Studiengangsbeschreibung
Inhalt
Die Elektroindustrie ist nach dem Maschinenbau gemessen an den Beschäftigtenzahlen die zweitgrößte Industriebranche der BRD. Mit ca. 847.000 Beschäftigten wird dabei ein Umsatz von ca. 179 Milliarden Euro erzielt (bezogen auf das Jahr 2016, Quelle: de.statista.com). Die Elektrotechnik ist damit nicht nur eine der „klassischen Ingenieurwissenschaften“ sondern auch einer der wesentlichen Motoren des nationalen und internationalen technischen Fortschritts in den letzten Jahrzehnten.
Die Elektrotechnik beschäftigt sich ingenieurwissenschaftlich mit der Forschung, Entwicklung und ganz allgemein der Anwendung von elektrischen Signalen, elektrischer Energie und elektromagnetischen Feldern in entsprechenden Bauteilen und Schaltkreisen.
Auf Grund der weit verzweigten Anwendungsfelder ist im Beruf ein hohes Maß an Spezialisierung erforderlich. Als Konsequenz steht die Berufsausbildung des Elektroingenieurs im Spannungsfeld zwischen Breite der Ausbildung (für möglichst vielfältige spätere Verwendungsmöglichkeiten) und Tiefe der Ausbildung (für aktuelle, fachspezifische Kompetenzen). Im Rahmen der konsekutiven Bachelor-/Masterstudiengänge Elektrotechnik an der TUHH wird die Breite des Fachgebietes vor allem während des Bachelorstudiums vermittelt und im Masterstudium werden Schwerpunkte vertieft. Das Bachelorstudium vermittelt die für die Lösung elektrotechnischer und informationstechnischer Aufgaben erforderlichen Grundlagen aus der Elektrotechnik, Informationstechnik, Informatik sowie der Mathematik und Physik. Ergänzend zu dem fachlichen Grundlagenkanon wird eine Ausbildung in nicht-technischen Bereichen wie Betriebswirtschaftslehre, Patentwesen, Management, Geisteswissenschaften, sowie Recht und Philosophie angestrebt, die den modernen Berufsanforderungen an einen Ingenieur gerecht wird.
Ergänzend zu dem fachlichen Grundlagenkanon an der TUHH sind Seminare zur Personalen Kompetenzentwicklung im Rahmen des Theorie-Praxis-Transfers in das duale Studium integriert, die den modernen Berufsanforderungen an eine Ingenieurin bzw. einen Ingenieur gerecht werden und die Verknüpfung der beiden Lernorte unterstützt.
Die praxisintegrierenden dualen Intensivstudiengänge der TUHH bestehen aus einem wissenschaftsorientierten und einem praxisorientierten Teil, welche an zwei Lernorten durchgeführt werden. Der wissenschaftsorientierte Teil umfasst das Studium an der TUHH. Der praxisorientierte Teil ist mit dem Studium inhaltlich und zeitlich abgestimmt und findet jeweils in der vorlesungsfreien Zeit in einem Kooperationsunternehmen in Form von Praxismodulen und -phasen statt.
Berufliche Perspektiven
Ein erfolgreicher Abschluss des Bachelorstudiengangs Elektrotechnik ermöglicht neben der Aufnahme eines wissenschaftlich vertiefenden Masterstudiums einen frühen Berufseinstieg in die typischen Tätigkeitsfelder der Elektrotechnik. Dazu gehören die Nachrichten- und Kommunikationstechnik, die Mess-, Steuer- und Regelungstechnik, die Mikrosystemtechnik und Nanoelektronik, die elektrische Energietechnik, die Hochfrequenztechnik und optische Systeme.
Die Ingenieure und Ingenieurinnen der Elektrotechnik gehören zu den meistgefragten Akademikern bzw. Akademikerinnen auf dem Arbeitsmarkt. Eine aktuelle Auswertung der Daten der Bundesagentur für Arbeit belegt den steigenden Bedarf (Bundesagentur für Arbeit: "Berichte: Blickpunkt Arbeitsmarkt - Ingenieurinnen und Ingenieure", Nürnberg, 2018). Während die Zahl der gemeldeten Arbeitslosen weiter kontinuierlich sinkt, erhöht sich gleichzeitig die Anzahl der gemeldeten offenen Stellen deutlich. Dabei wird wohl nur ein Bruchteil der ausgeschriebenen Stellen der Bundesagentur für Arbeit gemeldet, so dass das Angebot an Stellen aktuell die Nachfrage übersteigen dürfte. Somit kann die Nachfrage nach Ingenieuren und Ingenieurinnen der Elektrotechnik - v.a. in den alten Bundesländern inkl. Hamburg - wie schon in den vergangenen Jahren nicht befriedigt werden („Fachkräftemangel“).
Zudem erlangen die Studentinnen und Studenten grundlegende fachliche und personale Kompetenzen im dualen Studium, die sowohl zu einem frühen Einstieg in die Berufspraxis als auch zu einem wissenschaftlich vertiefenden Studium befähigen. Darüber hinaus werden berufspraktische Erfahrungen durch die integrierten Praxismodule erweitert. Die Absolventinnen und Absolventen des dualen Studiengangs verfügen über ein breites Grundlagenwissen, grundlegende Fähigkeiten des wissenschaftlichen Arbeitens und über anwendungsbezogene personale Kompetenzen.
Lernziele
Die gewünschten Lernergebnisse des Studienganges richten sich nach den oben aufgeführten Zielsetzungen. Im Zentrum steht dabei, die Absolventinnen und Absolventen zu befähigen, eine Ingenieurstätigkeit in den verschiedenen Tätigkeitsfeldern der Elektrotechnik verantwortungsvoll und kompetent ausüben zu können. Die Lernziele sind im Folgenden eingeteilt in die Kategorien Wissen, Fertigkeiten, Sozialkompetenz und Selbstständigkeit.
Wissen
- Die Studierenden können die mathematisch‐naturwissenschaftlichen Grundlagen und Methoden der Ingenieurwissenschaften benennen und beschreiben. Dazu gehören insbesondere Elemente der höheren Analysis und linearen Algebra sowie der Physik.
- Die Studierenden können die Grundlagen und Methoden der Elektro‐ und Informationstechnik erläutern und können einen Überblick über ihr Fach geben. Von besonderer Bedeutung sind dabei die Gleich- und Wechselstromlehre, die Schaltungstechnik, die Theorie elektromagnetischer Felder und Wellen, die Werkstoffe und Bauelemente der Elektrotechnik sowie die Systemtheorie mit ihren jeweiligen Methoden.
- Die Studierenden können die Grundlagen, Methoden und Anwendungsgebiete der Teildisziplinen der Elektrotechnik im Detail erklären. Wichtige Teildisziplinen sind dabei die elektrische Energietechnik, die Nachrichtentechnik, die Schaltungstechnik, die Messtechnik und die Regelungstechnik.
- Die Studierenden können die Grundlagen und Methoden der Wirtschaftswissenschaften wiedergeben und können einen Überblick über die relevanten sozialen, ethischen, ökologischen und ökonomischen Randbedingungen ihres Faches geben.
Fertigkeiten
- Die Studierenden können Aufgabenstellungen aus den Gebieten der Analysis, der linearen Algebra, der Funktionentheorie und der Theorie der Differentialgleichungen mit den erlernten Methoden lösen.
- Die Studierenden können das Strom- und Spannungsverhalten in elektrischen Netzwerken beurteilen, einfache Schaltungen dimensionieren, sowie im Zeit- als auch im Frequenzbereich Netzwerke analysieren. Sie können Halbleiterbauelemente wie Transistoren und Dioden sowie Operationsverstärker in ihren Anwendungsbereichen einsetzen. Sie können elektrische Energieversorgungssysteme in Grundzügen planen sowie das Betriebsverhalten elektrischer Maschinen analysieren und typische Größen berechnen. Sie sind in der Lage, messtechnische Fragestellungen zu klären und Methoden zur Beschreibung und Verarbeitung von Messdaten anzuwenden.
- Die Studierenden können einfache Algorithmen modellieren, programmieren und anpassen. Sie können Software entwerfen, testen und deren Komplexität abschätzen. Sie sind in der Lage, die unterschiedlichen Abstraktionsebenen heutiger Rechensysteme zu unterscheiden.
- Die Studierenden können unterschiedliche Verfahren zur Lösung der Maxwellgleichungen für elektromagnetische Feldprobleme anwenden. Sie können typische Größen aus den Feldern ableiten und für die Anwendung in der Praxis dimensionieren.
- Die Studierenden können lineare, zeitinvariante Systeme mit den Methoden der Signal- und Systemtheorie beschreiben und analysieren. Sie sind in der Lage, einfache nachrichtentechnische und regelungstechnische System zu entwerfen und zu beurteilen.
- Die Studierenden können ganz allgemein typische Problemstellungen auf ihr Grundlagenwissen abbilden, geeignete Lösungsmethoden finden und umsetzen. Sie können den eingeschlagenen Lösungsweg geeignet schriftlich dokumentieren und einer Zuhörerschaft klar strukturiert präsentieren.
- Die Studierenden können Fragestellungen aus der Forschung unter Verwendung geeigneter Methoden eigenverantwortlich bearbeiten, ihren eingeschlagenen Lösungsweg dokumentieren und vor einem fachkundigen Publikum präsentieren.
Sozialkompetenz
- Die Studierenden sind in der Lage, Vorgehensweise und Ergebnisse ihrer Arbeit schriftlich und mündlich verständlich darzustellen.
- Die Studierenden können über Inhalte und Probleme der Elektrotechnik mit Fachleuten und Laien kommunizieren. Sie können auf Nachfragen, Ergänzungen und Kommentare geeignet reagieren.
- Die Studierenden sind in der Lage in Gruppen zu arbeiten. Sie können Teilaufgaben definieren, verteilen und integrieren. Sie können zeitliche Vereinbarungen treffen und sozial interagieren.
Kompetenz zum selbständigen Arbeiten
- Die Studierenden sind in der Lage, notwendige fachliche Informationen zu beschaffen und in den Kontext ihres Wissens zu setzen.
- Die Studierenden können ihre vorhandenen Kompetenzen realistisch einschätzen und Defizite selbstständig aufarbeiten.
- Die Studierenden können selbstorganisiert und -motiviert Themenkomplexe erlernen und Problemstellungen bearbeiten (lebenslanges Lernen).
Der kontinuierliche Wechsel der Lernorte im dualen Studium ermöglicht es, dass Theorie und Praxis zueinander in Beziehung gesetzt werden können. Die individuellen berufspraktischen Erfahrungen werden von den Studierenden theoretisch reflektiert und in neue Formen der Praxis überführt, wie auch die praktische Erprobung theoretischer Elemente als Anregung für die theoretische Auseinandersetzung genutzt wird.
Studiengangsstruktur
Das Curriculum des Bachelorstudiengangs Elektrotechnik ist wie folgt gegliedert:
- Kernqualifikation - Pflicht: 29 Module, 174 Leistungspunkte (LP), 1. - 6. Semester inkl. der Praxisphasen im dualen Studium (30 LP)
- Kernqualifikation - Wahlpflicht: 4 Module, 24 LP, 4., 5. und 6. Semester
- Bachelorarbeit: 12 LP, 6. Semester im Lernort Kooperationsunternehmen
Insgesamt ergeben sich als Arbeitsaufwand für das Bachelorstudium 210 LP, wobei sich als Semesteraufteilung 36/34/38/36/36/36 LP ergibt.
Die Kernqualifikation beinhaltet neben den Fachmodulen auch folgende überfachliche Module:
- Grundlagen der Betriebswirtschaftslehre: 6 LP, 1. Semester
- Theorie-Praxis-Verzahnung im Bachelor: 6 LP, 1. - 6. Semester
Das Strukturmodell der dualen Studienvariante folgt einem moduldifferenzierenden Ansatz. Aufgrund des praxisorientierten Teils weist das Curriculum der dualen Studienvariante Unterschiede im Vergleich zum regulären Bachelorstudium auf. Die fünf Praxismodule sind in entsprechenden Praxisphasen in der vorlesungsfreien Zeit verortet und finden im Kooperationsunternehmen der dual Studierenden statt.
Fachmodule der Kernqualifikation
Modul M0642: Physik für Ingenieure |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Manfred Eich | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können physikalische Grundbegriffe sowie grundlegende Gesetzmäßigkeiten
|
||||||||
Fertigkeiten |
Studierende können physikalische Problemstellungen mathematisch beschreiben und im Rahmen der bereits Studierende können experimentelle Resultate in Versuchsdokumentationen |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können in Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse |
||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu stellen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen wie klausurnahe Aufgaben effektiv überprüfen. Sie können ihr Wissen mit den Inhalten anderer Lehrveranstaltungen verknüpfen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Digitaler Maschinenbau: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0367: Physik für Ingenieure |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Manfred Eich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0368: Physik für Ingenieure (Übung) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Manfred Eich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | siehe Vorlesung Physik für Ingenieure |
Literatur |
see lecture Physics for Engineers |
Lehrveranstaltung L0948: Physik-Praktikum für ET |
Typ | Laborpraktikum |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Wolfgang Hansen |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Im Physikpraktikum wird eine Reihe von Experimenten zu physikalischen Phänomenen aus der Mechanik, dem Gebiet der Schwingungen und Wellen, der Thermodynamik, der Elektrizitätslehre und der Optik unter Anleitung einer Lehrperson durchgeführt. Die Experimente sind Teil der Physikausbildung im Rahmen der Vorlesung "Physik für TUHH-ET Ingenieure". Über die Vermittlung grundlegender physikalischer Zusammenhänge hinaus sollen Fertigkeiten zur Vorbereitung und Durchführung von Messungen physikalischer Größen, der Gebrauch von physikalischen Messgeräten, die Analyse der Resultate und die Erstellung eines Berichts über die Messergebnisse erworben werden. |
Literatur |
Zu den Versuchen gibt es individuelle Versuchsanleitungen, die vor der Versuchsdurchführung ausgegeben werden. Zum Teil müssen die zur Versuchsdurchführung notwendigen physikalischen Hintergründe selbstständig erarbeitet werden, wozu die zur Vorlesung "Physik für TUHH-ET Ingenieure" angegebene Literatur gut geeignet ist. |
Modul M0743: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Matthias Kuhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die grundlegenden Theorien, Zusammenhänge und Methoden der Gleichstromnetzwerke, sowie elektrischer und magnetischer Felder. Hierzu gehören insbesondere:
|
Fertigkeiten |
Die Studierenden können die Beziehungen zwischen Strömen und Spannungen in einfachen Gleichstromnetzwerken aufstellen, die Größen berechnen und Schaltungen dimensionieren. Sie können die Grundgesetze des elektrischen und magnetischen Felds anwenden und die Beziehung zwischen Feldgrößen aufstellen und auswerten. Widerstände, Kapazitäten und Induktivitäten einfacher Anordnungen können berechnet werden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, fachspezifische Aufgaben alleine oder in einer Gruppe zu bearbeiten. Sie können Konzepte erklären und anhand von Beispielen das eigene oder das Verständnis anderer überprüfen und vertiefen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, sich Teilbereiche des Fachgebietes anhand der Grundlagenliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. Die Studierenden entwickeln die Ausdauer, um auch schwierigere Problemstellungen zu bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 100 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Integrierte Gebäudetechnik: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0675: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Matthias Kuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0676: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder |
Typ | Gruppenübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Matthias Kuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1692: Informatik für Ingenieure - Einführung & Überblick |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Görschwin Fey | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Elementare Kenntnisse im Programmieren, wie sie der Brückenkurs "Einführung in das Programmieren" oder die Schule vermittelt. |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Das Module liefert angehenden Ingenieuren einen Überblick über die Informatik als Fachdisziplin und über die Grundlagen des Programmierens. Ziel ist, den Austausch zwischen Ingenieuren und Informatikern zu erleichtern, sowie Möglichkeiten und Limitierung programmierbarer Systeme aufzuzeigen. Es werden grundlegende Kenntnisse vermittelt über
|
||||||||
Fertigkeiten |
Es werden grundlegende Fertigkeiten zur Programmierung erlernt. Studierende können
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende können in kleinen fachlich gemischten Projektteams Informatik-Lösungen entwickeln und kommunizieren. |
||||||||
Selbstständigkeit |
Studierende können selbständig kleine Programme zur Lösung einfacher Problemstellungen entwerfen und deren Korrektheit validieren. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Integrierte Gebäudetechnik: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2685: Informatik für Ingenieure - Einführung & Überblick |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2686: Informatik für Ingenieure - Einführung & Überblick |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0829: Grundlagen der Betriebswirtschaftslehre |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christoph Ihl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulkenntnisse in Mathematik und Wirtschaft |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können...
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage
|
Selbstständigkeit |
Die Studierenden sind in der Lage
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | mehrere schriftliche Leistungen über das Semester verteilt |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Wasser und Umwelt: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Verkehr und Mobilität: Wahlpflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Integrierte Gebäudetechnik: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L0882: Betriebswirtschaftliche Übung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christoph Ihl, Katharina Roedelius |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
In der betriebswirtschaftlichen Horsaalübung werden die Inhalte der Vorlesung durch praktische Beispiele und die Anwendung der diskutierten Werkzeuge vertieft. Bei angemessener Nachfrage wird parallel auch eine Problemorientierte Lehrveranstaltung angeboten, die Studierende alternativ wählen können. Hier bearbeiten die Studierenden in Gruppen ein selbstgewähltes Projekt, das sich thematisch mit der Ausarbeitung einer innovativen Geschäftsidee aus Sicht eines etablierten Unternehmens oder Startups befasst. Auch hier sollen die betriebswirtschaftlichen Grundkenntnisse aus der Vorlesung zum praktischen Einsatz kommen. Die Gruppenarbeit erfolgt unter Anleitung eines Mentors. |
Literatur | Relevante Literatur aus der korrespondierenden Vorlesung. |
Lehrveranstaltung L0880: Grundlagen der Betriebswirtschaftslehre |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Christoph Ihl, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Cornelius Herstatt, Prof. Kathrin Fischer, Prof. Matthias Meyer, Prof. Thomas Wrona, Prof. Thorsten Blecker, Prof. Wolfgang Kersten |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Neben der Vorlesung, die die Fachinhalte vermittelt, erarbeiten die Studierenden selbstständig in Gruppen einen Business-Plan für ein Gründungsprojekt. Dafür wird auch das wissenschaftliche Arbeiten und Schreiben gezielt unterstützt. |
Literatur |
Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008 Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003 Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006. Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001. Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008. Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005. Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008. Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. |
Modul M0850: Mathematik I |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Schulmathematik | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
|
||||||||
Fertigkeiten |
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
|
||||||||
Selbstständigkeit |
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 | ||||||||
Leistungspunkte | 8 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Digitaler Maschinenbau: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Integrierte Gebäudetechnik: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2970: Mathematik I |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Mathematische Grundlagen:
Analysis: Grundzüge der Differential- und Integralrechnung einer Variablen
Lineare Algebra: Grundzüge der Linearen Algebra im Rn
|
Literatur |
|
Lehrveranstaltung L2971: Mathematik I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz, Dr. Dennis Clemens, Dr. Simon Campese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2972: Mathematik I |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1755: Theorie-Praxis-Verzahnung im dualen Bachelor |
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die dual Studierenden können ausgewählte klassische und moderne Theorien, Konzepte und Methoden ...
... beschreiben, einordnen sowie auf konkrete Situationen, Projekte und Vorhaben in Ihrem persönlichen und beruflichen Kontext anwenden. |
Fertigkeiten |
Die dual Studierenden ...
|
Personale Kompetenzen | |
Sozialkompetenz |
Die dual Studierenden ...
|
Selbstständigkeit |
Die dual Studierenden ...
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine fortlaufende Dokumentation und Reflexion der Lernerfahrungen und der Kompetenzentwicklung im Bereich der Personalen Kompetenz. |
Lehrveranstaltung L2885: Selbstkompetenzen für den beruflichen Erfolg im Ingenieurbereich (duale Studienvariante) |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Henning Haschke, Heiko Sieben |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur | Seminarapparat |
Lehrveranstaltung L2884: Selbstmanagement, Arbeits- und Lernorganisation im dualen Studium (duale Studienvariante) |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Henning Haschke, Heiko Sieben |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur | Seminarapparat |
Lehrveranstaltung L2886: Sozialkompetenz: Teamentwicklung und Kommunikation im Ingenieurbereich (duale Studienvariante) |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Henning Haschke, Heiko Sieben |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur | Seminarapparat |
Modul M1750: Praxismodul 1 im dualen Bachelor |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
LV A „Selbstmanagement, Arbeits- und Lernorganisation im dualen Studium“ aus dem Modul „Theorie-Praxis-Verzahnung im dualen Bachelor“. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die dual Studierenden …
|
Fertigkeiten |
Die dual Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die dual Studierenden …
|
Selbstständigkeit |
Die dual Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2879: Praxisphase 1 im dualen Bachelor |
Typ | |
SWS | 0 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M0547: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Becker | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Elektrotechnik I Mathematik I Gleichstromnetzwerke, komplexe Zahlen |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können die grundlegende Theorien, Zusammenhänge und Methoden der Wechselstromlehre erklären. Sie können das Verhalten von linearen Netzwerken mit Hilfe der komplexen Notation von Spannungen und Strömen beschreiben. Sie können einen Überblick über die Anwendungen der Wechselstromlehre im Bereich der elektrischen Energietechnik geben. Sie können das Verhalten einfacher passiver und aktiver Bauelemente sowie deren Anwendung in einfachen Schaltungen erläutern. |
||||||||
Fertigkeiten |
Die Studierenden können einfache Wechselstrom-Netzwerke mit Hilfe der komplexen Notation von Spannungen und Strömen berechnen. Sie können einschätzen, welche prinzipiellen Effekte in einem Wechselstrom-Netzwerk auftauchen können. Sie können einfache Schaltkreise wie Schwingkreise, Filter und Anpassnetzwerke quantitativ analysieren und dimensionieren. Sie können die wesentlichen Elemente eines elektrischen Energieversorgungssystems (Übertrager, Leitung, Blindleistungskompensation, Mehrphasensystem) in ihrer Sinnhaftigkeit begründen und in ihren Grundzügen planen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren. |
||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Online-Tests, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I und Mathematik) verknüpfen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 - 150 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Integrierte Gebäudetechnik: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0178: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
- Netzwerkverhalten bei allgemeinen Zeitabhängigkeiten - Darstellung und Eigenschaften von Sinussignalen - RLC-Elemente bei Wechselstrom/Wechselspannung - RLC-Elemente in komplexer Darstellung - Leistung in Wechselstrom-Netzwerken, Blindleistungskompensation - Ortskurven und Bode-Diagramme - Wechselstrommesstechnik - Schwingkreise, Filter, elektrische Leitungen - Übertrager, Drehstrom, Energiewandler - Einfache nichtlineare und aktive Bauelemente |
Literatur |
- M. Albach, "Elektrotechnik", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010) - C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013) - R. Dorf, "The Electrical Engineering Handbook", CRC (2006) |
Lehrveranstaltung L0179: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente |
Typ | Gruppenübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
- Netzwerkverhalten bei allgemeinen Zeitabhängigkeiten - Darstellung und Eigenschaften von Sinussignalen - RLC-Elemente bei Wechselstrom/Wechselspannung - RLC-Elemente in komplexer Darstellung - Leistung in Wechselstrom-Netzwerken, Blindleistungskompensation - Ortskurven und Bode-Diagramme - Wechselstrommesstechnik - Schwingkreise, Filter, elektrische Leitungen - Übertrager, Drehstrom, Energiewandler - Einfache nichtlineare und aktive Bauelemente |
Literatur |
- M. Albach, "Elektrotechnik", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010) - C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013) - R. Dorf, "The Electrical Engineering Handbook", CRC (2006) |
Modul M0748: Werkstoffe der Elektrotechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Manfred Eich |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Physik und Mathematik auf Abiturniveau |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Aufbau und strukturelle Eigenschaften der in der Elektrotechnik eingesetzten Werkstoffe erklären. Sie können die Relevanz der mechanischen, elektrischen, thermischen, dielektrischen, magnetischen und chemischen Eigenschaften von Werkstoffen mit Bezug auf die Anwendungen in der Elektrotechnik erläutern. |
Fertigkeiten |
Die Studierenden können geeignete Beschreibungsmodelle identifizieren, diese mathematisch anwenden, Näherungslösungen ableiten und Einflussfaktoren auf die Performance von Materialien in elektrotechnischen Anwendungen einschätzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Übungen). |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu stellen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen wie klausurnahe Aufgaben effektiv überprüfen. Sie können ihr Wissen mit den Inhalten anderer Lehrveranstaltungen verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0714: Demonstration elektrotechnischer Experimente |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Helge Fielitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Themenschwerpunkte: - Spannungen natürlichen Ursprungs - Oszilloskop - Charakterisierung von Signalen - 2-Pole - 4-Pole - Leistung - Anpassung - Induktive Kopplung - Resonanz - HF-Technik - Transistorschaltungen - Messtechnik - Materialien für die ET - Alles, was Spass macht |
Literatur |
Tietze, Schenk: "Halbleiterschaltungstechnik", Springer |
Lehrveranstaltung L0685: Werkstoffe der Elektrotechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Manfred Eich |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
The Hamiltonian approach to classical mechanics. Analysis of a simple oscillator. |
Literatur |
1.Anikeeva, Beach, Holten-Andersen, Fink, Electronic, Optical and Magnetic Properties
of Materials, 2.Hagelstein et al., Introductory Applied Quantum and Statistical Mechanics, Wiley 2004 3.Griffiths, Introduction to Quantum Mechanics, Prentice Hall, 1994 4.Shankar, Principles of Quantum Mechanics, 2nd ed., Plenum Press, 1994 5.Fick, Einführung in die Grundlagen der Quantentheorie, Akad. Verlagsges., 1979 6.Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2004 7.Ashcroft, Mermin, Solid State Physics, Harcourt, 1976 8.Pierret, Semiconductor Fundamentals Vol. 1, Addison Wesley, 1988 9.Sze, Physics of Semiconductor Devices, Wiley, 1981 10.Saleh, Teich, Fundamentals of Photonics, 2nd ed., 2007 11.Joannopoulos, Johnson, Winn Meade, Photonic Crystals, 2nd ed., Princeton Universty Press, 2008 12.Handley, Modern Magnetic Materials, Wiley, 2000 13.Wikipedia, Wikimedia |
Lehrveranstaltung L0687: Werkstoffe der Elektrotechnik (Übung) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Manfred Eich |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
H. Schaumburg: Einführung in die Werkstoffe der Elektrotechnik, Teubner (1993) |
Modul M1693: Informatik für Ingenieure - Programmierkonzepte, Data Handling & Kommunikation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Fröschle | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | |||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende verfügen über Grundkenntnisse in folgenden Bereichen
|
||||||||
Fertigkeiten |
Studierende verfügen über grundlegende Fertigkeiten in folgenden Bereichen
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende können grundlegende Werkzeuge zur Datenverarbeitung beschreiben und charakterisieren. Sie können einen grundlegenden Ablauf zur Verarbeitung experimenteller Daten beschreiben. |
||||||||
Selbstständigkeit |
Studierende können selbständig zwischen grundlegenden Werkzeugen zur Datenverarbeitung wählen und deren Fähigkeiten einschätzen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Regenerative Energien: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energiesysteme: Wahlpflicht Logistik und Mobilität: Vertiefung Informationstechnologie: Pflicht Mechatronik: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Informationstechnologie: Pflicht |
Lehrveranstaltung L2689: Informatik für Ingenieure - Programmierkonzepte, Data Handling & Kommunikation |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Sibylle Fröschle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
John V. Guttag: Introduction to Computation and Programming Using Python. |
Lehrveranstaltung L2690: Informatik für Ingenieure - Programmierkonzepte, Data Handling & Kommunikation |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Fröschle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0851: Mathematik II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Mathematik I | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
|
||||||||
Fertigkeiten |
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
|
||||||||
Selbstständigkeit |
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 | ||||||||
Leistungspunkte | 8 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Digitaler Maschinenbau: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Integrierte Gebäudetechnik: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2976: Mathematik II |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2977: Mathematik II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2978: Mathematik II |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1751: Praxismodul 2 im dualen Bachelor |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden …
|
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2880: Praxisphase 2 im dualen Bachelor |
Typ | |
SWS | 0 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M0783: Messtechnik und Messdatenverarbeitung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlagen Mathematik |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können die Aufgaben von Messsystemen sowie das Vorgehen bei Messdatenerfassungen und -verarbeitungen erklären. Die für die Messtechnik relevanten Aspekte der Wahrscheinlichkeitstheorie und der Messfehlerbehandlung sowie das Vorgehen bei Messungen stochastischer Signale können wiedergegeben werden. Methoden zur Beschreibungen gemessener Signale und zur Digitalisierungen von Signalen sind den Studierenden bekannt und können erläutert werden. |
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage messtechnische Fragestellungen zu erklären und Methoden zur Beschreibung und Verarbeitung von Messdaten anzuwenden. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden lösen Übungsaufgaben in Kleingruppen. |
||||||||
Selbstständigkeit |
Die Studierenden können ihren Wissensstand einschätzen und die von Ihnen erzielten Ergebnisse kritisch bewerten. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Integrierte Gebäudetechnik: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0781: Elektrotechnisches Versuchspraktikum |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer, Dozenten des SD E, Prof. Alexander Kölpin, Prof. Bernd-Christian Renner, Prof. Christian Becker, Prof. Heiko Falk, Prof. Herbert Werner, Prof. Thorsten Kern |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Praktikumsversuche "Digitale Schaltungen" Prof. Grigat "Halbleiter-Bauelemente" Prof. Jacob "Mikrocontroller" Prof. Falk "Analoge Schaltungen" Prof. Werner "Leistung im Wechselstromkreis" Prof. Becker "Elektrische Maschinen" Prof. Do |
Literatur | Wird in der Lehrveranstaltung festgelegt |
Lehrveranstaltung L0779: Messtechnik und Messdatenverarbeitung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung, Messsysteme und Messfehler, Wahrscheinlichkeitstheorie, Messung stochastischer Signale, Beschreibung gemessener Signale, |
Literatur |
Puente León, Kiencke: Messtechnik, Springer 2012 |
Lehrveranstaltung L0780: Messtechnik und Messdatenverarbeitung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0708: Elektrotechnik III: Netzwerktheorie und Transienten |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Kölpin |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Elektrotechnik I und II, Mathematik I und II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Berechnungsverfahren von elektrischen Netzwerken erklären. Sie kennen die Analyse linearer, mit periodischen Signalen angeregter Netzwerke, mittels Fourier-Reihenentwicklung. Sie kennen die Berechnungsmethoden von Einschaltvorgängen in linearen Netzwerken sowohl im Zeit- als auch im Frequenzbereich. Sie können das Frequenzverhalten und die Synthese einfacher passiver Zweipol-Netzwerke erläutern. |
Fertigkeiten |
Die Studierenden können Spannungen und Ströme in elektrischen Netzwerken, auch bei periodischer Anregung, mit Hilfe von grundlegenden Berechnungsverfahren bestimmen. Sie können sowohl im Zeit- als auch im Frequenzbereich Einschaltvorgänge in elektrischen Netzwerken berechnen und deren Einschaltverhalten beschreiben. Sie können das Frequenzverhalten passiver Zweipol-Netzwerke analysieren und synthetisieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Übungsgruppen vorlesungsrelevante Aufgaben gemeinsam bearbeiten und die selbst erarbeiteten Lösungen innerhalb der Übungsgruppe präsentieren. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Berechnungsverfahren für die zu lösenden Probleme zu erkennen und anzuwenden. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Kurzfragentests, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I und Mathematik) verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 150 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Mechatronik: Vertiefung Elektrische Systeme: Pflicht Mechatronik: Vertiefung Dynamische Systeme und AI: Pflicht Mechatronik: Kernqualifikation: Pflicht Mechatronik: Vertiefung Roboter- und Maschinensysteme: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0566: Netzwerktheorie |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Alexander Kölpin, Dr. Fabian Lurz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Systematische Berechnung linearer, elektrischer Netzwerke - Berechnung von N-Tor-Netzwerken - Periodische Anregung von linearen Netzwerken - Einschaltvorgänge im Zeitbereich - Einschaltvorgänge im Frequenzbereich; Laplace-Transformation - Frequenzverhalten passiver Zweipol-Netzwerke |
Literatur |
- M. Albach, "Grundlagen der Elektrotechnik 1", Pearson Studium (2011) - M. Albach, "Grundlagen der Elektrotechnik 2", Pearson Studium (2011) - L. P. Schmidt, G. Schaller, S. Martius, "Grundlagen der Elektrotechnik 3", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2008)- R. C. Dorf, J. A. Svoboda, "Introduction to electrical circuits", Wiley (2006) - L. Moura, I. Darwazeh, "Introduction to Linear Circuit Analysis and Modeling", Amsterdam Newnes (2005) |
Lehrveranstaltung L0567: Netzwerktheorie |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Kölpin, Dr. Fabian Lurz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | siehe korrespondierende Lehrveranstaltung |
Literatur |
siehe korrespondierende Lehrveranstaltung |
Modul M0730: Technische Informatik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Heiko Falk | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundkenntnisse der Elektrotechnik |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Dieses Modul vermittelt Grundkenntnisse der Funktionsweise von Rechensystemen. Abgedeckt werden die Ebenen von der Assemblerprogrammierung bis zur Gatterebene. Das Modul behandelt folgende Inhalte:
|
||||||||
Fertigkeiten |
Die Studierenden fassen ein Rechensystem aus der Perspektive des Architekten auf, d.h. sie erkennen die interne Struktur und den physischen Aufbau von Rechensystemen. Die Studierenden können analysieren, wie hochspezifische und individuelle Rechner aus einer Sammlung gängiger Einzelkompenenten zusammengesetzt werden. Sie sind in der Lage, die unterschiedlichen Abstraktionsebenen heutiger Rechensysteme - von Gattern und Schaltungen bis hin zu Prozessoren - zu unterscheiden und zu erklären. Nach erfolgreichem Besuch der Veranstaltung sind die Studierenden in der Lage, die Wechselwirkungen zwischen einem physischen Rechensystem und der darauf ausgeführten Software beurteilen zu können. Insbesondere sollen sie die Konsequenzen der Ausführung von Software in den hardwarenahen Schichten von der Assemblersprache bis zu Gattern erkennen können. Sie sollen so in die Lage versetzt werden, Auswirkungen unterer Schichten auf die Leistung des Gesamtsystems abzuschätzen und geeignete Optionen vorzuschlagen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
||||||||
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 Minuten, Inhalte der Vorlesung und Übungen | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Wahlpflicht Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Integrierte Gebäudetechnik: Kernqualifikation: Wahlpflicht Mechatronik: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung II. Informatik: Wahlpflicht |
Lehrveranstaltung L0321: Technische Informatik |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0324: Technische Informatik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0853: Mathematik III |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Marko Lindner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I + II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis III) + 60 min (Differentialgleichungen 1) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Digitaler Maschinenbau: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Integrierte Gebäudetechnik: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Verkehrsplanung und -systeme: Wahlpflicht Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht Logistik und Mobilität: Vertiefung Informationstechnologie: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Verkehrsplanung und -systeme: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Informationstechnologie: Pflicht |
Lehrveranstaltung L1028: Analysis III |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Differential- und Integralrechnung mehrerer Variablen:
|
Literatur |
|
Lehrveranstaltung L1029: Analysis III |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1030: Analysis III |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1031: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Theorie und Numerik gewöhnlicher Differentialgleichungen
|
Literatur |
|
Lehrveranstaltung L1032: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1033: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1752: Praxismodul 3 im dualen Bachelor |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden …
|
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2881: Praxisphase 3 im dualen Bachelor |
Typ | |
SWS | 0 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M0610: Elektrische Maschinen und Antriebe |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Kern |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse Mathematik, insbesondere komplexe Zahlen, Integrale, Differenziale Grundlage der Elektrotechnik und Mechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die grundlegenden Zusammenhänge bei elektrischen und magnetischen Feldern skizzieren und erläutern. Sie können die Funktion der Grundtypen elektrischer Maschinen beschreiben und die zugehörigen Gleichungen und Kennlinien darstellen. Für praktisch vorkommende Antriebskonfigurationen können sie die wesentlichen Parameter für die Energieeffizienz des Gesamtsystems von der Versorgung bis zur Arbeitsmaschine erläutern. |
Fertigkeiten |
Studierende sind fähig, zweidimensionale elektrische Felder und magnetische Felder insbesondere in Eisenkreisen mit Luftspalt zu berechnen. Sie wenden dabei die üblichen Methoden des Elektromaschinenbaus an. Sie können das Betriebsverhalten elektrischer Maschinen aus gegebenen Grunddaten analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen. Dabei wenden sie die üblichen Ersatzschaltbilder und grafische Verfahren an. |
Personale Kompetenzen | |
Sozialkompetenz | keine |
Selbstständigkeit |
Studierende sind fähig, eigenständig anwendungsnahe elektrische und magnetische Felder zu berechnen. Sie können eigenständig das Betriebsverhalten elektrischer Maschinen aus deren Grunddaten zu analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Ausarbeitung von vier Antriebs- und Aktorvarianten, Bewertung der Entwurfsdateien |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Digitaler Maschinenbau: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energietechnik: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Maritime Technologien: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Logistik und Mobilität: Vertiefung Verkehrsplanung und -systeme: Wahlpflicht Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht Maschinenbau: Kernqualifikation: Wahlpflicht Mechatronik: Vertiefung Schiffstechnik: Pflicht Mechatronik: Kernqualifikation: Pflicht Mechatronik: Vertiefung Roboter- und Maschinensysteme: Pflicht Mechatronik: Vertiefung Elektrische Systeme: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Verkehrsplanung und -systeme: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Informationstechnologie: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht |
Lehrveranstaltung L0293: Elektrische Maschinen und Antriebe |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Thorsten Kern, Dennis Kähler |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Elektrisches Feld: Coulomb´sches Gesetz, Potenzial, Kondensator, Kraft und Energie, Kapazitiven Antriebe Magnetisches Feld: Kraft, Fluss, Durchflutungssatz, Feld an Grenzflächen, elektrisches Ersatzschaltbild, Hysterese, Induktion, Transformator, Magnetische Antriebe Synchronmaschine: Funktionsprinzip, Aufbau, Verhalten bei Leerlauf und Kurzschluss, Ersatzschaltbild und Zeigerdiagramm, Schrittantriebe Gleichstrommaschinen: Funktionsprinzip, Aufbau, Drehmomenterzeugung, Betriebskennlinien, Kommutierung, Wendepole und Kompensationswicklung, Asynchronmaschine: Funktionsprinzip, Aufbau, Ersatzschaltbild und Kreisdiagramm, Betriebskennlinien, Auslegung des Läufers, Drehzahlvariable Antrieb mit Frequenzumrichtern, Sonderbauformen elektrischer Maschinen |
Literatur |
Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313 Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122 "Grundlagen der Elektrotechnik" - anderer Autoren Fachbücher "Elektrische Maschinen" |
Lehrveranstaltung L0294: Elektrische Maschinen und Antriebe |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Kern, Dennis Kähler |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0567: Theoretische Elektrotechnik I: Zeitunabhängige Felder |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Schuster |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik und der höheren Mathematik (Elektrotechnik I, Elektrotechnik II, Mathematik I, Mathematik II, Mathematik III) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Formeln, Zusammenhänge und Methoden der Theorie zeitunabhängiger elektromagnetischer Felder erklären. Sie können das prinzipielle Verhalten von elektrostatischen, magnetostatischen und elektrischen Strömungsfeldern in Abhängigkeit von ihren Quellen erläutern. Sie können die Eiegenschaften komplexer elektromagnetischer Felder mit Hilfe des Superpositionsprinzips auf Basis einfacher Feldlösungen beschreiben. Sie können einen Überblick über die Anwendungen zeitunabhängiger elektromagnetischer Felder in der elektrotechnischen Praxis geben. |
Fertigkeiten |
Die Studierenden können die integrale Form der Maxwellgleichung zur Lösung hochsymmetrischer Probleme zeitunabhängiger elektromagnetischer Feldprobleme anwenden. Ebenso können sie eine Reihe von Verfahren zur Lösung der differentiellen Form der Maxwellgleichung für allgemeinere Feldprobleme anwenden. Sie können einschätzen, welche prinzipiellen Effekte gewisse zeitunabhängige Feldquellen erzeugen und können diese quantitativ analysieren. Sie können abgeleitete Größen zur Charakterisierung elektrostatischer, magnetostatischer und elektrischer Strömungsfelder (Kapazitäten, Induktivitäten, Widerstände usw.) aus den Feldern ableiten und für die Anwendung in der elektrotechnischen Praxis dimensionieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Kleingruppenübungen). |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I und Mathematik) verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90-150 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Mechatronik: Vertiefung Elektrische Systeme: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0180: Theoretische Elektrotechnik I: Zeitunabhängige Felder |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
- Maxwellsche Gleichungen in integraler und differentieller Form - Rand- und Sprungbedingungen - Energieerhaltungssatz und Ladungserhaltungssatz - Klassifikation elektromagnetischen Feldverhaltens - Integrale Größen zeitunabhängiger Felder (R,L,C) - Allgemeine Lösungsverfahren für die Poissongleichung - Elektrostatische Felder und ihre speziellen Lösungsmethoden - Magnetostatische Felder und ihre speziellen Lösungsmethoden - Elektrische Strömungsfelder und ihre speziellen Lösungsmethoden - Kraftwirkung in zeitunabhängigen Feldern - Numerische Methoden zur Lösung zeitunabhängiger Probleme Der praktische Umgang mit numerischen Methoden wird durch interaktives Bearbeiten von MATLAB-Programmen in besonders vorbereiteten Vorlesungen geübt. |
Literatur |
- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010) - H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011) - W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011) - D. Griffiths, "Introduction to Electrodynamics", Pearson (2012) - J. Edminister, " Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013) - Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011) |
Lehrveranstaltung L0181: Theoretische Elektrotechnik I: Zeitunabhängige Felder |
Typ | Gruppenübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0672: Signale und Systeme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik 1-3 Das Modul führt in das Thema der Signal- und
Systemtheorie ein. Sicherer Umgang mit grundlegenden mathematschen Methoden, wie sie in den
Modulen Mathematik 1-3 vermittelt werden, wird erwartet. Darüber hinaus sind Vorkenntnisse in Grundlagen von
Spektraltransformationen (Fourier-Reihe, Fourier-Transformation,
Laplace-Transformation) zwar nützlich, aber keine Voraussetzung. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Signale und lineare zeitinvariante (LTI) Systeme im Sinne der Signal- und Systemtheorie klassifizieren und beschreiben. Sie beherrschen die grundlegenden Integraltransformationen zeitkontinuierlicher und zeitdiskreter deterministischer Signale und Systeme. Sie können deterministische Signale und Systeme in Zeit- und Bildbereich mathematisch beschreiben und analysieren. Sie verstehen elementare Operationen und Konzepte der Signalverarbeitung und können diese in Zeit- und Bildbereich beschreiben. Insbesondere verstehen Sie die mit dem Übergang vom zeitkontinuierlichen zum zeitdiskreten Signal bzw. System einhergehenden Effekte in Zeit- und Bildbereich. Die Studierenden kennen die Vorlesungs- und Übungsinhalte und können diese erläutern sowie auf neue Fragestellungen anwenden. |
Fertigkeiten |
Die Studierenden können deterministische Signale und lineare zeitinvariante Systeme mit den Methoden der Signal- und Systemtheorie beschreiben und analysieren. Sie können einfache Systeme hinsichtlich wichtiger Eigenschaften wie Betrags- und Phasenfrequenzgang, Stabilität, Linearität etc. analysieren und entwerfen. Sie können den Einfluß von LTI-Systemen auf die Signaleigenschaften in Zeit- und Frequenzbereich beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische Aufgaben gemeinsam bearbeiten. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Computer Science: Vertiefung II. Mathematik und Ingenieurwissenschaften: Wahlpflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Integrierte Gebäudetechnik: Kernqualifikation: Pflicht Maschinenbau: Vertiefung Mechatronik: Wahlpflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0432: Signale und Systeme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0433: Signale und Systeme |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0734: Elektrotechnisches Projektpraktikum |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Christian Becker |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Elektrotechnik I, Elektrotechnik II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können einen Überblick über die fachlichen Details von elektrotechnischen Projekten geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren. |
Fertigkeiten |
Die Studierenden können ihr Grundlagenwissen aus der Elektrotechnik in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung elektrotechnischer Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für elektrotechnische Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer elektrotechnischen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren. |
Selbstständigkeit |
Die Studierenden sind in der Lage, anhand von zur Verfügung gestellten Unterlagen elektrotechnische Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 68, Präsenzstudium 112 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | abhängig von der Aufgabenstellung + Vortrag |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Vertiefung Elektrotechnik: Pflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0640: Elektrotechnisches Projektpraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 8 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 68, Präsenzstudium 112 |
Dozenten | Prof. Christian Becker, Dozenten des SD E |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Es werden Projekte aus dem ganzen Anwendungsbereich der Elektrotechnik bearbeitet. Dabei werden typischerweise Prototypen von Funktionseinheiten oder ganzen Systemen gebaut. Beispiele sind: Radargeräte, Sensornetzwerke, Amateurfunkgeräte, leistungselektronische Umrichter, diskrete Rechner, Kraftmikroskope. Die Projekte werden jedes Jahr neu konzipiert. |
Literatur |
Alle zur Durchführung der Projekte sinnvollen Quellen (Skripte, Fachbücher, Manuals, Datenblätter, Internetseiten). / All sources that are useful for completion of the projects (lecture notes, textbooks, manuals, data sheets, internet pages). |
Modul M0854: Mathematik IV |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Marko Lindner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I - III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 68, Präsenzstudium 112 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Komplexe Funktionen) + 60 min (Differentialgleichungen 2) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Vertiefung Mechatronik: Pflicht Maschinenbau: Vertiefung Theoretischer Maschinenbau: Wahlpflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht |
Lehrveranstaltung L1043: Differentialgleichungen 2 (Partielle Differentialgleichungen) |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundzüge der Theorie und Numerik partieller Differentialgleichungen
|
Literatur |
|
Lehrveranstaltung L1044: Differentialgleichungen 2 (Partielle Differentialgleichungen) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1045: Differentialgleichungen 2 (Partielle Differentialgleichungen) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1038: Komplexe Funktionen |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundzüge der Funktionentheorie
|
Literatur |
|
Lehrveranstaltung L1041: Komplexe Funktionen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1042: Komplexe Funktionen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1340: Einführung in Wellenleiter, Antennen und Elektromagnetische Verträglichkeit |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Schuster |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Physik und Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Gesetzmäßigkeiten, Zusammenhänge und Methoden im Bereich des Entwurfs von Wellenleitern und Antennen sowie der Elektromagnetischen Verträglichkeit wiedergeben und erklären. Spezifische Themen sind: - Fundamentale Eigenschaften und Phänome elektrischer
Schaltungen |
Fertigkeiten | Die Studierenden können eine Reihe von Verfahren und Modellen zur Beschreibung und zur Auswahl von Wellenleitern und Antennen anwenden. Dafür können Sie deren elementare elektromagnetische Eigenschaften einschätzen und beurteilen. Sie können Erkenntnisse und Strategien aus dem Feld der Elektromagnetischen Verträglichkeit auf die Entwicklung von elektrischen Komponenten und Systemen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise auf Englisch präsentieren (z.B. während Kleingruppenübungen). |
Selbstständigkeit |
Die Studierenden sind in der Lage, Informationen aus einschlägigen Fachpublikationen zu gewinnen und in den Kontext der Vorlesung zu setzen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Theoretischer Elektrotechnik, Grundlagen der Elektrotechnik oder Physik) zu verknüpfen. Sie können technische Probleme und physikalische Effekte auf Englisch diskutieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1669: Einführung in Wellenleiter, Antennen und Elektromagnetische Verträglichkeit |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Diese Vorlesung ist gedacht als Einführung in die Gebiete der Wellenausbreitung, -führung, - aussendung, und -empfang sowie der Elektromagnetischen Verträglichkeit. Die Themen der Vorlesung werden von Nutzen sein für alle Ingenieure/-innen, die technische Herausforderungen im Bereich der hochfrequenten / hochratigen Übermittlung von Daten in solchen Gebieten wie Medizintechnik, Automobiltechnik oder Avionik meistern müssen. Sowohl Schaltungs- als auch Feldkonzepte der Wellenausbreitung und der Elektromagnetischen Verträglichkeit werden eingeführt und besprochen. Themen: - Fundamentale Eigenschaften und Phänome elektrischer Schaltungen |
Literatur |
- Zinke, Brunswig, "Hochfrequenztechnik 1", Springer (1999) - J. Detlefsen, U. Siart, "Grundlagen der Hochfrequenztechnik", Oldenbourg (2012) - D. M. Pozar, "Microwave Engineering", Wiley (2011) - Y. Huang, K. Boyle, "Antenna: From Theory to Practice", Wiley (2008) - H. Ott, "Electromagnetic Compatibility Engineering", Wiley (2009) - A. Schwab, W. Kürner, "Elektromagnetische Verträglichkeit", Springer (2007) |
Lehrveranstaltung L1877: Einführung in Wellenleiter, Antennen und Elektromagnetische Verträglichkeit |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1753: Praxismodul 4 im dualen Bachelor |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden …
|
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2882: Praxisphase 4 im dualen Bachelor |
Typ | |
SWS | 0 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M1962: Grundlagen Raumfahrtelektronik und Primärmission |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Ulf Kulau |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
Nach Abschluss des Moduls haben Studierende Grundlagen der Raumfahrtelektronik vermittelt bekommen. Sie wissen ebenfalls wie man Primärmissionen plant und wie man Subsysteme zur Erreichung dieser Primärmission definiert (Anforderungsanalyse, Leistungsbeschreibung). Sie werden aktiv in Missionen eingebunden und sollen das erlernte dort praktisch umsetzen, wobei durch die Zusammenarbeit mit den Studierenden zusätzlich Softskills im Bereich allgemeinen Projektmanagement vermittelt und angewendet werden.
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Arbeit erfolgt wechselnd in der gesamten Gruppe, aber auch in Kleingruppen. Hierfür ist eine enge Zusammenarbeit und Abstimmung innerhalb der einzelnen Teams erforderlich. Das Ziel ist es, dass Studierende auf der einen Seite fundiertes Wissen über Raumfahrtelektronik und Raumfahrtmissionen erlangen, auf der anderen Seite dieses Wissen anwenden und durch die Arbeit in Kleingruppen eine Nachhaltigkeit ihrer Ergebnisse erzeugen. Dies kann beispielsweise die Weitergabe der Anforderungs- und Leistungsbeschreibungen sein, welche Semesterübergreifend als Grundlage, Ausgangspunkt und Ergebnis fungieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, selbständig wissenschaftliche Projekte und Prozesse zu planen und durchzuführen. In der Gruppenarbeit sollen Organisation, Ideenfindung, Herleitung von Hypothesen und Denkprozesse selbständig moderiert und durchgeführt werden. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Bericht über die erzielten Ergebnisse |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung II. Mathematik und Ingenieurwissenschaften: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L3204: Grundlagen Raumfahrtelektronik und Primärmission |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Ulf Kulau |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt | |
Literatur |
Modul M1235: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Becker |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können einen Überblick über die konventionelle und moderne elektrische Energietechnik geben. Technologien der elektrischen Energieerzeugung, -übertragung, -speicherung und -verteilung sowie Integration von Betriebsmitteln können detailliert erläutert und kritisch bewertet werden. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage, das erlernte Fachwissen in Aufgabenstellungen zur Auslegung, Integration oder Entwicklung elektrischer Energiesysteme angemessen anzuwenden und die Ergebnisse einzuschätzen und zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 - 150 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Regenerative Energien: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energiesysteme / Regenerative Energien: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Mechatronik: Vertiefung Elektrische Systeme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L1670: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Springer Vieweg, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 7. Auflage, 2022 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Lehrveranstaltung L1671: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Springer Vieweg, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 7. Auflage, 2022 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Modul M1802: Technische Mechanik I (Stereostatik) |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Benedikt Kriegesmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gefestigte und tiefgehende Schulkentnisse in Mathematik und Physik. Als gute Auffrischung der Mathematikkenntnisse ist der Mathematikvorkurs empfehlenswert. Parallel zum Modul Mechanik I sollte das Modul Mathematik I besucht werden. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Data Science: Vertiefung II. Anwendung: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L1001: Technische Mechanik I (Stereostatik) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Mechanik I wird eine e-Learning Plattform mit interaktiven Videos von Experimenten entwickelt. Hierdurch wird eine Verbindung von Theorie und Anwendung erzeugt. Außerdem wurde eine enge Verzahnung mit der Mathematik I vorgenommen und die Inhalte der beiden Lehrveranstaltungen aufeinander abgestimmt. |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Lehrveranstaltung L1003: Technische Mechanik I (Stereostatik) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kräftesysteme und Gleichgewicht Lagerung von Körpern Fachwerke Gewichtskraft und Schwerpunkt Reibung Innere Kräfte und Momente am Balken In der Mechanik I wird eine e-Learning Plattform mit interaktiven Videos von Experimenten entwickelt. Hierdurch wird eine Verbindung von Theorie und Anwendung erzeugt. Außerdem wurde eine enge Verzahnung mit der Mathematik I vorgenommen und die Inhalte der beiden Lehrveranstaltungen aufeinander abgestimmt. |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Lehrveranstaltung L1002: Technische Mechanik I (Stereostatik) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kräftesysteme und Gleichgewicht Lagerung von Körpern Fachwerke Gewichtskraft und Schwerpunkt Reibung Innere Kräfte und Momente am Balken
In der Mechanik I wird eine e-Learning Plattform mit interaktiven Videos von Experimenten entwickelt. Hierdurch wird eine Verbindung von Theorie und Anwendung erzeugt. Außerdem wurde eine enge Verzahnung mit der Mathematik I vorgenommen und die Inhalte der beiden Lehrveranstaltungen aufeinander abgestimmt. |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Modul M0568: Theoretische Elektrotechnik II: Zeitabhängige Felder |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Schuster |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Elektrotechnik I, Elektrotechnik II, Theoretische Elektrotechnik I Mathematik I, Mathematik II, Mathematik III, Mathematik IV |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Formeln, Zusammenhänge und Methoden der Theorie zeitabhängiger elektromagnetischer Felder erklären. Sie können das prinzipielle Verhalten von quasistationären und voll dynamischen Feldern in Abhängigkeit von ihren Quellen erläutern. Sie können die Eigenschaften komplexer elektromagnetischer Felder mit Hilfe des Superpositionsprinzips auf Basis einfacher Feldlösungen beschreiben. Sie können einen Überblick über die Anwendungen zeitabhängiger elektromagnetischer Felder in der elektrotechnischen Praxis geben. |
Fertigkeiten |
Die Studierenden können eine Reihe von Verfahren zur Lösung der Diffusions- und der Wellengleichung für allgemeine zeitabhängige Feldprobleme anwenden. Sie können einschätzen, welche prinzipiellen Effekte gewisse zeitabhängige Feldquellen erzeugen und können diese quantitativ analysieren. Sie können abgeleitete Größen zur Charakterisierung voll dynamischer Felder (Wellenimpedanz, Skintiefe, Poynting-Vektor, Strahlungswiderstand usw.) aus den Feldern ableiten und für die Anwendung in der elektrotechnischen Praxis deuten. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Kleingruppenübungen). |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen in Bezug zu aktuellen Forschungsthemen an der TUHH setzen (z.B. im Bereich der Hochfrequenztechnik und Optik). |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90-150 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Vertiefung Elektrotechnik: Pflicht Engineering Science: Vertiefung Mechatronics: Wahlpflicht Mechatronik: Vertiefung Elektrische Systeme: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0182: Theoretische Elektrotechnik II: Zeitabhängige Felder |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Theorie und prinzipielles Verhalten quasistationärer Felder - Induktion und Induktionsgesetz - Skin Effekt und Wirbelströme - Abschirmung zeitlich veränderlicher magnetischer Felder - Theorie und prinzipielles Verhalten voll dynamischer Felder - Wellen-Gleichung und Eigenschaften ebener Wellen - Polarisation und Superposition ebener Wellen - Reflexion und Brechung ebener Wellen an Grenzflächen - Theorie der Wellenleiter - Rechteckhohlleiter, planarer optischer Wellenleiter - elektrische und magnetische Dipolstrahlung - Einfache Antennen-Arrays Der praktische Umgang mit numerischen Methoden wird durch interaktives Bearbeiten von MATLAB-Programmen in besonders vorbereiteten Vorlesungen geübt. |
Literatur |
- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010) - H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011) - W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011) - D. Griffiths, "Introduction to Electrodynamics", Pearson (2012) - J. Edminister, "Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013) - Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011) |
Lehrveranstaltung L0183: Theoretische Elektrotechnik II: Zeitabhängige Felder |
Typ | Gruppenübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0662: Numerical Mathematics I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sabine Le Borne |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to
|
Fertigkeiten |
Students are able to
|
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to
|
Selbstständigkeit |
Students are capable
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Data Science: Pflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Engineering Science: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energietechnik: Wahlpflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Vertiefung Theoretischer Maschinenbau: Pflicht Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Maschinenbau: Vertiefung Mechatronik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0417: Numerical Mathematics I |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0418: Numerical Mathematics I |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Jens-Peter Zemke |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0675: Einführung in die Nachrichtentechnik und ihre stochastischen Methoden |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen und verstehen die grundlegenden Funktionseinheiten eines Nachrichtenübertragungssystems. Sie können die einzelnen Funktionsblöcke mit Hilfe grundlegender Kenntnisse der Signal- und Systemtheorie sowie der Theorie stochastischer Prozesse beschreiben und analysieren. Sie kennen die entscheidenden Resourcen und Bewertungskriterien der Nachrichtenübertragung und können ein elementares nachrichtentechnisches System entwerfen und beurteilen. Die Studierenden kennen die Vorlesungs- und Übungsinhalte und können diese erläutern sowie auf neue Fragestellungen anwenden. |
Fertigkeiten |
Die Studierenden sind in der Lage, ein elementares nachrichtentechnisches System zu entwerfen und zu beurteilen. Insbesondere können Sie den Bedarf an Resourcen wie Bandbreite und Leistung abschätzen. Sie sind in der Lage, wichtige Beurteilungskriterien wie die Bandbreiteneffizienz oder die Bitfehlerwahrscheinlichkeit elementarer Nachrichtenübertragungssysteme abzuschätzen und darauf basierend ein Übertragungsverfahren auszuwählen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische Aufgaben gemeinsam bearbeiten. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Vertiefung Information and Communication Systems: Wahlpflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Mechatronik: Vertiefung Elektrische Systeme: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0442: Einführung in die Nachrichtentechnik und ihre stochastischen Methoden |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. M. Bossert: Einführung in die Nachrichtentechnik, Oldenbourg. J.G. Proakis, M. Salehi: Grundlagen der Kommunikationstechnik. Pearson Studium. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley J.G. Proakis, M. Salehi: Communication Systems Engineering. Prentice-Hall. J.G. Proakis, M. Salehi, G. Bauch, Contemporary Communication Systems. Cengage Learning. |
Lehrveranstaltung L0443: Einführung in die Nachrichtentechnik und ihre stochastischen Methoden |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2354: Einführung in die Nachrichtentechnik und ihre stochastischen Methoden |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0760: Elektronische Bauelemente |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Hoc Khiem Trieu | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Aufbau der Atome und Quantentheorie, elektrische Ströme in Festkörpern, Grundlagen der Festkörperphysik Erfolgreiche Teilnahme an Physik für Ingenieure und Werkstoffe der Elektrotechnik oder Veranstaltungen mit äquivalentem Inhalt |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können
|
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende können in Gruppen Versuche planen, durchführen sowie die Ergebnisse präsentieren und vor anderen vertreten. |
||||||||
Selbstständigkeit |
Studierende sind fähig sich eigenständig das für die Versuche notwendige Wissen mit Literatur zu erschließen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Mechatronik: Vertiefung Elektrische Systeme: Pflicht |
Lehrveranstaltung L0720: Elektronische Bauelemente |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
S.M. Sze: Semiconductor devices, Physics and Technology, John Wiley & Sons (1985)F. Thuselt: Physik der Halbleiterbauelemente, Springer (2011) T. Thille, D. Schmitt-Landsiedel: Mikroelektronik, Halbleiterbauelemente und deren Anwendung in elektronischen Schaltungen, Springer (2004) B.L. Anderson, R.L. Anderson: Fundamentals of Semiconductor Devices, McGraw-Hill (2005) D.A. Neamen: Semiconductor Physics and Devices, McGraw-Hill (2011) M. Shur: Introduction to Electronic Devices, John Wiley & Sons (1996) S.M. Sze: Physics of semiconductor devices, John Wiley & Sons (2007) H. Schaumburg: Halbleiter, B.G. Teubner (1991) A. Möschwitzer: Grundlagen der Halbleiter-&Mikroelektronik, Bd1 Elektronische Halbleiterbauelemente, Carl Hanser (1992) H.-G. Unger, W. Schultz, G. Weinhausen: Elektronische Bauelemente und Netzwerke I, Physikalische Grundlagen der Halbleiterbauelemente, Vieweg (1985) |
Lehrveranstaltung L0721: Elektronische Bauelemente |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0833: Grundlagen der Regelungstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Timm Faulwasser |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Behandlung von Signalen und Systemen im Zeit- und Frequenzbereich und der Laplace-Transformation. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Studierende können in kleinen Gruppen fachspezifische Fragen gemeinsam bearbeiten und ihre Reglerentwürfe experimentell testen und bewerten |
Selbstständigkeit |
Studierende können sich Informationen aus bereit gestellten Quellen (Skript, Software-Dokumentation, Versuchsunterlagen) beschaffen und für die Lösung gegebener Probleme verwenden. Sie können ihren Wissensstand mit Hilfe wöchentlicher On-Line Tests kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Data Science: Vertiefung II. Anwendung: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Informationstechnologie: Wahlpflicht Logistik und Mobilität: Vertiefung Verkehrsplanung und -systeme: Wahlpflicht Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Informationstechnologie: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Verkehrsplanung und -systeme: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Produktionsmanagement und Prozesse: Wahlpflicht |
Lehrveranstaltung L0654: Grundlagen der Regelungstechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Timm Faulwasser |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Signale und Systeme
Regelkreise
Wurzelortskurven
Frequenzgang-Verfahren
Totzeitsysteme
Digitale Regelung
Software-Werkzeuge
|
Literatur |
|
Lehrveranstaltung L0655: Grundlagen der Regelungstechnik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Timm Faulwasser |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0834: Computernetworks and Internet Security |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic of Computer Science |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
In this course, an introduction to computer networks with focus on the Internet and its security is given. Basic functionality of complex protocols are introduced. Students learn to understand these and identify common principles. In the exercises and lecture discussions, these basic principles and an introduction to performance modelling are addressed using exercises, homework assignments and labs. This comprises of:
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Wahlpflicht Computer Science: Kernqualifikation: Pflicht Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Engineering Science: Vertiefung Mechatronics: Wahlpflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Engineering Science: Vertiefung Information and Communication Systems: Pflicht General Engineering Science (7 Semester): Vertiefung Mechatronics: Wahlpflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Technomathematik: Vertiefung II. Informatik: Wahlpflicht |
Lehrveranstaltung L1098: Computer Networks and Internet Security |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Dr. Koojana Kuladinithi, Prof. Sibylle Fröschle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In this class an introduction to computer networks with focus on the Internet and its security is given. Basic functionality of complex protocols are introduced. Students learn to understand these and identify common principles. In the exercises these basic principles and an introduction to performance modelling are addressed using computing tasks and physical labs. In the second part of the lecture an introduction to Internet security is given. This class comprises:
|
Literatur |
Further literature is announced at the beginning of the lecture. |
Lehrveranstaltung L1099: Computer Networks and Internet Security |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Koojana Kuladinithi, Prof. Sibylle Fröschle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1754: Praxismodul 5 im dualen Bachelor |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden …
|
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2883: Praxisphase 5 im dualen Bachelor |
Typ | |
SWS | 0 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M0634: Einführung in Medizintechnische Systeme |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer | ||||||||||||
Zulassungsvoraussetzungen | Keine | ||||||||||||
Empfohlene Vorkenntnisse |
Grundlagen Mathematik (Algebra, Analysis) |
||||||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||||||
Fachkompetenz | |||||||||||||
Wissen |
Die Studierenden können Funktionsprinzipien ausgewählter medizintechnischer Systeme (beispielsweise bildgebende Systeme, Assistenzsysteme im OP, medizintechnische Informationssysteme) erklären. Sie können einen Überblick über regulatorische Rahmenbedingungen und Standards in der Medizintechnik geben. |
||||||||||||
Fertigkeiten |
Die Studierenden sind in der Lage, die Funktion eines medizintechnischen Systems im Anwendungskontext zu bewerten. |
||||||||||||
Personale Kompetenzen | |||||||||||||
Sozialkompetenz |
Die Studierenden können in Gruppen ein
medizintechnisches Thema als Projekt beschreiben, in Teilaufgaben untergliedern
und gemeinsam bearbeiten. |
||||||||||||
Selbstständigkeit |
Die Studierenden können ihren Wissensstand einschätzen und ihre Arbeitsergebnisse dokumentieren. Sie können die erzielten Ergebnisse kritisch bewerten und in geeigneter Weise präsentieren. |
||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||||||
Leistungspunkte | 6 | ||||||||||||
Studienleistung |
|
||||||||||||
Prüfung | Klausur | ||||||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Computer Science: Vertiefung II. Mathematik und Ingenieurwissenschaften: Wahlpflicht Data Science: Vertiefung II. Anwendung: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Medizintechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Medizintechnik: Wahlpflicht Mechatronik: Vertiefung Medizintechnik: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0342: Einführung in Medizintechnische Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
- Bildgebende Systeme |
Literatur |
Bernhard Priem, "Visual Computing for Medicine", 2014 |
Lehrveranstaltung L0343: Einführung in Medizintechnische Systeme |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1876: Einführung in Medizintechnische Systeme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1803: Technische Mechanik II (Elastostatik) |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Christian Cyron |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mechanik I, Mathematik I (Grundkenntnisse der Starrkörpermechanik wie Kräfte- und Momentengleichgewicht, Grundkenntnisse der linearen Algebra wie Vektor-Matrix-Rechnung, Grundkenntnisse der Integral- und Differentialrechnung) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichen Absolvieren des Moduls kennen und verstehen die
Studierenden die Grundkonzepte der Kontinuumsmechanik und Elastostatik,
insbesondere Spannung, Verzerrung, Materialgesetze, Dehnung, Biegung,
Torsion, Festigkeitsrechnung, Energiemethoden und Stabilitätsversagen. |
Fertigkeiten |
Nach erfolgreichen Absolvieren des Moduls sind die Studierenden in der Lage, |
Personale Kompetenzen | |
Sozialkompetenz | Fähigkeit, komplexe Probleme in der Elastostatik zu kommunizieren, dafür gemeinsam mit anderen Lösungen zu erarbeiten, sowie auch diese Lösungen zu kommunizieren. |
Selbstständigkeit | Selbstdisziplin und Durchhaltevermögen bei der eigenständigen Bewältigung komplexer Herausforderungen im Bereich der Elastostatik; Fähigkeit, sich auch sehr abstrakte Kenntnisse anzueignen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L0494: Technische Mechanik II (Gruppenübung) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron, Dr. Kevin Linka |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung Technische Mechanik II führt die Grundkonzepte der Kontinuumsmechanik ein und lehrt, wie diese im Rahmen der sogenannten Elastostatik dazu genutzt werden können, um die elastische Verformung mechanischer Körper unter Belastung zu beschreiben. Schwerpunkte der Vorlesung sind:
|
Literatur |
|
Lehrveranstaltung L1691: Technische Mechanik II (Hörsaalübung) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron, Martin Legeland |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung Technische Mechanik II führt die Grundkonzepte der Kontinuumsmechanik ein und lehrt, wie diese im Rahmen der sogenannten Elastostatik dazu genutzt werden können, um die elastische Verformung mechanischer Körper unter Belastung zu beschreiben. Schwerpunkte der Vorlesung sind:
|
Literatur |
|
Lehrveranstaltung L0493: Technische Mechanik II (Vorlesung) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung Technische Mechanik II führt die Grundkonzepte der Kontinuumsmechanik ein und lehrt, wie diese im Rahmen der sogenannten Elastostatik dazu genutzt werden können, um die elastische Verformung mechanischer Körper unter Belastung zu beschreiben. Schwerpunkte der Vorlesung sind:
|
Literatur |
|
Modul M0777: Halbleiterschaltungstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik Elementare Grundlagen der Physik, besonders Halbleiterphysik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Vertiefung Elektrotechnik: Pflicht Engineering Science: Vertiefung Mechatronics: Pflicht Engineering Science: Vertiefung Mechatronics: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Mechatronics: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Vertiefung Mechatronik: Pflicht Mechatronik: Vertiefung Elektrische Systeme: Pflicht Mechatronik: Kernqualifikation: Pflicht Mechatronik: Vertiefung Roboter- und Maschinensysteme: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0763: Halbleiterschaltungstechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
|
Literatur |
U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496 R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867 URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499 URL: http://dx.doi.org/10.1007/978-3-642-20887-4 URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955 URL: http://www.ciando.com/img/bo |
Lehrveranstaltung L0864: Halbleiterschaltungstechnik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | NN, Weitere Mitarbeiter |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
|
Literatur |
U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496 R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867 URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499 URL: http://dx.doi.org/10.1007/978-3-642-20887-4 URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955 URL: http://www.ciando.com/img/bo |
Modul M0803: Embedded Systems |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Heiko Falk | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse | Computer Engineering | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Embedded systems can be defined as information processing systems embedded into enclosing products. This course teaches the foundations of such systems. In particular, it deals with an introduction into these systems (notions, common characteristics) and their specification languages (models of computation, hierarchical automata, specification of distributed systems, task graphs, specification of real-time applications, translations between different models). Another part covers the hardware of embedded systems: Sonsors, A/D and D/A converters, real-time capable communication hardware, embedded processors, memories, energy dissipation, reconfigurable logic and actuators. The course also features an introduction into real-time operating systems, middleware and real-time scheduling. Finally, the implementation of embedded systems using hardware/software co-design (hardware/software partitioning, high-level transformations of specifications, energy-efficient realizations, compilers for embedded processors) is covered. |
||||||||
Fertigkeiten |
After having attended the course, students shall be able to realize simple embedded systems. The students shall realize which relevant parts of technological competences to use in order to obtain a functional embedded systems. In particular, they shall be able to compare different models of computations and feasible techniques for system-level design. They shall be able to judge in which areas of embedded system design specific risks exist. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students are able to solve similar problems alone or in a group and to present the results accordingly. |
||||||||
Selbstständigkeit |
Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 Minuten, Inhalte der Vorlesung und Übungen | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Engineering Science: Vertiefung Information and Communication Systems: Pflicht Engineering Science: Vertiefung Mechatronics: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Mechatronics: Wahlpflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Mechatronik: Vertiefung Schiffstechnik: Pflicht Mechatronik: Vertiefung Elektrische Systeme: Pflicht Mechatronik: Vertiefung Dynamische Systeme und AI: Pflicht Mechatronik: Vertiefung Roboter- und Maschinensysteme: Pflicht Mechatronik: Vertiefung Medizintechnik: Pflicht Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht |
Lehrveranstaltung L0805: Embedded Systems |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Heiko Falk |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2938: Embedded Systems |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heiko Falk |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0806: Embedded Systems |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heiko Falk |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Thesis
Modul M1800: Bachelorarbeit im dualen Studium |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die dual Studierenden ...
|
Fertigkeiten |
Die dual Studierenden ...
|
Personale Kompetenzen | |
Sozialkompetenz |
Die dual Studierenden ...
|
Selbstständigkeit |
Die dual Studierenden ...
|
Arbeitsaufwand in Stunden | Eigenstudium 360, Präsenzstudium 0 |
Leistungspunkte | 12 |
Studienleistung | Keine |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Abschlussarbeit: Pflicht Bau- und Umweltingenieurwesen: Abschlussarbeit: Pflicht Chemie- und Bioingenieurwesen: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Data Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Engineering Science: Abschlussarbeit: Pflicht Green Technologies: Energie, Wasser, Klima: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Maschinenbau: Abschlussarbeit: Pflicht Mechatronik: Abschlussarbeit: Pflicht Schiffbau: Abschlussarbeit: Pflicht Technomathematik: Abschlussarbeit: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Abschlussarbeit: Pflicht |