Program description
Content
The electrical industry is the second largest industrial sector in Germany after mechanical engineering in terms of the number of employees. With approx. 847,000 employees, a turnover of approx. 179 billion euros is achieved (based on the year 2016, source: de.statista.com). Electrical engineering is thus not only one of the "classical engineering sciences" but also one of the main drivers of national and international technical progress in recent decades.
In engineering terms, electrical engineering deals with research, development and, in general, the application of electrical signals, electrical energy and electromagnetic fields in corresponding components and circuits.
Due to the widely ramified fields of application, a high degree of specialisation is required in the profession. As a consequence, the vocational training of electrical engineers is in the area of tension between the breadth of the training (for the widest possible range of later uses) and the depth of the training (for current, subject-specific competences). Within the framework of the consecutive Bachelor's/Master's degree programmes in electrical engineering at the TUHH, the breadth of the subject is taught primarily during the Bachelor's degree programme and focal points are deepened in the Master's degree programme. The Bachelor's programme conveys the fundamentals of electrical engineering, information technology, computer science as well as mathematics and physics required for solving electrical engineering and information technology tasks. In addition to the technical canon of fundamentals, training in non-technical areas such as business administration, patents, management, humanities, law and philosophy is aimed for, which meets the modern professional requirements of an engineer.
Career prospects
Successful completion of the Bachelor's degree programme in Electrical Engineering enables an early career entry into the typical fields of activity in electrical engineering, in addition to taking up a Master's degree programme that provides more in-depth scientific knowledge. These include communications engineering, measurement and control engineering, microsystems engineering and nanoelectronics, electrical power engineering, high-frequency engineering and optical systems.
Electrical engineers are among the most sought-after academics on the labour market. A current evaluation of data from the Federal Employment Agency proves the increasing demand (Federal Employment Agency: "Berichte: Blickpunkt Arbeitsmarkt - Ingenieurinnen und Ingenieure", Nuremberg, 2018). While the number of registered unemployed continues to fall steadily, the number of registered vacancies is increasing significantly at the same time. At the same time, only a fraction of the advertised jobs are reported to the Federal Employment Agency, so that the supply of jobs currently exceeds the demand. Thus, as in previous years, the demand for electrical engineers - especially in the old federal states including Hamburg - cannot be met ("shortage of skilled workers").
Learning target
The desired learning outcomes of the degree programme are based on the objectives listed above. The focus is on enabling graduates to responsibly and competently perform an engineering activity in the various fields of activity in electrical engineering. The learning objectives are divided into the following categories: knowledge, skills, social competence and independence.
Knowledge
- Students can name and describe the mathematical-scientific fundamentals and methods of engineering sciences. This includes, in particular, elements of higher analysis and linear algebra as well as physics.
- Students can explain the fundamentals and methods of electrical engineering and information technology and can give an overview of their subject. Of particular importance are direct and alternating current theory, circuit technology, the theory of electromagnetic fields and waves, the materials and components of electrical engineering as well as systems theory with their respective methods.
- The students can explain the basics, methods and areas of application of the sub-disciplines of electrical engineering in detail. Important sub-disciplines are electrical power engineering, communications engineering, circuit technology, measurement technology and control engineering.
- Students can reproduce the fundamentals and methods of economics and can give an overview of the relevant social, ethical, ecological and economic boundary conditions of their subject.
Skills
- The students can independently work on research questions using suitable methods, document their chosen solution path and present it to an expert audience.
- Students can solve problems from the fields of analysis, linear algebra, function theory and the theory of differential equations using the methods they have learned
- The students can assess the current and voltage behaviour in electrical networks, dimension simple circuits and analyse networks in the time and frequency domain. They can use semiconductor components such as transistors and diodes as well as operational amplifiers in their areas of application. They are able to plan electrical power supply systems in basic outlines and analyse the operating behaviour of electrical machines and calculate typical variables. They are able to clarify metrological issues and apply methods for describing and processing measurement data.
- The students can model, programme and adapt simple algorithms. They can design and test software and estimate its complexity. They are able to distinguish between the different levels of abstraction of today's computing systems.
- The students can apply different methods to solve Maxwell's equations for electromagnetic field problems. They can derive typical quantities from the fields and dimension them for application in practice.
- The students can describe and analyse linear, time-invariant systems with the methods of signal and system theory. They are able to design and evaluate simple communication and control systems.
- The students can generally map typical problems to their basic knowledge, find suitable solution methods and implement them. They can appropriately document the chosen solution in writing and present it to an audience in a clearly structured manner.
Social competence
- Students are able to present the procedure and results of their work in a comprehensible manner, both orally and in writing.
- The
students are able to communicate about the contents and problems of
electrical engineering with experts and laypersons. They can react
appropriately to questions, additions and comments.
- The students are able to work in groups. They can define, distribute and integrate subtasks. They can make time arrangements and interact socially.
Competence to work independently
- The students are able to obtain necessary technical information and place it in the context of their knowledge
- The students can realistically assess their existing competences and work on deficits independently
- The students can learn complex topics and work on problems in a self-organised and self-motivated manner (lifelong learning).
Program structure
The curriculum of the Bachelor's degree programme in Electrical Engineering is structured as follows:
- Core qualification - compulsory: 24 modules, 144 credit points (LP), 1st - 6th semester.
- Core qualification - compulsory elective: 4 modules, 24 LP, 4th, 5th and 6th semester
- Bachelor thesis: 12 LP, 6th semester
The total workload for the Bachelor's programme is 180 LP, with a semester distribution of 30/28/32/30/30/30 LP.
In addition to the subject modules, the core qualification also includes the following interdisciplinary modules:
- Fundamentals of business administration: 6 LP, 1st semester
- Non-technical supplementary courses in the Bachelor: 6 LP, 1st - 6th semester
Core Qualification
Module M0577: Non-technical Courses for Bachelors |
Module Responsible | Dagmar Richter |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The Non-technical
Academic Programms (NTA) imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses. The Learning Architecture consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses. The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles” The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies. Teaching and Learning Arrangements provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses. Fields of Teaching are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, migration studies, communication studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way. The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations. The Competence Level of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc. This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life. Specialized Competence (Knowledge) Students can
|
Skills |
Professional Competence (Skills) In selected sub-areas students can
|
Personal Competence | |
Social Competence |
Personal Competences (Social Skills) Students will be able
|
Autonomy |
Personal Competences (Self-reliance) Students are able in selected areas
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Courses |
Information regarding lectures and courses can be found in the corresponding module handbook published separately. |
Module M0642: Physics for Engineers |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Manfred Eich | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students can explain fundamental topics and laws of physics such as in the areas of mechanics, oscillations, Students can relate physics topics to technical problems. |
||||||||
Skills |
Students can describe physical problems mathematically and solve such problems within the framework of Students are able to write meaningful reports on experiments and to discuss the results in a conclusive way. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can jointly solve subject related problems in groups. They can present their results effectively |
||||||||
Autonomy |
Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 Minutes | ||||||||
Assignment for the Following Curricula |
Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory |
Course L0367: Physics for Engineers |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Manfred Eich |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0368: Physics for Engineers (Problem Solving Course) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Manfred Eich |
Language | DE |
Cycle | WiSe |
Content |
see lecture Physics for Engineers |
Literature |
see lecture Physics for Engineers |
Course L0948: Physics-Lab for ET |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Wolfgang Hansen |
Language | DE/EN |
Cycle | SoSe |
Content |
In the physics lab a number of key experiments on physical phenomena in mechanics, oscillatory and wave motion, thermodynamics, electricity, and optics will be conducted by the students under assistance of a lecturing tutor. The experiments are part of the physics education program presented in the course "Physics for TUHH-ET Engineers". Beyond teaching of fundamental physical background the objectives are basic skills in preparation and performing physical measurements, usage of physical equipment, analysis of the results and preparation of a report on the experimental data. |
Literature |
Zu den Versuchen gibt es individuelle Versuchsanleitungen, die vor der Versuchsdurchführung ausgegeben werden. Zum Teil müssen die zur Versuchsdurchführung notwendigen physikalischen Hintergründe selbstständig erarbeitet werden, wozu die zur Vorlesung "Physik für TUHH-ET Ingenieure" angegebene Literatur gut geeignet ist. |
Module M0743: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Matthias Kuhl |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 100 Minutes |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory |
Course L0675: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Matthias Kuhl |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
|
Course L0676: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Prof. Matthias Kuhl |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
|
Module M0829: Foundations of Management |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christoph Ihl |
Admission Requirements | None |
Recommended Previous Knowledge | Basic Knowledge of Mathematics and Business |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After taking this module, students know the important basics of many different areas in Business and Management, from Planning and Organisation to Marketing and Innovation, and also to Investment and Controlling. In particular they are able to
|
Skills |
Students are able to analyse business units with respect to different criteria (organization, objectives, strategies etc.) and to carry out an Entrepreneurship project in a team. In particular, they are able to
|
Personal Competence | |
Social Competence |
Students are able to
|
Autonomy |
Students are able to
|
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | several written exams during the semester |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Specialisation Civil Engineering: Elective Compulsory Civil- and Environmental Engineering: Specialisation Water and Environment: Elective Compulsory Civil- and Environmental Engineering: Specialisation Traffic and Mobility: Elective Compulsory Bioprocess Engineering: Core Qualification: Compulsory Computer Science: Core Qualification: Compulsory Data Science: Core Qualification: Compulsory Data Science: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L0882: Management Tutorial |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Christoph Ihl, Katharina Roedelius |
Language | DE |
Cycle |
WiSe/ |
Content |
In the management tutorial, the contents of the lecture will be deepened by practical examples and the application of the discussed tools. If there is adequate demand, a problem-oriented tutorial will be offered in parallel, which students can choose alternatively. Here, students work in groups on self-selected projects that focus on the elaboration of an innovative business idea from the point of view of an established company or a startup. Again, the business knowledge from the lecture should come to practical use. The group projects are guided by a mentor. |
Literature | Relevante Literatur aus der korrespondierenden Vorlesung. |
Course L0880: Introduction to Management |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Christoph Ihl, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Cornelius Herstatt, Prof. Kathrin Fischer, Prof. Matthias Meyer, Prof. Thomas Wrona, Prof. Thorsten Blecker, Prof. Wolfgang Kersten |
Language | DE |
Cycle |
WiSe/ |
Content |
|
Literature |
Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008 Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003 Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006. Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001. Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008. Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005. Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008. Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. |
Module M0850: Mathematics I |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Anusch Taraz | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
School mathematics |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
|
||||||||
Skills |
|
||||||||
Personal Competence | |||||||||
Social Competence |
|
||||||||
Autonomy |
|
||||||||
Workload in Hours | Independent Study Time 128, Study Time in Lecture 112 | ||||||||
Credit points | 8 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L2970: Mathematics I |
Typ | Lecture |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Lecturer | Prof. Anusch Taraz |
Language | DE |
Cycle | WiSe |
Content |
Mathematical Foundations: sets, statements, induction, mappings, trigonometry Analysis: Foundations of differential calculus in one variable
Linear Algebra: Foundations of linear algebra in Rn
|
Literature |
|
Course L2971: Mathematics I |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Anusch Taraz, Dr. Dennis Clemens, Dr. Simon Campese |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2972: Mathematics I |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Anusch Taraz |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1692: Computer Science for Engineers - Introduction and Overview |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Görschwin Fey | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | |||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge | |||||||||
Skills | |||||||||
Personal Competence | |||||||||
Social Competence | |||||||||
Autonomy | |||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L2685: Computer Science for Engineers - Introduction and Overview |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Görschwin Fey |
Language | DE/EN |
Cycle | WiSe |
Content | |
Literature |
|
Course L2686: Computer Science for Engineers - Introduction and Overview |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Görschwin Fey |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0547: Electrical Engineering II: Alternating Current Networks and Basic Devices |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Becker | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Electrical Engineering I Mathematics I Direct current networks, complex numbers |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able to reproduce and explain fundamental theories, principles, and methods related to the theory of alternating currents. They can describe networks of linear elements using a complex notation for voltages and currents. They can reproduce an overview of applications for the theory of alternating currents in the area of electrical engineering. Students are capable of explaining the behavior of fundamental passive and active devices as well as their impact on simple circuits. |
||||||||
Skills |
Students are capable of calculating parameters within simple electrical networks at alternating currents by means of a complex notation for voltages and currents. They can appraise the fundamental effects that may occur within electrical networks at alternating currents. Students are able to analyze simple circuits such as oscillating circuits, filter, and matching networks quantitatively and dimension elements by means of a design. They can motivate and justify the fundamental elements of an electrical power supply (transformer, transmission line, compensation of reactive power, multiphase system) and are qualified to dimension their main features. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to work together on subject related tasks in small groups. They are able to present their results effectively. |
||||||||
Autonomy |
Students are capable to gather necessary information from the references provided and relate that information to the context of the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as online-tests and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between their knowledge obtained in this lecture and the content of other lectures (e.g. Electrical Engineering I, Linear Algebra, and Analysis). |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 - 150 minutes | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory |
Course L0178: Electrical Engineering II: Alternating Current Networks and Basic Devices |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | SoSe |
Content |
- General time-dependency of electrical networks - Representation and properties of harmonic signals - RLC-elements at alternating currents/voltages - Complex notation for the representation of RLC-elements - Power in electrical networks at alternating currents, compensation of reactive power - Frequency response locus (Nyquist plot) and Bode-diagrams - Measurement instrumentation for assessing alternating currents - Oscillating circuits, filters, electrical transmission lines - Transformers, three-phase current, energy converters - Simple non-linear and active electrical devices |
Literature |
- M. Albach, "Elektrotechnik", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010) - C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013) - R. Dorf, "The Electrical Engineering Handbook", CRC (2006) |
Course L0179: Electrical Engineering II: Alternating Current Networks and Basic Devices |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | SoSe |
Content |
- General time-dependency of electrical networks - Representation and properties of harmonic signals - RLC-elements at alternating currents/voltages - Complex notation for the representation of RLC-elements - Power in electrical networks at alternating currents, compensation of reactive power - Frequency response locus (Nyquist plot) and Bode-diagrams - Measurement instrumentation for assessing alternating currents - Oscillating circuits, filters, electrical transmission lines - Transformers, three-phase current, energy converters - Simple non-linear and active electrical devices |
Literature |
- M. Albach, "Elektrotechnik", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010) - C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013) - R. Dorf, "The Electrical Engineering Handbook", CRC (2006) |
Module M0748: Materials in Electrical Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Manfred Eich |
Admission Requirements | None |
Recommended Previous Knowledge | Highschool level physics and mathematics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can explain the composition and the structural properties of materials used in electrical engineering. Students can explicate the relevance of mechanical, electrical, thermal, dielectric, magnetic and chemical properties of materials in view of their applications in electrical engineering. |
Skills |
Students can identify appropriate descriptive models and apply them mathematically. They can derive approximative solutions and judge factors influential on the performance of materials in electrical engineering applications. |
Personal Competence | |
Social Competence |
Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course. |
Autonomy |
Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 minutes |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory Electrical Engineering: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory |
Course L0714: Electrotechnical Experiments |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Helge Fielitz |
Language | DE |
Cycle | SoSe |
Content |
Agenda: - Natural sources of electricity - Oscilloscope - Characterizing signals - 2 terminal circuit elements - 2-ports - Power - Matching - Inductive coupling - Resonance - Radio frequencies - Transistor circuits - Electrical measurement - Materials for the EE - Electrical fun |
Literature |
Tietze, Schenk: "Halbleiterschaltungstechnik", Springer |
Course L0685: Materials in Electrical Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Manfred Eich |
Language | DE |
Cycle | SoSe |
Content |
The Hamiltonian approach to classical mechanics. Analysis of a simple oscillator. |
Literature |
1.Anikeeva, Beach, Holten-Andersen, Fink, Electronic, Optical and Magnetic Properties
of Materials, 2.Hagelstein et al., Introductory Applied Quantum and Statistical Mechanics, Wiley 2004 3.Griffiths, Introduction to Quantum Mechanics, Prentice Hall, 1994 4.Shankar, Principles of Quantum Mechanics, 2nd ed., Plenum Press, 1994 5.Fick, Einführung in die Grundlagen der Quantentheorie, Akad. Verlagsges., 1979 6.Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2004 7.Ashcroft, Mermin, Solid State Physics, Harcourt, 1976 8.Pierret, Semiconductor Fundamentals Vol. 1, Addison Wesley, 1988 9.Sze, Physics of Semiconductor Devices, Wiley, 1981 10.Saleh, Teich, Fundamentals of Photonics, 2nd ed., 2007 11.Joannopoulos, Johnson, Winn Meade, Photonic Crystals, 2nd ed., Princeton Universty Press, 2008 12.Handley, Modern Magnetic Materials, Wiley, 2000 13.Wikipedia, Wikimedia |
Course L0687: Materials in Electrical Engineering (Problem Solving Course) |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Manfred Eich |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
H. Schaumburg: Einführung in die Werkstoffe der Elektrotechnik, Teubner (1993) |
Module M0851: Mathematics II |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Anusch Taraz | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Mathematics I | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
|
||||||||
Skills |
|
||||||||
Personal Competence | |||||||||
Social Competence |
|
||||||||
Autonomy |
|
||||||||
Workload in Hours | Independent Study Time 128, Study Time in Lecture 112 | ||||||||
Credit points | 8 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L2976: Mathematics II |
Typ | Lecture |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Lecturer | Prof. Anusch Taraz |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L2977: Mathematics II |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Anusch Taraz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2978: Mathematics II |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Anusch Taraz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1693: Computer Science for Engineers - Programming Concepts, Data Handling & Communication |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Sibylle Fröschle | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | |||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge | |||||||||
Skills |
|
||||||||
Personal Competence | |||||||||
Social Competence | |||||||||
Autonomy | |||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory Logistics and Mobility: Specialisation Information Technology: Compulsory Mechatronics: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Compulsory |
Course L2689: Computer Science for Engineers - Programming Concepts, Data Handling & Communication |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Sibylle Fröschle |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
John V. Guttag: Introduction to Computation and Programming Using Python. |
Course L2690: Computer Science for Engineers - Programming Concepts, Data Handling & Communication |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Sibylle Fröschle |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0783: Measurements: Methods and Data Processing |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Alexander Schlaefer | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
principles of mathematics |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students are able to explain the purpose of metrology and the acquisition and processing of measurements. They can detail aspects of probability theory and errors, and explain the processing of stochastic signals. Students know methods to digitalize and describe measured signals. |
||||||||
Skills |
The students are able to evaluate problems of metrology and to apply methods for describing and processing of measurements. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students solve problems in small groups. |
||||||||
Autonomy |
The students can reflect their knowledge and discuss and evaluate their results. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Integrated Building Technology: Core Qualification: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0781: EE Experimental Lab |
Typ | Practical Course |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Schlaefer, Dozenten des SD E, Prof. Alexander Kölpin, Prof. Bernd-Christian Renner, Prof. Christian Becker, Prof. Heiko Falk, Prof. Herbert Werner, Prof. Thorsten Kern |
Language | DE |
Cycle | WiSe |
Content | lab experiments: digital circuits, semiconductors, micro controllers, analog circuits, AC power, electrical machines |
Literature | Wird in der Lehrveranstaltung festgelegt |
Course L0779: Measurements: Methods and Data Processing |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Schlaefer |
Language | DE |
Cycle | WiSe |
Content |
introduction, systems and errors in metrology, probability theory, measuring stochastic signals, describing measurements, acquisition of analog signals, applied metrology |
Literature |
Puente León, Kiencke: Messtechnik, Springer 2012 |
Course L0780: Measurements: Methods and Data Processing |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Alexander Schlaefer |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0708: Electrical Engineering III: Circuit Theory and Transients |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Alexander Kölpin |
Admission Requirements | None |
Recommended Previous Knowledge |
Electrical Engineering I and II, Mathematics I and II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to explain the basic methods for calculating electrical circuits. They know the Fourier series analysis of linear networks driven by periodic signals. They know the methods for transient analysis of linear networks in time and in frequency domain, and they are able to explain the frequency behaviour and the synthesis of passive two-terminal-circuits. |
Skills |
The students are able to calculate currents and voltages in linear networks by means of basic methods, also when driven by periodic signals. They are able to calculate transients in electrical circuits in time and frequency domain and are able to explain the respective transient behaviour. They are able to analyse and to synthesize the frequency behaviour of passive two-terminal-circuits. |
Personal Competence | |
Social Competence |
Students work on exercise tasks in small guided groups. They are encouraged to present and discuss their results within the group. |
Autonomy |
The students are able to find out the required methods for solving the given practice problems. Possibilities are given to test their knowledge during the lectures continuously by means of short-time tests. This allows them to control independently their educational objectives. They can link their gained knowledge to other courses like Electrical Engineering I and Mathematics I. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 150 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Electrical Engineering: Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Mechatronics: Specialisation Electrical Systems: Compulsory Mechatronics: Specialisation Dynamic Systems and AI: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0566: Circuit Theory |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Alexander Kölpin, Dr. Fabian Lurz |
Language | DE |
Cycle | WiSe |
Content |
- Circuit theorems - N-port circuits - Periodic excitation of linear circuits - Transient analysis in time domain - Transient analysis in frequency domain; Laplace Transform - Frequency behaviour of passive one-ports |
Literature |
- M. Albach, "Grundlagen der Elektrotechnik 1", Pearson Studium (2011) - M. Albach, "Grundlagen der Elektrotechnik 2", Pearson Studium (2011) - L. P. Schmidt, G. Schaller, S. Martius, "Grundlagen der Elektrotechnik 3", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2008)- R. C. Dorf, J. A. Svoboda, "Introduction to electrical circuits", Wiley (2006) - L. Moura, I. Darwazeh, "Introduction to Linear Circuit Analysis and Modeling", Amsterdam Newnes (2005) |
Course L0567: Circuit Theory |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Kölpin, Dr. Fabian Lurz |
Language | DE |
Cycle | WiSe |
Content | see interlocking course |
Literature |
siehe korrespondierende Lehrveranstaltung |
Module M0730: Computer Engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Heiko Falk | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Basic knowledge in electrical engineering |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
This module deals with the foundations of the functionality of computing systems. It covers the layers from the assembly-level programming down to gates. The module includes the following topics:
|
||||||||
Skills |
The students perceive computer systems from the architect's perspective, i.e., they identify the internal structure and the physical composition of computer systems. The students can analyze, how highly specific and individual computers can be built based on a collection of few and simple components. They are able to distinguish between and to explain the different abstraction layers of today's computing systems - from gates and circuits up to complete processors. After successful completion of the module, the students are able to judge the interdependencies between a physical computer system and the software executed on it. In particular, they shall understand the consequences that the execution of software has on the hardware-centric abstraction layers from the assembly language down to gates. This way, they will be enabled to evaluate the impact that these low abstraction levels have on an entire system's performance and to propose feasible options. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to solve similar problems alone or in a group and to present the results accordingly. |
||||||||
Autonomy |
Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 minutes, contents of course and labs | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory Computer Science: Core Qualification: Compulsory Data Science: Core Qualification: Elective Compulsory Data Science: Specialisation I. Mathematics/Computer Science: Elective Compulsory Electrical Engineering: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Technomathematics: Specialisation II. Informatics: Elective Compulsory |
Course L0321: Computer Engineering |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Heiko Falk |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0324: Computer Engineering |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Heiko Falk |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0853: Mathematics III |
||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||
|
Module Responsible | Prof. Marko Lindner |
Admission Requirements | None |
Recommended Previous Knowledge | Mathematics I + II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 128, Study Time in Lecture 112 |
Credit points | 8 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min (Analysis III) + 60 min (Differential Equations 1) |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Logistics and Mobility: Specialisation Information Technology: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Compulsory |
Course L1028: Analysis III |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content |
Main features of differential and integrational calculus of several variables
|
Literature |
|
Course L1029: Analysis III |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1030: Analysis III |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1031: Differential Equations 1 (Ordinary Differential Equations) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content |
Main features of the theory and numerical treatment of ordinary differential equations
|
Literature |
|
Course L1032: Differential Equations 1 (Ordinary Differential Equations) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1033: Differential Equations 1 (Ordinary Differential Equations) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0567: Theoretical Electrical Engineering I: Time-Independent Fields |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Schuster |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic principles of electrical engineering and advanced mathematics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can explain the fundamental formulas, relations, and methods of the theory of time-independent electromagnetic fields. They can explicate the principal behavior of electrostatic, magnetostatic, and current density fields with regard to respective sources. They can describe the properties of complex electromagnetic fields by means of superposition of solutions for simple fields. The students are aware of applications for the theory of time-independent electromagnetic fields and are able to explicate these. |
Skills |
Students can apply Maxwell’s Equations in integral notation in order to solve highly symmetrical, time-independent, electromagnetic field problems. Furthermore, they are capable of applying a variety of methods that require solving Maxwell’s Equations for more general problems. The students can assess the principal effects of given time-independent sources of fields and analyze these quantitatively. They can deduce meaningful quantities for the characterization of electrostatic, magnetostatic, and electrical flow fields (capacitances, inductances, resistances, etc.) from given fields and dimension them for practical applications. |
Personal Competence | |
Social Competence |
Students are able to work together on subject related tasks in small groups. They are able to present their results effectively (e.g. during exercise sessions). |
Autonomy |
Students are capable to gather necessary information from provided references and relate this information to the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as short oral quizzes during the lectures and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between their knowledge obtained in this lecture and the content of other lectures (e.g. Electrical Engineering I, Linear Algebra, and Analysis). |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90-150 minutes |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory Electrical Engineering: Core Qualification: Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Mechatronics: Specialisation Electrical Systems: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0180: Theoretical Electrical Engineering I: Time-Independent Fields |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Christian Schuster |
Language | DE |
Cycle | SoSe |
Content |
- Maxwell’s Equations in integral and differential notation - Boundary conditions - Laws of conservation for energy and charge - Classification of electromagnetic field properties - Integral characteristics of time-independent fields (R, L, C) - Generic approaches to solving Poisson’s Equation - Electrostatic fields and specific methods of solving - Magnetostatic fields and specific methods of solving - Fields of electrical current density and specific methods of solving - Action of force within time-independent fields - Numerical methods for solving time-independent problems The practical application of numerical methods will be trained within specifically prepared lectures in an interactive manner using small MATLAB programs. |
Literature |
- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010) - H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011) - W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011) - D. Griffiths, "Introduction to Electrodynamics", Pearson (2012) - J. Edminister, " Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013) - Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011) |
Course L0181: Theoretical Electrical Engineering I: Time-Independent Fields |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Prof. Christian Schuster |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0610: Electrical Machines and Actuators |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Thorsten Kern |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics of mathematics, in particular complexe numbers, integrals, differentials Basics of electrical engineering and mechanical engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can to draw and explain the basic principles of electric and magnetic fields. They can describe the function of the standard types of electric machines and present the corresponding equations and characteristic curves. For typically used drives they can explain the major parameters of the energy efficiency of the whole system from the power grid to the driven engine. |
Skills |
Students are able to calculate two-dimensional electric and magnetic fields in particular ferromagnetic circuits with air gap. For this they apply the usual methods of the design auf electric machines. They can calulate the operational performance of electric machines from their given characteristic data and selected quantities and characteristic curves. They apply the usual equivalent circuits and graphical methods. |
Personal Competence | |
Social Competence | none |
Autonomy |
Students are able independently to calculate electric and magnatic fields for applications. They are able to analyse independently the operational performance of electric machines from the charactersitic data and theycan calculate thereof selected quantities and characteristic curves. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | Design of four machines and actuators, review of design files |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Technology: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Maritime Technologies: Elective Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Mechanical Engineering: Core Qualification: Elective Compulsory Mechatronics: Specialisation Naval Engineering: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory Mechatronics: Specialisation Electrical Systems: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory |
Course L0293: Electrical Machines and Actuators |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Thorsten Kern, Dennis Kähler |
Language | DE |
Cycle | SoSe |
Content |
Electric field: Coulomb´s law, flux (field) line, work, potential, capacitor, energy, force, capacitive actuators Magnetic field: force, flux line, Ampere´s law, field at bounderies, flux, magnetic circuit, hysteresis, induction, self-induction, mutual inductance, transformer, electromagnetic actuators Synchronous machines, construction and layout, equivalent single line diagrams, no-load and short-cuircuit characteristics, vector diagrams, motor and generator operation, stepper motors DC-Machines: Construction and layout, torque generation mechanismen, torque vs speed characteristics, commutation, Asynchronous Machines. Magnetic field, construction and layout, equivalent single line diagram, complex stator current diagram (Heylands´diagram), torque vs. speed characteristics, rotor layout (squirrel-cage vs. sliprings), Drives with variable speed, inverter fed operation, special drives |
Literature |
Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313 Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122 "Grundlagen der Elektrotechnik" - anderer Autoren Fachbücher "Elektrische Maschinen" |
Course L0294: Electrical Machines and Actuators |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Thorsten Kern, Dennis Kähler |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0672: Signals and Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Gerhard Bauch |
Admission Requirements | None |
Recommended Previous Knowledge |
Mathematics 1-3 The modul is an introduction to the theory of signals and systems. Good knowledge in maths as covered by the moduls Mathematik 1-3 is expected. Further experience with spectral transformations (Fourier series, Fourier transform, Laplace transform) is useful but not required. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to classify and describe signals and linear time-invariant (LTI) systems using methods of signal and system theory. They are able to apply the fundamental transformations of continuous-time and discrete-time signals and systems. They can describe and analyse deterministic signals and systems mathematically in both time and image domain. In particular, they understand the effects in time domain and image domain which are caused by the transition of a continuous-time signal to a discrete-time signal. The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems. |
Skills | The students are able to describe and analyse deterministic signals and linear time-invariant systems using methods of signal and system theory. They can analyse and design basic systems regarding important properties such as magnitude and phase response, stability, linearity etc.. They can assess the impact of LTI systems on the signal properties in time and frequency domain. |
Personal Competence | |
Social Competence | The students can jointly solve specific problems. |
Autonomy | The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory Data Science: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Mechanical Engineering: Specialisation Mechatronics: Elective Compulsory Mechatronics: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0432: Signals and Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Gerhard Bauch |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0433: Signals and Systems |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Gerhard Bauch |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0734: Electrical Engineering Project Laboratory |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Christian Becker |
Admission Requirements | None |
Recommended Previous Knowledge |
Electrical Engineering I, Electrical Engineering II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to give a summary of the technical details of projects in the area of electrical engineering and illustrate respective relationships. They are capable of describing and communicating relevant problems and questions using appropriate technical language. They can explain the typical process of solving practical problems and present related results. |
Skills |
The students can transfer their fundamental knowledge on electrical engineering to the process of solving practical problems. They identify and overcome typical problems during the realization of projects in the context of electrical engineering. Students are able to develop, compare, and choose conceptual solutions for non-standardized problems. |
Personal Competence | |
Social Competence |
Students are able to cooperate in small, mixed-subject groups in order to independently derive solutions to given problems in the context of electrical engineering. They are able to effectively present and explain their results alone or in groups in front of a qualified audience. Students have the ability to develop alternative approaches to an electrical engineering problem independently or in groups and discuss advantages as well as drawbacks. |
Autonomy |
Students are capable of independently solving electrical engineering problems using provided literature. They are able to fill gaps in as well as extent their knowledge using the literature and other sources provided by the supervisor. Furthermore, they can meaningfully extend given problems and pragmatically solve them by means of corresponding solutions and concepts. |
Workload in Hours | Independent Study Time 68, Study Time in Lecture 112 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | based on task + presentation |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Electrical Engineering: Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0640: Electrical Engineering Project Laboratory |
Typ | Project-/problem-based Learning |
Hrs/wk | 8 |
CP | 6 |
Workload in Hours | Independent Study Time 68, Study Time in Lecture 112 |
Lecturer | Prof. Christian Becker, Dozenten des SD E |
Language | DE |
Cycle | SoSe |
Content |
Topics and projects cover the entire field of applications of electrical engineering. Typically, the students will prototype functional units and self-contained systems, such as radar devices, networks of sensors, amateur radio transceiver, power electronics based inverters, discrete computers, or atomic force microscopes. Different projects are devised on a yearly basis. |
Literature |
Alle zur Durchführung der Projekte sinnvollen Quellen (Skripte, Fachbücher, Manuals, Datenblätter, Internetseiten). / All sources that are useful for completion of the projects (lecture notes, textbooks, manuals, data sheets, internet pages). |
Module M0854: Mathematics IV |
||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||
|
Module Responsible | Prof. Marko Lindner |
Admission Requirements | None |
Recommended Previous Knowledge | Mathematics I - III |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 68, Study Time in Lecture 112 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min (Complex Functions) + 60 min (Differential Equations 2) |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory Electrical Engineering: Core Qualification: Compulsory General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Mechanical Engineering: Specialisation Mechatronics: Compulsory Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Elective Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory |
Course L1043: Differential Equations 2 (Partial Differential Equations) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content |
Main features of the theory and numerical treatment of partial differential equations
|
Literature |
|
Course L1044: Differential Equations 2 (Partial Differential Equations) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1045: Differential Equations 2 (Partial Differential Equations) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1038: Complex Functions |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content |
Main features of complex analysis
|
Literature |
|
Course L1041: Complex Functions |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1042: Complex Functions |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1340: Introduction to Waveguides, Antennas, and Electromagnetic Compatibility |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Schuster |
Admission Requirements | None |
Recommended Previous Knowledge | Basic principles of physics and electrical engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can explain the basic principles, relationships, and methods for the design of waveguides and antennas as well as of Electromagnetic Compatibility. Specific topics are: -
Fundamental properties and phenomena of electrical circuits |
Skills |
Students know how to
apply various methods and models for characterization and choice of waveguides and antennas. They are able to assess and qualify their basic electromagnetic properties. They can apply results and strategies from the field of Electromagnetic Compatibilty to the development of electrical components and systems. |
Personal Competence | |
Social Competence |
Students are able to work together on subject related tasks in small groups. They are able to present their results effectively in English (e.g. during small group exercises). |
Autonomy | Students are capable to gather information from subject related, professional publications and relate that information to the context of the lecture. They are able to make a connection between their knowledge obtained in this lecture with the content of other lectures (e.g. theory of electromagnetic fields, fundamentals of electrical engineering / physics). They can discuss technical problems and physical effects in English. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 45 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory |
Course L1669: Introduction to Waveguides, Antennas, and Electromagnetic Compatibility |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | SoSe |
Content |
This course is intended as an introduction to the topics of wave propagation, guiding, sending, and receiving as well as Electromagnetic Compatibility (EMC). It will be useful for engineers that face the technical challenge of transmitting high frequency / high bandwidth data in e.g. medical, automotive, or avionic applications. Both circuit and field concepts of wave propagation and Electromagnetic Compatibility will be introduced and discussed. Topics: - Fundamental properties and phenomena of electrical circuits |
Literature |
- Zinke, Brunswig, "Hochfrequenztechnik 1", Springer (1999) - J. Detlefsen, U. Siart, "Grundlagen der Hochfrequenztechnik", Oldenbourg (2012) - D. M. Pozar, "Microwave Engineering", Wiley (2011) - Y. Huang, K. Boyle, "Antenna: From Theory to Practice", Wiley (2008) - H. Ott, "Electromagnetic Compatibility Engineering", Wiley (2009) - A. Schwab, W. Kürner, "Elektromagnetische Verträglichkeit", Springer (2007) |
Course L1877: Introduction to Waveguides, Antennas, and Electromagnetic Compatibility |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1962: Basics space electronics and primary mission |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Ulf Kulau |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
Upon completion of the module, students will have learned fundamentals of space electronics. They also know how to plan primary missions and how to define subsystems to achieve this primary mission (requirements analysis, performance specification). They will be actively involved in missions and will be expected to put what they have learned into practice there. Additional soft skills in the area of general project management will be taught and applied through collaboration with the students.
|
Personal Competence | |
Social Competence |
The work takes place alternately in the entire group, but also in small groups. This requires close cooperation and coordination within the individual teams. The goal is for students to gain a sound knowledge of space electronics and space missions on the one hand, to apply this knowledge on the other hand and to generate sustainability of their results by working in small groups. This can be, for example, the passing on of the requirement and performance specifications, which act as a basis, starting point and result across semesters. |
Autonomy |
After completing the module, students will be able to independently plan and carry out scientific projects and processes. In group work, organization, idea generation, derivation of hypotheses and thought processes are to be independently moderated and carried out. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Report on achieved results |
Assignment for the Following Curricula |
Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory |
Course L3204: Basics space electronics and primary mission |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Ulf Kulau |
Language | DE/EN |
Cycle |
WiSe/ |
Content | |
Literature |
Module M1235: Electrical Power Systems I: Introduction to Electrical Power Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Becker |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of Electrical Engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to give an overview of conventional and modern electric power systems. They can explain in detail and critically evaluate technologies of electric power generation, transmission, storage, and distribution as well as integration of equipment into electric power systems. |
Skills |
With completion of this module the students are able to apply the acquired skills in applications of the design, integration, development of electric power systems and to assess the results. |
Personal Competence | |
Social Competence |
The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others. |
Autonomy |
Students can independently tap knowledge of the emphasis of the lectures. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 - 150 minutes |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Energy Systems: Specialisation Energy Systems: Elective Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Systems / Renewable Energies: Elective Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Mechatronics: Specialisation Electrical Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L1670: Electrical Power Systems I: Introduction to Electrical Power Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Springer Vieweg, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 7. Auflage, 2022 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Course L1671: Electrical Power Systems I: Introduction to Electrical Power Systems |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Springer Vieweg, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 7. Auflage, 2022 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Module M1802: Engineering Mechanics I (Stereostatics) |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Benedikt Kriegesmann |
Admission Requirements | None |
Recommended Previous Knowledge |
Solid school knowledge in mathematics and physics. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can
|
Skills |
The students can
|
Personal Competence | |
Social Competence |
The students can work in groups and support each other to overcome difficulties. |
Autonomy |
Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Data Science: Specialisation II. Application: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L1001: Engineering Mechanics I (Statics) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Benedikt Kriegesmann |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Course L1003: Engineering Mechanics I (Statics) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Benedikt Kriegesmann |
Language | DE |
Cycle | WiSe |
Content |
Forces and equilibrium Constraints and reactions Frames Center of mass Friction Internal forces and moments for beams |
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Course L1002: Engineering Mechanics I (Statics) |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Benedikt Kriegesmann |
Language | DE |
Cycle | WiSe |
Content |
Forces and equilibrium Constraints and reactions Frames Center of mass Friction Internal forces and moments for beams |
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Module M0568: Theoretical Electrical Engineering II: Time-Dependent Fields |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Schuster |
Admission Requirements | None |
Recommended Previous Knowledge |
Electrical Engineering I, Electrical Engineering II, Theoretical Electrical Engineering I Mathematics I, Mathematics II, Mathematics III, Mathematics IV |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to explain fundamental formulas, relations, and methods related to the theory of time-dependent electromagnetic fields. They can assess the principal behavior and characteristics of quasistationary and fully dynamic fields with regard to respective sources. They can describe the properties of complex electromagnetic fields by means of superposition of solutions for simple fields. The students are aware of applications for the theory of time-dependent electromagnetic fields and are able to explicate these. |
Skills |
Students are able to apply a variety of procedures in order to solve the diffusion and the wave equation for general time-dependent field problems. They can assess the principal effects of given time-dependent sources of fields and analyze these quantitatively. They can deduce meaningful quantities for the characterization of fully dynamic fields (wave impedance, skin depth, Poynting-vector, radiation resistance, etc.) from given fields and interpret them with regard to practical applications. |
Personal Competence | |
Social Competence |
Students are able to work together on subject related tasks in small groups. They are able to present their results effectively (e.g. during exercise sessions). |
Autonomy |
Students are capable to gather necessary information from provided references and relate this information to the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as short oral quizzes during the lectures and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between acquired knowledge and ongoing research at the Hamburg University of Technology (TUHH), e.g. in the area of high frequency engineering and optics. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90-150 minutes |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Electrical Engineering: Compulsory Engineering Science: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation Electrical Systems: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0182: Theoretical Electrical Engineering II: Time-Dependent Fields |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Christian Schuster |
Language | DE |
Cycle | WiSe |
Content |
- Theory and principal characteristics of quasistationary electromagnetic fields - Electromagnetic induction and law of induction - Skin effect and eddy currents - Shielding of time variable magnetic fields - Theory and principal characteristics of fully dynamic electromagnetic fields - Wave equations and properties of planar waves - Polarization and superposition of planar waves - Reflection and refraction of planar waves at boundary surfaces - Waveguide theory - Rectangular waveguide, planar optical waveguide - Elektrical and magnetical dipol radiation - Simple arrays of antennas The practical application of numerical methods will be trained within specifically prepared lectures in an interactive manner using small MATLAB programs. |
Literature |
- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010) - H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011) - W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011) - D. Griffiths, "Introduction to Electrodynamics", Pearson (2012) - J. Edminister, "Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013) - Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011) |
Course L0183: Theoretical Electrical Engineering II: Time-Dependent Fields |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Prof. Christian Schuster |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0662: Numerical Mathematics I |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Sabine Le Borne |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to
|
Skills |
Students are able to
|
Personal Competence | |
Social Competence |
Students are able to
|
Autonomy |
Students are capable
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 minutes |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Advanced Materials: Compulsory General Engineering Science (German program, 7 semester): Specialisation Data Science: Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Data Science: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Engineering Science: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Technology: Elective Compulsory Computer Science in Engineering: Core Qualification: Compulsory Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Compulsory Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Mechanical Engineering: Specialisation Mechatronics: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L0417: Numerical Mathematics I |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Sabine Le Borne |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0418: Numerical Mathematics I |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Sabine Le Borne, Dr. Jens-Peter Zemke |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0675: Introduction to Communications and Random Processes |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Gerhard Bauch |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students know and understand the fundamental building blocks of a communications system. They can describe and analyse the individual building blocks using knowledge of signal and system theory as well as the theory of stochastic processes. The are aware of the essential resources and evaluation criteria of information transmission and are able to design and evaluate a basic communications system. The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems. |
Skills | The students are able to design and evaluate a basic communications system. In particular, they can estimate the required resources in terms of bandwidth and power. They are able to assess essential evaluation parameters of a basic communications system such as bandwidth efficiency or bit error rate and to decide for a suitable transmission method. |
Personal Competence | |
Social Competence |
The students can jointly solve specific problems. |
Autonomy |
The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory Data Science: Specialisation I. Mathematics/Computer Science: Elective Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Information and Communication Systems: Elective Compulsory Computer Science in Engineering: Core Qualification: Compulsory Mechatronics: Specialisation Electrical Systems: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0442: Introduction to Communications and Random Processes |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Gerhard Bauch |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. M. Bossert: Einführung in die Nachrichtentechnik, Oldenbourg. J.G. Proakis, M. Salehi: Grundlagen der Kommunikationstechnik. Pearson Studium. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley J.G. Proakis, M. Salehi: Communication Systems Engineering. Prentice-Hall. J.G. Proakis, M. Salehi, G. Bauch, Contemporary Communication Systems. Cengage Learning. |
Course L0443: Introduction to Communications and Random Processes |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Gerhard Bauch |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2354: Introduction to Communications and Random Processes |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Gerhard Bauch |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0760: Electronic Devices |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Hoc Khiem Trieu | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Atomic model and quantum theory, electrical currents in solid state materials, basics in solid-state physics Successful participation of Physics for Engineers and Materials in Electrical Engineering or courses with equivalent contents |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able
|
||||||||
Skills |
Students are capable
|
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to prepare and perform their lab experiments in team work as well as to present and discuss the results in front of audience. |
||||||||
Autonomy | Students are capable to acquire knowledge based on literature in order to prepare their experiments. | ||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Electrical Engineering: Compulsory General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Mechatronics: Specialisation Electrical Systems: Compulsory |
Course L0720: Electronic Devices |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Hoc Khiem Trieu |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
S.M. Sze: Semiconductor devices, Physics and Technology, John Wiley & Sons (1985)F. Thuselt: Physik der Halbleiterbauelemente, Springer (2011) T. Thille, D. Schmitt-Landsiedel: Mikroelektronik, Halbleiterbauelemente und deren Anwendung in elektronischen Schaltungen, Springer (2004) B.L. Anderson, R.L. Anderson: Fundamentals of Semiconductor Devices, McGraw-Hill (2005) D.A. Neamen: Semiconductor Physics and Devices, McGraw-Hill (2011) M. Shur: Introduction to Electronic Devices, John Wiley & Sons (1996) S.M. Sze: Physics of semiconductor devices, John Wiley & Sons (2007) H. Schaumburg: Halbleiter, B.G. Teubner (1991) A. Möschwitzer: Grundlagen der Halbleiter-&Mikroelektronik, Bd1 Elektronische Halbleiterbauelemente, Carl Hanser (1992) H.-G. Unger, W. Schultz, G. Weinhausen: Elektronische Bauelemente und Netzwerke I, Physikalische Grundlagen der Halbleiterbauelemente, Vieweg (1985) |
Course L0721: Electronic Devices |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Hoc Khiem Trieu |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0833: Introduction to Control Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Timm Faulwasser |
Admission Requirements | None |
Recommended Previous Knowledge |
Representation of signals and systems in time and frequency domain, Laplace transform |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence | Students can work in small groups to jointly solve technical problems, and experimentally validate their controller designs |
Autonomy |
Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems. They can assess their knowledge in weekly on-line tests and thereby control their learning progress. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Data Science: Specialisation II. Application: Elective Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Logistics and Mobility: Specialisation Information Technology: Elective Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation II. Information Technology: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation II. Traffic Planning and Systems: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation II. Production Management and Processes: Elective Compulsory |
Course L0654: Introduction to Control Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Timm Faulwasser |
Language | DE |
Cycle | WiSe |
Content |
Signals and systems
Feedback systems
Root locus techniques
Frequency response techniques
Time delay systems
Digital control
Software tools
|
Literature |
|
Course L0655: Introduction to Control Systems |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Timm Faulwasser |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0834: Computernetworks and Internet Security |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Andreas Timm-Giel |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic of Computer Science |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
In this course, an introduction to computer networks with focus on the Internet and its security is given. Basic functionality of complex protocols are introduced. Students learn to understand these and identify common principles. In the exercises and lecture discussions, these basic principles and an introduction to performance modelling are addressed using exercises, homework assignments and labs. This comprises of:
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Elective Compulsory Computer Science: Core Qualification: Compulsory Data Science: Specialisation I. Mathematics/Computer Science: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Engineering Science: Specialisation Mechatronics: Elective Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Engineering Science: Specialisation Information and Communication Systems: Compulsory General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Elective Compulsory Computer Science in Engineering: Core Qualification: Compulsory Technomathematics: Specialisation II. Informatics: Elective Compulsory |
Course L1098: Computer Networks and Internet Security |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Dr. Koojana Kuladinithi, Prof. Sibylle Fröschle |
Language | EN |
Cycle | WiSe |
Content |
In this class an introduction to computer networks with focus on the Internet and its security is given. Basic functionality of complex protocols are introduced. Students learn to understand these and identify common principles. In the exercises these basic principles and an introduction to performance modelling are addressed using computing tasks and physical labs. In the second part of the lecture an introduction to Internet security is given. This class comprises:
|
Literature |
Further literature is announced at the beginning of the lecture. |
Course L1099: Computer Networks and Internet Security |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Koojana Kuladinithi, Prof. Sibylle Fröschle |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0634: Introduction into Medical Technology and Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Alexander Schlaefer | ||||||||||||
Admission Requirements | None | ||||||||||||
Recommended Previous Knowledge |
principles of math (algebra, analysis/calculus) |
||||||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||||||
Professional Competence | |||||||||||||
Knowledge |
The students can explain principles of medical technology, including imaging systems, computer aided surgery, and medical information systems. They are able to give an overview of regulatory affairs and standards in medical technology. |
||||||||||||
Skills |
The students are able to evaluate systems and medical devices in the context of clinical applications. |
||||||||||||
Personal Competence | |||||||||||||
Social Competence |
The students describe a problem in medical technology
as a project, and define tasks that are solved in a joint effort. |
||||||||||||
Autonomy |
The students can assess their level of knowledge and document their work results. They can critically evaluate the results achieved and present them in an appropriate manner. |
||||||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||||||
Credit points | 6 | ||||||||||||
Course achievement |
|
||||||||||||
Examination | Written exam | ||||||||||||
Examination duration and scale | 90 minutes | ||||||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory Data Science: Specialisation II. Application: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Engineering Science: Specialisation Biomedical Engineering: Compulsory General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory International Management and Engineering: Specialisation II. Medical Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Medical Engineering: Elective Compulsory Mechatronics: Specialisation Medical Engineering: Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0342: Introduction into Medical Technology and Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Schlaefer |
Language | DE |
Cycle | SoSe |
Content |
- imaging systems |
Literature |
Bernhard Priem, "Visual Computing for Medicine", 2014 |
Course L0343: Introduction into Medical Technology and Systems |
Typ | Project Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Schlaefer |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1876: Introduction into Medical Technology and Systems |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Alexander Schlaefer |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1803: Engineering Mechanics II (Elastostatics) |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Christian Cyron |
Admission Requirements | None |
Recommended Previous Knowledge |
Engineering Mechanics I, Mathematics I (basic knowledge of rigid body mechanics such as balance of linear and angular momentum, basic knowledge of linear algebra like vector-matrix calculus, basic knowledge of analysis such as differential and integral calculus) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Having accomplished this module, the students know and understand the basic concepts of continuum mechanics and elastostatics, in particular stress, strain, constitutive laws, stretching, bending, torsion, failure analysis, energy methods and stability of structures. |
Skills |
Having accomplished this module, the students are able to |
Personal Competence | |
Social Competence | Ability to communicate complex problems in elastostatics, to work out solution to these problems together with others, and to communicate these solutions. |
Autonomy | Self-discipline and endurance in tackling independently complex challenges in elastostatics; ability to learn also very abstract knowledge. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L0494: Engineering Mechanics II (Group Exercise) |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron, Dr. Kevin Linka |
Language | DE |
Cycle | SoSe |
Content |
The lecture Engineering Mechanics II introduces the fundamental concepts of stress and strain and explains how these can be used to characterize and compute elastic deformations of mechanical bodies under loading. The focus of the lecture lies on:
|
Literature |
|
Course L1691: Engineering Mechanics II (Plenary Exercise) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron, Martin Legeland |
Language | DE |
Cycle | SoSe |
Content |
The lecture Engineering Mechanics II introduces the fundamental concepts of stress and strain and explains how these can be used to characterize and compute elastic deformations of mechanical bodies under loading. The focus of the lecture lies on:
|
Literature |
|
Course L0493: Engineering Mechanics II (Lecture) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron |
Language | DE |
Cycle | SoSe |
Content |
The lecture Engineering Mechanics II introduces the fundamental concepts of stress and strain and explains how these can be used to characterize and compute elastic deformations of mechanical bodies under loading. The focus of the lecture lies on:
|
Literature |
|
Module M0777: Semiconductor Circuit Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | NN |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of electrical engineering Basics of physics, especially semiconductor physics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Electrical Engineering: Compulsory Engineering Science: Specialisation Mechatronics: Compulsory Engineering Science: Specialisation Mechatronics: Elective Compulsory General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Mechanical Engineering: Specialisation Mechatronics: Compulsory Mechatronics: Specialisation Electrical Systems: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0763: Semiconductor Circuit Design |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | NN |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496 R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867 URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499 URL: http://dx.doi.org/10.1007/978-3-642-20887-4 URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955 URL: http://www.ciando.com/img/bo |
Course L0864: Semiconductor Circuit Design |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | NN, Weitere Mitarbeiter |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496 R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867 URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499 URL: http://dx.doi.org/10.1007/978-3-642-20887-4 URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955 URL: http://www.ciando.com/img/bo |
Module M0803: Embedded Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Heiko Falk | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Computer Engineering | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Embedded systems can be defined as information processing systems embedded into enclosing products. This course teaches the foundations of such systems. In particular, it deals with an introduction into these systems (notions, common characteristics) and their specification languages (models of computation, hierarchical automata, specification of distributed systems, task graphs, specification of real-time applications, translations between different models). Another part covers the hardware of embedded systems: Sonsors, A/D and D/A converters, real-time capable communication hardware, embedded processors, memories, energy dissipation, reconfigurable logic and actuators. The course also features an introduction into real-time operating systems, middleware and real-time scheduling. Finally, the implementation of embedded systems using hardware/software co-design (hardware/software partitioning, high-level transformations of specifications, energy-efficient realizations, compilers for embedded processors) is covered. |
||||||||
Skills |
After having attended the course, students shall be able to realize simple embedded systems. The students shall realize which relevant parts of technological competences to use in order to obtain a functional embedded systems. In particular, they shall be able to compare different models of computations and feasible techniques for system-level design. They shall be able to judge in which areas of embedded system design specific risks exist. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to solve similar problems alone or in a group and to present the results accordingly. |
||||||||
Autonomy |
Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 minutes, contents of course and labs | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Engineering Science: Specialisation Information and Communication Systems: Compulsory Engineering Science: Specialisation Mechatronics: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Elective Compulsory Computer Science in Engineering: Core Qualification: Compulsory Aeronautics: Core Qualification: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Mechatronics: Specialisation Naval Engineering: Compulsory Mechatronics: Specialisation Electrical Systems: Compulsory Mechatronics: Specialisation Dynamic Systems and AI: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory Mechatronics: Specialisation Medical Engineering: Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory |
Course L0805: Embedded Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Heiko Falk |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L2938: Embedded Systems |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Heiko Falk |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0806: Embedded Systems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Heiko Falk |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Thesis
Module M-001: Bachelor Thesis |
||||
Courses | ||||
|
Module Responsible | Professoren der TUHH |
Admission Requirements |
|
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 360, Study Time in Lecture 0 |
Credit points | 12 |
Course achievement | None |
Examination | Thesis |
Examination duration and scale | According to General Regulations |
Assignment for the Following Curricula |
General Engineering Science (German program): Thesis: Compulsory General Engineering Science (German program, 7 semester): Thesis: Compulsory Civil- and Environmental Engineering: Thesis: Compulsory Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Data Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Engineering Science: Thesis: Compulsory General Engineering Science (English program): Thesis: Compulsory General Engineering Science (English program, 7 semester): Thesis: Compulsory Green Technologies: Energy, Water, Climate: Thesis: Compulsory Computer Science in Engineering: Thesis: Compulsory Logistics and Mobility: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechatronics: Thesis: Compulsory Naval Architecture: Thesis: Compulsory Technomathematics: Thesis: Compulsory Teilstudiengang Lehramt Metalltechnik: Thesis: Compulsory Process Engineering: Thesis: Compulsory Engineering and Management - Major in Logistics and Mobility: Thesis: Compulsory |