicht
Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht
Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht
Luftfahrttechnik: Abschlussarbeit: Pflicht
Materials Science and Engineering: Abschlussarbeit: Pflicht
Materialwissenschaft: Abschlussarbeit: Pflicht
Mechanical Engineering and Management: Abschlussarbeit: Pflicht
Mechatronics: Abschlussarbeit: Pflicht
Mediziningenieurwesen: Abschlussarbeit: Pflicht
Microelectronics and Microsystems: Abschlussarbeit: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht
Regenerative Energien: Abschlussarbeit: Pflicht
Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht
Theoretischer Maschinenbau: Abschlussarbeit: Pflicht
Verfahrenstechnik: Abschlussarbeit: Pflicht
Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht