Program description

Content

The electrical industry is the second largest industrial sector in Germany after mechanical engineering in terms of the number of employees. With approx. 847,000 employees, a turnover of approx. 179 billion euros is achieved (based on the year 2016, source: de.statista.com).  Electrical engineering is thus not only one of the "classical engineering sciences" but also one of the main drivers of national and international technical progress in recent decades.

In engineering terms, electrical engineering deals with research, development and, in general, the application of electrical signals, electrical energy and electromagnetic fields in corresponding components and circuits.

Due to the widely ramified fields of application, a high degree of specialisation is required in the profession. As a consequence, the vocational training of electrical engineers is in the area of tension between the breadth of the training (for the widest possible range of later uses) and the depth of the training (for current, subject-specific competences). Within the framework of the consecutive Bachelor's/Master's degree programmes in electrical engineering at the TUHH, the breadth of the subject is taught primarily during the Bachelor's degree programme and focal points are deepened in the Master's degree programme. The Bachelor's programme conveys the fundamentals of electrical engineering, information technology, computer science as well as mathematics and physics required for solving electrical engineering and information technology tasks. In addition to the technical canon of fundamentals, training in non-technical areas such as business administration, patents, management, humanities, law and philosophy is aimed for, which meets the modern professional requirements of an engineer.

In addition to the foundational curriculum taught at TUHH, seminars on developing personal skills are integrated into the dual study programme, in the context of transfer between theory and practice. These seminars correspond to the modern professional requirements expected of an engineer, as well as promoting the link between the two places of learning.

The intensive dual courses at TUHH integrating practical experience consist of an academic-oriented and a practice-oriented element, which are completed at two places of learning. The academic-oriented element comprises study at TUHH. The practice-oriented element is coordinated with the study programme in terms of content and time, and consists of practical modules and phases spent in an affiliate company during periods when there are no lectures.



Career prospects

Successful completion of the Bachelor's degree programme in Electrical Engineering enables an early career entry into the typical fields of activity in electrical engineering, in addition to taking up a Master's degree programme that provides more in-depth scientific knowledge. These include communications engineering, measurement and control engineering, microsystems engineering and nanoelectronics, electrical power engineering, high-frequency engineering and optical systems.

Electrical engineers are among the most sought-after academics on the labour market. A current evaluation of data from the Federal Employment Agency proves the increasing demand (Federal Employment Agency: "Berichte: Blickpunkt Arbeitsmarkt - Ingenieurinnen und Ingenieure", Nuremberg, 2018). While the number of registered unemployed continues to fall steadily, the number of registered vacancies is increasing significantly at the same time. At the same time, only a fraction of the advertised jobs are reported to the Federal Employment Agency, so that the supply of jobs currently exceeds the demand. Thus, as in previous years, the demand for electrical engineers - especially in the old federal states including Hamburg - cannot be met ("shortage of skilled workers").

In addition, students acquire basic professional and personal skills as part of the dual study programme that enable them to enter professional practice at an early stage and to go on to further study. Students also gain practical work experience through the integrated practical modules. Graduates of the dual course have broad foundational knowledge, fundamental skills for academic work and relevant personal competences.


Learning target

The desired learning outcomes of the degree programme are based on the objectives listed above. The focus is on enabling graduates to responsibly and competently perform an engineering activity in the various fields of activity in electrical engineering. The learning objectives are divided into the following categories: knowledge, skills, social competence and independence.

Knowledge

  • Students can name and describe the mathematical-scientific fundamentals and methods of engineering sciences. This includes, in particular, elements of higher analysis and linear algebra as well as physics.  
  • Students can explain the fundamentals and methods of electrical engineering and information technology and can give an overview of their subject. Of particular importance are direct and alternating current theory, circuit technology, the theory of electromagnetic fields and waves, the materials and components of electrical engineering as well as systems theory with their respective methods.
  • The students can explain the basics, methods and areas of application of the sub-disciplines of electrical engineering in detail. Important sub-disciplines are electrical power engineering, communications engineering, circuit technology, measurement technology and control engineering.
  • Students can reproduce the fundamentals and methods of economics and can give an overview of the relevant social, ethical, ecological and economic boundary conditions of their subject.

Skills

  • The students can independently work on research questions using suitable methods, document their chosen solution path and present it to an expert audience.
  • Students can solve problems from the fields of analysis, linear algebra, function theory and the theory of differential equations using the methods they have learned
  • The students can assess the current and voltage behaviour in electrical networks, dimension simple circuits and analyse networks in the time and frequency domain. They can use semiconductor components such as transistors and diodes as well as operational amplifiers in their areas of application. They are able to plan electrical power supply systems in basic outlines and analyse the operating behaviour of electrical machines and calculate typical variables. They are able to clarify metrological issues and apply methods for describing and processing measurement data.
  • The students can model, programme and adapt simple algorithms. They can design and test software and estimate its complexity. They are able to distinguish between the different levels of abstraction of today's computing systems.
  • The students can apply different methods to solve Maxwell's equations for electromagnetic field problems. They can derive typical quantities from the fields and dimension them for application in practice.
  • The students can describe and analyse linear, time-invariant systems with the methods of signal and system theory. They are able to design and evaluate simple communication and control systems.
  • The students can generally map typical problems to their basic knowledge, find suitable solution methods and implement them. They can appropriately document the chosen solution in writing and present it to an audience in a clearly structured manner.

Social competence

  • Students are able to present the procedure and results of their work in a comprehensible manner, both orally and in writing.
  • The students are able to communicate about the contents and problems of electrical engineering with experts and laypersons. They can react appropriately to questions, additions and comments.
  • The students are able to work in groups. They can define, distribute and integrate subtasks. They can make time arrangements and interact socially.

Competence to work independently

  • The students are able to obtain necessary technical information and place it in the context of their knowledge
  • The students can realistically assess their existing competences and work on deficits independently
  • The students can learn complex topics and work on problems in a self-organised and self-motivated manner (lifelong learning).

By continually switching places of learnings throughout the dual study programme, it is possible for theory and practice to be interlinked. Students reflect theoretically on their individual professional practical experience, and apply the results of their reflection to new forms of practice. They also test theoretical elements of the course in a practical setting, and use their findings as a stimulus for theoretical debate.


Program structure

The curriculum of the Bachelor's degree programme in Electrical Engineering is structured as follows:

  • Core qualification - compulsory: 29 modules, 174 credit points (LP), 1st - 6th semester.
  • Core qualification - compulsory elective: 4 modules, 24 LP, 4th, 5th and 6th semester
  • Bachelor thesis: 12 LP, 6th semester

The total workload for the Bachelor's programme is 210 LP, with a semester distribution of 36/34/38/36/36/36 LP.

In addition to the subject modules, the core qualification also includes the following interdisciplinary modules:

  • Fundamentals of business administration: 6 LP, 1st semester
  • dual courses in the Bachelor: 6 LP, 1st - 6th semester

The structural model of the dual study programme follows a module-differentiating approach. Given the practice-oriented element, the curriculum of the dual study programme is different compared to a standard Bachelor’s course. Five practical modules are completed at the dual students’ partner company as part of corresponding practical terms during lecture-free periods.

Core Qualification

Module M0642: Physics for Engineers

Courses
Title Typ Hrs/wk CP
Physics for Engineers (L0367) Lecture 2 3
Physics for Engineers (Problem Solving Course) (L0368) Recitation Section (small) 1 1
Physics-Lab for ET (L0948) Practical Course 1 2
Module Responsible Prof. Manfred Eich
Admission Requirements None
Recommended Previous Knowledge
  • Calculus and linear algebra on high school level
  • Physics on high school level
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain fundamental topics and laws of physics such as in the areas of mechanics, oscillations,
waves, and optics.

Students can relate physics topics to technical problems.

Skills

Students can describe physical problems mathematically and solve such problems within the framework of
their acquired mathematical expertise.

Students are able to write meaningful reports on experiments and to discuss the results in a conclusive way.

Personal Competence
Social Competence

Students can jointly solve subject related problems in groups. They can present their results effectively
within the framework of the problem solving and lab courses.


Autonomy

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work 4-seitige handschriftliche Versuchsvorbereitung, Ausarbeitung unter Anleitung und Testat
Examination Written exam
Examination duration and scale 120 Minutes
Assignment for the Following Curricula Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Course L0367: Physics for Engineers
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Manfred Eich
Language DE
Cycle WiSe
Content
  • Introduction
  • Kinematics and dynamics
  • Work, Energy, momentum
  • Rotatory Motion, moments of inertia
  • Gravitation
  • Special Theory of Relativity
  • Oscillations
  • Waves
  • Geometrical optics
  • Wave optics
  • Matter waves
  • Fundamentals of quantum mechanics
Literature
  • Giancoli, Physics for Scientists & Engineers Vol. 1, 2, Pearson
  • Halliday/Resnik/Walker, Fundamentals of physics, Wiley 
  • K. Cummings, P. Laws, E. Redish, and P. Cooney (“CLRC”), Understanding Physics, Wiley
  • Gerthsen/Vogel, Physik, Springer Verlag 
  • Hering/Martin/Stohrer, Physik für Ingenieure, VDI-Verlag
Course L0368: Physics for Engineers (Problem Solving Course)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Manfred Eich
Language DE
Cycle WiSe
Content

see lecture Physics for Engineers

Literature

see lecture Physics for Engineers

Course L0948: Physics-Lab for ET
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Wolfgang Hansen
Language DE/EN
Cycle SoSe
Content

In the physics lab a number of key experiments on physical phenomena in mechanics, oscillatory and wave motion, thermodynamics, electricity, and optics will be conducted by the students under assistance of a lecturing tutor. The experiments are part of the physics education program presented in the course "Physics for TUHH-ET Engineers".

Beyond teaching of fundamental physical background the objectives are basic skills in preparation and performing physical measurements, usage of physical equipment, analysis of the results and preparation of a report on the experimental data.

Literature

Zu den Versuchen gibt es individuelle Versuchsanleitungen, die vor der Versuchsdurchführung ausgegeben werden.  

Zum Teil müssen die zur Versuchsdurchführung notwendigen physikalischen Hintergründe selbstständig erarbeitet werden, wozu die zur Vorlesung "Physik für TUHH-ET Ingenieure" angegebene Literatur gut geeignet ist.

Module M0743: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields

Courses
Title Typ Hrs/wk CP
Electrical Engineering I: Direct Current Networks and Electromagnetic Fields (L0675) Lecture 3 5
Electrical Engineering I: Direct Current Networks and Electromagnetic Fields (L0676) Recitation Section (small) 2 1
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 100 Minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Course L0675: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Matthias Kuhl
Language DE
Cycle WiSe
Content
Literature
  1. M. Kasper, Skript zur Vorlesung Elektrotechnik 1, 2013
  2. M. Albach: Grundlagen der Elektrotechnik 1, Pearson Education, 2004
  3. F. Moeller, H. Frohne, K.H. Löcherer, H. Müller: Grundlagen der Elektrotechnik, Teubner, 2005
  4. A. R. Hambley: Electrical Engineering, Principles and Applications, Pearson Education, 2008
Course L0676: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields
Typ Recitation Section (small)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Matthias Kuhl
Language DE
Cycle WiSe
Content
Literature
  1. Übungsaufgaben zur Elektrotechnik 1, TUHH, 2013
  2. Ch. Kautz: Tutorien zur Elektrotechnik, Pearson Studium, 2010

Module M1692: Computer Science for Engineers - Introduction and Overview

Courses
Title Typ Hrs/wk CP
Computer Science for Engineers - Introduction and Overview (L2685) Lecture 3 3
Computer Science for Engineers - Introduction and Overview (L2686) Recitation Section (small) 2 3
Module Responsible Prof. Görschwin Fey
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Attestation Testate finden semesterbegleitend statt.
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Logistics and Mobility: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2685: Computer Science for Engineers - Introduction and Overview
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Görschwin Fey
Language DE/EN
Cycle WiSe
Content
Literature
  • Informatik
    • Helmut Herold, Bruno Lurz, Jürgen Wohlrab, Matthias Hopf: Grundlagen der Informatik, 3. Auflage, 816 Seiten, Pearson Studium, 2017.
  • C++
    • Bjarne Stroustrup, Einführung in die Programmierung mit C++, 479 Seiten, Pearson Studium, 2010.
      --> in der englischen Version bereits eine neuere Auflage!
    • Jürgen Wolf : Grundkurs C++: C++-Programmierung verständlich erklärt, Rheinwerk Computing, 3. Auflage, 2016.
Course L2686: Computer Science for Engineers - Introduction and Overview
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Görschwin Fey
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0829: Foundations of Management

Courses
Title Typ Hrs/wk CP
Management Tutorial (L0882) Recitation Section (small) 2 3
Introduction to Management (L0880) Lecture 3 3
Module Responsible Prof. Christoph Ihl
Admission Requirements None
Recommended Previous Knowledge Basic Knowledge of Mathematics and Business
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After taking this module, students know the important basics of many different areas in Business and Management, from Planning and Organisation to Marketing and Innovation, and also to Investment and Controlling. In particular they are able to

  • explain the differences between Economics and Management and the sub-disciplines in Management and to name important definitions from the field of Management
  • explain the most important aspects of and goals in Management and name the most important aspects of entreprneurial projects 
  • describe and explain basic business functions as production, procurement and sourcing, supply chain management, organization and human ressource management, information management, innovation management and marketing 
  • explain the relevance of planning and decision making in Business, esp. in situations under multiple objectives and uncertainty, and explain some basic methods from mathematical Finance 
  • state basics from accounting and costing and selected controlling methods.
Skills

Students are able to analyse business units with respect to different criteria (organization, objectives, strategies etc.) and to carry out an Entrepreneurship project in a team. In particular, they are able to

  • analyse Management goals and structure them appropriately
  • analyse organisational and staff structures of companies
  • apply methods for decision making under multiple objectives, under uncertainty and under risk
  • analyse production and procurement systems and Business information systems
  • analyse and apply basic methods of marketing
  • select and apply basic methods from mathematical finance to predefined problems
  • apply basic methods from accounting, costing and controlling to predefined problems

Personal Competence
Social Competence

Students are able to

  • work successfully in a team of students
  • to apply their knowledge from the lecture to an entrepreneurship project and write a coherent report on the project
  • to communicate appropriately and
  • to cooperate respectfully with their fellow students. 
Autonomy

Students are able to

  • work in a team and to organize the team themselves
  • to write a report on their project.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale several written exams during the semester
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Specialisation Civil Engineering: Elective Compulsory
Civil- and Environmental Engineering: Specialisation Water and Environment: Elective Compulsory
Civil- and Environmental Engineering: Specialisation Traffic and Mobility: Elective Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Logistics and Mobility: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L0882: Management Tutorial
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Christoph Ihl, Katharina Roedelius
Language DE
Cycle WiSe/SoSe
Content

In the management tutorial, the contents of the lecture will be deepened by practical examples and the application of the discussed tools.

If there is adequate demand, a problem-oriented tutorial will be offered in parallel, which students can choose alternatively. Here, students work in groups on self-selected projects that focus on the elaboration of an innovative business idea from the point of view of an established company or a startup. Again, the business knowledge from the lecture should come to practical use. The group projects are guided by a mentor.


Literature Relevante Literatur aus der korrespondierenden Vorlesung.
Course L0880: Introduction to Management
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Christoph Ihl, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Cornelius Herstatt, Prof. Kathrin Fischer, Prof. Matthias Meyer, Prof. Thomas Wrona, Prof. Thorsten Blecker, Prof. Wolfgang Kersten
Language DE
Cycle WiSe/SoSe
Content
  • Introduction to Business and Management, Business versus Economics, relevant areas in Business and Management
  • Important definitions from Management, 
  • Developing Objectives for Business, and their relation to important Business functions
  • Business Functions: Functions of the Value Chain, e.g. Production and Procurement, Supply Chain Management, Innovation Management, Marketing and Sales
    Cross-sectional Functions, e.g. Organisation, Human Ressource Management, Supply Chain Management, Information Management
  • Definitions as information, information systems, aspects of data security and strategic information systems
  • Definition and Relevance of innovations, e.g. innovation opporunities, risks etc.
  • Relevance of marketing, B2B vs. B2C-Marketing
  • different techniques from the field of marketing (e.g. scenario technique), pricing strategies
  • important organizational structures
  • basics of human ressource management
  • Introduction to Business Planning and the steps of a planning process
  • Decision Analysis: Elements of decision problems and methods for solving decision problems
  • Selected Planning Tasks, e.g. Investment and Financial Decisions
  • Introduction to Accounting: Accounting, Balance-Sheets, Costing
  • Relevance of Controlling and selected Controlling methods
  • Important aspects of Entrepreneurship projects



Literature

Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008

Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003

Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006.

Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001.

Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008.

Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005.

Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008.

Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. 


Module M0850: Mathematics I

Courses
Title Typ Hrs/wk CP
Mathematics I (L2970) Lecture 4 4
Mathematics I (L2971) Recitation Section (large) 2 2
Mathematics I (L2972) Recitation Section (small) 2 2
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge

School mathematics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name the basic concepts in analysis and linear algebra. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in analysis and linear algebra with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Course achievement
Compulsory Bonus Form Description
Yes 10 % Excercises
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Logistics and Mobility: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2970: Mathematics I
Typ Lecture
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Lecturer Prof. Anusch Taraz
Language DE
Cycle WiSe
Content

Mathematical Foundations:

sets, statements, induction, mappings, trigonometry

Analysis: Foundations of differential calculus in one variable

  • natural and real numbers
  • convergence of sequences and series
  • continuous and differentiable functions
  • mean value theorems
  • Taylor series
  • calculus
  • error analysis
  • fixpoint iteration

Linear Algebra: Foundations of linear algebra in Rn

  • vectors: rules, linear combinations, inner and cross product, lines and planes
  • systems of linear equations: Gauß elimination, linear mappings, matrix multiplication, inverse matrices, determinants 
  • orthogonal projection in R^n, Gram-Schmidt-Orthonormalization


Literature
  • T. Arens u.a. : Mathematik, Springer Spektrum, Heidelberg 2015
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • G. Strang: Lineare Algebra, Springer-Verlag, 2003
  • G. und S. Teschl: Mathematik für Informatiker, Band 1, Springer-Verlag, 2013
Course L2971: Mathematics I
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz, Dr. Dennis Clemens, Dr. Simon Campese
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L2972: Mathematics I
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1755: Linking theory and practice (dual study program, Bachelor's degree)

Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students…

… can describe and classify selected classic and modern theories, concepts and methods 

  • related to self-management, and organising work and learning 
  • self-competence and 
  • social skills

... and apply them to specific situations, projects and plans in a personal and professional context.


Skills

Dual students…

  • ... anticipate typical difficulties, positive and negative effects, as well as success and failure factors in the engineering sector, evaluate them and consider promising strategies and courses of action.


Personal Competence
Social Competence

Dual students…

  • … work together in a problem-oriented and interdisciplinary manner as part of expert and work teams.
  • … are able to assemble and lead working groups.
  • … present complex, subject-related solutions to problems to experts and stakeholders and can develop these further together.
Autonomy

Dual students…

  • … define, reflect and evaluate goals for learning and work processes.
  • … design their learning and work processes independently and sustainably at the university and company.
  • … take responsibility for their learning and work processes.
  • … are able to consciously think through their ideas or actions and relate them to their self-image to develop conclusions for future action based on this.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine fortlaufende Dokumentation und Reflexion der Lernerfahrungen und der Kompetenzentwicklung im Bereich der Personalen Kompetenz.
Course L2885: Self-Competence for Professional Success in Engineering (for Dual Study Program)
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Henning Haschke, Heiko Sieben
Language DE
Cycle WiSe/SoSe
Content
  • Key qualifications for professional success 
  • Personality and self-image
  • Personality profiles
  • Emotional competence
  • Needs structure models
  • Motivation theories and models
  • Communication basics, communication problems
  • Conflict management
  • Constructive communication and language cultures
  • Resilience
  • Transfer skills and (self-)reflection
  • Intercultural competence and business etiquette
  • Documenting and reflecting on learning experiences
Literature Seminarapparat
Course L2884: Self-Management, Organising Work and Learning in Engineering (for Dual Study Program)
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Henning Haschke, Heiko Sieben
Language DE
Cycle WiSe/SoSe
Content
  • Learning to learn
  • Instruments and methods for time and self-management
  • Personality and work style/behaviour (DISC model); inner drivers/motivation
  • Goal setting and planning techniques (SMART, GROW); for short-, medium- and long-term planning
  • Creativity techniques
  • Stress management, resilience
  • (Self-)reflection throughout the learning and work process
  • Structuring/connecting learning and work processes within different learning environments
  • Factors influencing learning transfer/transfer skills
  • Documenting and reflecting on learning experiences
Literature Seminarapparat
Course L2886: Social-Competence: Team Development and Communication in Engineering (for Dual Study Program)
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Henning Haschke, Heiko Sieben
Language DE
Cycle WiSe/SoSe
Content
  • Forms, conditions and processes of working groups and leadership relationships
  • Social skills: theories and models
  • Communication and discussion techniques 
  • Empathy and motivation in teamwork, the way teams work 
  • Critical ability
  • Team development: ways of developing working and project groups
  • Insights into day-to-day leadership: theories and models, leadership tasks, leadership styles, situational leadership, basics of change management
  • Documenting and reflecting on learning experiences
Literature Seminarapparat

Module M1750: Practical module 1 (dual study program, Bachelor's degree)

Courses
Title Typ Hrs/wk CP
Practical term 1 (dual study program, Bachelor's degree) (L2879) 0 6
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge

A: Self-management, organising work and learning in engineering (for dual study program)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students…

  • … describe their employer’s organisation (company) and the associated regulations that relate to how tasks and competences are distributed, as well as how work processes are handled. 
  • … understand the structure and objectives of the dual study programme and the increasing requirements throughout the course of study.
Skills

Dual students…

  • … use equipment and resources professionally in accordance with the assigned work areas and tasks, and describe operational processes and procedures with regard to the intended work results/objectives.
  • … implement the university’s application recommendations in relation to their current tasks.


Personal Competence
Social Competence

Dual students…

  • … have familiarised themselves with their new working environment (learning environment) and the associated tasks/processes/working relationships. 
  • … know their central points of contact and company colleagues, and exchange ideas with them constructively.
  • … coordinate work tasks with their professional supervisor and ask for support as needed.
  • … help shape the work in the assigned work area and offer their colleagues support to complete their work. 
  • … work together with others in smaller work teams in a result-oriented manner.


Autonomy

Dual students…

  • … structure their work and learning processes within the company independently in line with their responsibilities and authorisations, and coordinate them with their professional supervisor. 
  • … complete work tasks/assignments with the support of colleagues. 
  • … coordinate the practical phase with any individual preparation required for the examination phase at TUHH. 
  • … document and reflect on how their foundational subjects link with their work as an engineer.


Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2879: Practical term 1 (dual study program, Bachelor's degree)
Typ
Hrs/wk 0
CP 6
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle WiSe
Content

Company onboarding process

  • Assigning initial work areas (supervisor, colleagues)
  • Assigning a contact person within the company (usually the HR department) 
  • Assigning a professional mentor in the work area (relating to practical application) 
  • Responsibilities and authorisations of the dual student within the company
  • Supporting/working with colleagues
  • Scheduling the relevant practical modules with initial work tasks
  • Theory/practice transfer options
  • Scheduling the examination phase/subsequent study semester

Operational knowledge and skills

  • Company-specific: organisational structure, corporate strategy, business and work areas, work procedures and processes, operational levels
  • Process and procedure options within the labour-market-relevant field of engineering
  • Operational equipment and resources
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company

Sharing/reflecting on learning

  • Creating an e-portfolio
  • Relevance of foundational subjects when working as an engineer
  • Comparing the learning and working processes of different learning environments with regard to their results and effects 

Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Module M0547: Electrical Engineering II: Alternating Current Networks and Basic Devices

Courses
Title Typ Hrs/wk CP
Electrical Engineering II: Alternating Current Networks and Basic Devices (L0178) Lecture 3 5
Electrical Engineering II: Alternating Current Networks and Basic Devices (L0179) Recitation Section (small) 2 1
Module Responsible Prof. Christian Becker
Admission Requirements None
Recommended Previous Knowledge

Electrical Engineering I

Mathematics I

Direct current networks, complex numbers


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to reproduce and explain fundamental theories, principles, and methods related to the theory of alternating currents. They can describe networks of linear elements using a complex notation for voltages and currents. They can reproduce an overview of applications for the theory of alternating currents in the area of electrical engineering. Students are capable of explaining the behavior of fundamental passive and active devices as well as their impact on simple circuits.


Skills

Students are capable of calculating parameters within simple electrical networks at alternating currents by means of a complex notation for voltages and currents. They can appraise the fundamental effects that may occur within electrical networks at alternating currents. Students are able to analyze simple circuits such as oscillating circuits, filter, and matching networks quantitatively and dimension elements by means of a design. They can motivate and justify the fundamental elements of an electrical power supply (transformer, transmission line, compensation of reactive power, multiphase system) and are qualified to dimension their main features.


Personal Competence
Social Competence

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively.


Autonomy

Students are capable to gather necessary information from the references provided and relate that information to the context of the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as online-tests and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between their knowledge obtained in this lecture and the content of other lectures (e.g. Electrical Engineering I, Linear Algebra, and Analysis).


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Midterm
Examination Written exam
Examination duration and scale 90 - 150 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Course L0178: Electrical Engineering II: Alternating Current Networks and Basic Devices
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Christian Becker
Language DE
Cycle SoSe
Content

- General time-dependency of electrical networks

- Representation and properties of harmonic signals

- RLC-elements at alternating currents/voltages

- Complex notation for the representation of RLC-elements

- Power in electrical networks at alternating currents, compensation of reactive power

- Frequency response locus (Nyquist plot) and Bode-diagrams

- Measurement instrumentation for assessing alternating currents

- Oscillating circuits, filters, electrical transmission lines

- Transformers, three-phase current, energy converters

- Simple non-linear and active electrical devices


Literature

- M. Albach, "Elektrotechnik", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013)  

- R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010)

- C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009)

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013)

- R. Dorf, "The Electrical Engineering Handbook", CRC (2006)


Course L0179: Electrical Engineering II: Alternating Current Networks and Basic Devices
Typ Recitation Section (small)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Christian Becker
Language DE
Cycle SoSe
Content

- General time-dependency of electrical networks

- Representation and properties of harmonic signals

- RLC-elements at alternating currents/voltages

- Complex notation for the representation of RLC-elements

- Power in electrical networks at alternating currents, compensation of reactive power

- Frequency response locus (Nyquist plot) and Bode-diagrams

- Measurement instrumentation for assessing alternating currents

- Oscillating circuits, filters, electrical transmission lines

- Transformers, three-phase current, energy converters

- Simple non-linear and active electrical devices


Literature

- M. Albach, "Elektrotechnik", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013)  

- R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010)

- C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009)

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013)

- R. Dorf, "The Electrical Engineering Handbook", CRC (2006)


Module M0748: Materials in Electrical Engineering

Courses
Title Typ Hrs/wk CP
Electrotechnical Experiments (L0714) Lecture 1 1
Materials in Electrical Engineering (L0685) Lecture 2 3
Materials in Electrical Engineering (Problem Solving Course) (L0687) Recitation Section (small) 2 2
Module Responsible Prof. Manfred Eich
Admission Requirements None
Recommended Previous Knowledge Highschool level physics and mathematics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the composition and the structural properties of materials used in electrical engineering. Students can explicate the relevance of mechanical, electrical, thermal, dielectric, magnetic and chemical properties of materials in view of their applications in electrical engineering.

Skills

Students can identify appropriate descriptive models and apply them mathematically. They can derive approximative solutions and judge factors influential on the performance of materials in electrical engineering applications.


Personal Competence
Social Competence

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Autonomy

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Course L0714: Electrotechnical Experiments
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Helge Fielitz
Language DE
Cycle SoSe
Content

Agenda:

- Natural sources of electricity

- Oscilloscope

- Characterizing signals

- 2 terminal circuit elements

- 2-ports

- Power

- Matching

- Inductive coupling

- Resonance

- Radio frequencies

- Transistor circuits

- Electrical measurement

- Materials for the EE

- Electrical fun


Literature

Tietze, Schenk: "Halbleiterschaltungstechnik", Springer


Course L0685: Materials in Electrical Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Manfred Eich
Language DE
Cycle SoSe
Content

The Hamiltonian approach to classical mechanics. Analysis of a simple oscillator.
Analysis of vibrations in a one-dimensional lattice.
Phononic bandgap
Introduction to quantum mechanics
Wave function, Schrödinger’s equation, observables and measurements.
Quantum mechanical harmonic oscillator and spectral decomposition.
Symmetries, conserved quantities, and the labeling of states.
Angular momentum
The hydrogen atom
Waves in periodic potentials
Reciprocal lattice and reciprocal lattice vectors
Band gap
Band diagrams
The free electron gas and the density of states
Fermi-Dirac distribution
Density of charge carriers in semiconductors
Conductivity in semiconductors. Engineering conductivity through doping.
The P-N junction (diode)
Light emitting diodes
Electromagnetic waves interacting with materials
Reflection and refraction
Photonic band gaps
Origins of magnetization
Hysteresis in ferromagnetic materials
Magnetic domains

Literature

1.Anikeeva, Beach, Holten-Andersen, Fink, Electronic, Optical and Magnetic Properties of Materials,
Massachusetts Institute of Technology (MIT), 2013

2.Hagelstein et al., Introductory Applied Quantum and Statistical Mechanics, Wiley 2004

3.Griffiths, Introduction to Quantum Mechanics, Prentice Hall, 1994

4.Shankar, Principles of Quantum Mechanics, 2nd ed., Plenum Press, 1994

5.Fick, Einführung in die Grundlagen der Quantentheorie, Akad. Verlagsges., 1979

6.Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2004

7.Ashcroft, Mermin, Solid State Physics, Harcourt, 1976

8.Pierret, Semiconductor Fundamentals Vol. 1, Addison Wesley, 1988

9.Sze, Physics of Semiconductor Devices, Wiley, 1981

10.Saleh, Teich, Fundamentals of Photonics, 2nd ed., 2007

11.Joannopoulos, Johnson, Winn Meade, Photonic Crystals, 2nd ed., Princeton Universty Press, 2008

12.Handley, Modern Magnetic Materials, Wiley, 2000

13.Wikipedia, Wikimedia

Course L0687: Materials in Electrical Engineering (Problem Solving Course)
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Manfred Eich
Language DE
Cycle SoSe
Content
  • Atom structure and periodic system
  • Atom binding and crystal structure
  • Structure and properties of alloys:
    diffusion, phase diagrams, phase separation and grain boundaries
  • Material properties:
    Mechanical, thermal, electrical, dielectric properties
  • Metals
  • Semiconductors
  • Ceramics and glasses
  • Polymers
  • Magnetic materials
  • Electrochemistry
    Oxidation numbers, electrolysis, batteries, fuel cells
Literature

H. Schaumburg: Einführung in die Werkstoffe der Elektrotechnik, Teubner (1993)

Module M1693: Computer Science for Engineers - Programming Concepts, Data Handling & Communication

Courses
Title Typ Hrs/wk CP
Computer Science for Engineers - Programming Concepts, Data Handling & Communication (L2689) Lecture 3 3
Computer Science for Engineers - Programming Concepts, Data Handling & Communication (L2690) Recitation Section (small) 2 3
Module Responsible Prof. Sibylle Fröschle
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills


Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Attestation Testate finden semesterbegleitend statt.
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory
Logistics and Mobility: Specialisation Information Technology: Compulsory
Mechatronics: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Compulsory
Course L2689: Computer Science for Engineers - Programming Concepts, Data Handling & Communication
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Sibylle Fröschle
Language DE
Cycle SoSe
Content
Literature

John V. Guttag: Introduction to Computation and Programming Using Python.
With Application to Understanding Data. 2nd Edition. The MIT Press, 2016.

Course L2690: Computer Science for Engineers - Programming Concepts, Data Handling & Communication
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Sibylle Fröschle
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0851: Mathematics II

Courses
Title Typ Hrs/wk CP
Mathematics II (L2976) Lecture 4 4
Mathematics II (L2977) Recitation Section (large) 2 2
Mathematics II (L2978) Recitation Section (small) 2 2
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge Mathematics I
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name further concepts in analysis and linear algebra. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in analysis and linear algebra with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Course achievement
Compulsory Bonus Form Description
Yes 10 % Excercises
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Logistics and Mobility: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2976: Mathematics II
Typ Lecture
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Lecturer Prof. Anusch Taraz
Language DE
Cycle SoSe
Content
Literature
Course L2977: Mathematics II
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L2978: Mathematics II
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1751: Practical module 2 (dual study program, Bachelor's degree)

Courses
Title Typ Hrs/wk CP
Practical term 2 (dual study program, Bachelor's degree) (L2880) 0 6
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of practical module 1 as part of the dual Bachelor’s course
  • course A from the module on interlinking theory and practice as part of the dual Bachelor’s course
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

  • … describe their employer’s organisational structure (company) and differentiate between associated regulations that relate to how tasks and competences are distributed, as well as how work processes are handled. 
  • … understand the structure and objectives of the dual study programme and the increasing requirements throughout the course of study.


Skills

Dual students …

  • … use equipment and resources professionally in accordance with the assigned work areas and tasks, and assess operational processes and procedures with regard to the intended work results/objectives.
  • … implement the university’s application recommendations in relation to their current tasks.
Personal Competence
Social Competence

Dual students …

  • … have familiarised themselves with their new working environment (learning environment) and the associated tasks/processes/working relationships. 
  • … know their central points of contact and colleagues, and are integrated into the designated tasks and work areas. 
  • … coordinate work tasks with their professional supervisor and justify procedures and intended results. 
  • … help shape the work in the assigned work area and offer their colleagues support to complete their work or ask for support based on their needs. 
  • … work together with others in interdisciplinary work teams in a result-oriented manner.
Autonomy

Dual students …

  • … structure their work and learning processes within the company independently in line with their responsibilities and authorisations, and coordinate them with their professional supervisor. 
  • … complete work tasks/assignments independently and/or with the support of colleagues. 
  • … coordinate the practical phase with any individual preparation required for the examination phase at TUHH. 
  • … document and reflect on how their foundational subjects link with their work as an engineer.
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2880: Practical term 2 (dual study program, Bachelor's degree)
Typ
Hrs/wk 0
CP 6
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle SoSe
Content

Company onboarding process

  • Assigning work areas (supervisor, colleagues)
  • Assigning a contact person within the company (usually the HR department) 
  • Assigning a professional mentor in the work area (relating to practical application) 
  • Responsibilities and authorisations of the dual student within the company
  • Supporting/working with colleagues
  • Scheduling the relevant practical modules with work tasks
  • Theory/practice transfer options
  • Scheduling the examination phase/subsequent study semester

Operational knowledge and skills

  • Company-specific: organisational structure, corporate strategy, business and work areas, work procedures and processes, operational levels
  • Process and procedure options within the labour-market-relevant field of engineering
  • Operational equipment and resources
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company

Sharing/reflecting on learning

  • Creating an e-portfolio
  • Relevance of foundational subjects when working as an engineer
  • Comparing the learning and working processes of different learning environments with regard to their results and effects
Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Module M0783: Measurements: Methods and Data Processing

Courses
Title Typ Hrs/wk CP
EE Experimental Lab (L0781) Practical Course 2 2
Measurements: Methods and Data Processing (L0779) Lecture 2 3
Measurements: Methods and Data Processing (L0780) Recitation Section (small) 1 1
Module Responsible Prof. Alexander Schlaefer
Admission Requirements None
Recommended Previous Knowledge

principles of mathematics
principles of electrical engineering 

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to explain the purpose of metrology and the acquisition and processing of measurements. They can detail aspects of probability theory and errors, and explain the processing of stochastic signals. Students know methods to digitalize and describe measured signals.



Skills

The students are able to evaluate problems of metrology and to apply methods for describing and processing of measurements.


Personal Competence
Social Competence

The students solve problems in small groups.

Autonomy

The students can reflect their knowledge and discuss and evaluate their results.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Excercises
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Specialisation Electrical Engineering: Elective Compulsory
Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Integrated Building Technology: Core Qualification: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0781: EE Experimental Lab
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer, Dozenten des SD E, Prof. Alexander Kölpin, Prof. Bernd-Christian Renner, Prof. Christian Becker, Prof. Heiko Falk, Prof. Herbert Werner, Prof. Thorsten Kern
Language DE
Cycle WiSe
Content lab experiments: digital circuits, semiconductors, micro controllers, analog circuits, AC power, electrical machines
Literature Wird in der Lehrveranstaltung festgelegt
Course L0779: Measurements: Methods and Data Processing
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language DE
Cycle WiSe
Content

introduction, systems and errors in metrology, probability theory, measuring stochastic signals, describing measurements, acquisition of analog signals, applied metrology

Literature

Puente León, Kiencke: Messtechnik, Springer 2012
Lerch: Elektrische Messtechnik, Springer 2012

Weitere Literatur wird in der Veranstaltung bekanntgegeben.

Course L0780: Measurements: Methods and Data Processing
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Alexander Schlaefer
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0708: Electrical Engineering III: Circuit Theory and Transients

Courses
Title Typ Hrs/wk CP
Circuit Theory (L0566) Lecture 3 4
Circuit Theory (L0567) Recitation Section (small) 2 2
Module Responsible Prof. Alexander Kölpin
Admission Requirements None
Recommended Previous Knowledge

Electrical Engineering I and II, Mathematics I and II


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain the basic methods for calculating electrical circuits. They know the Fourier series analysis of linear networks driven by periodic signals. They know the methods for transient analysis of linear networks in time and in frequency domain, and they are able to explain the frequency behaviour and the synthesis of passive two-terminal-circuits.


Skills

The students are able to calculate currents and voltages in linear networks by means of basic methods, also when driven by periodic signals. They are able to calculate transients in electrical circuits in time and frequency domain and are able to explain the respective transient behaviour. They are able to analyse and to synthesize the frequency behaviour of passive two-terminal-circuits.


Personal Competence
Social Competence

Students work on exercise tasks in small guided groups. They are encouraged to present and discuss their results within the group.


Autonomy

The students are able to find out the required methods for solving the given practice problems. Possibilities are given to test their knowledge during the lectures continuously by means of short-time tests. This allows them to control independently their educational objectives. They can link their gained knowledge to other courses like Electrical Engineering I and Mathematics I.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 150 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Specialisation Electrical Engineering: Compulsory
Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Mechatronics: Specialisation Electrical Systems: Compulsory
Mechatronics: Specialisation Dynamic Systems and AI: Compulsory
Mechatronics: Core Qualification: Compulsory
Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0566: Circuit Theory
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Alexander Kölpin, Dr. Fabian Lurz
Language DE
Cycle WiSe
Content

- Circuit theorems

- N-port circuits

- Periodic excitation of linear circuits

- Transient analysis in time domain

- Transient analysis in frequency domain; Laplace Transform

- Frequency behaviour of passive one-ports


Literature

- M. Albach, "Grundlagen der Elektrotechnik 1", Pearson Studium (2011)

- M. Albach, "Grundlagen der Elektrotechnik 2", Pearson Studium (2011)

- L. P. Schmidt, G. Schaller, S. Martius, "Grundlagen der Elektrotechnik 3", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) 

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2008)

- R. C. Dorf, J. A. Svoboda, "Introduction to electrical circuits", Wiley (2006)

- L. Moura, I. Darwazeh, "Introduction to Linear Circuit Analysis and Modeling", Amsterdam Newnes (2005)


Course L0567: Circuit Theory
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Alexander Kölpin, Dr. Fabian Lurz
Language DE
Cycle WiSe
Content see interlocking course
Literature

siehe korrespondierende Lehrveranstaltung

Module M0730: Computer Engineering

Courses
Title Typ Hrs/wk CP
Computer Engineering (L0321) Lecture 3 4
Computer Engineering (L0324) Recitation Section (small) 1 2
Module Responsible Prof. Heiko Falk
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge in electrical engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

This module deals with the foundations of the functionality of computing systems. It covers the layers from the assembly-level programming down to gates. The module includes the following topics:

  • Introduction
  • Combinational logic: Gates, Boolean algebra, Boolean functions, hardware synthesis, combinational networks
  • Sequential logic: Flip-flops, automata, systematic hardware design
  • Technological foundations
  • Computer arithmetic: Integer addition, subtraction, multiplication and division
  • Basics of computer architecture: Programming models, MIPS single-cycle architecture, pipelining
  • Memories: Memory hierarchies, SRAM, DRAM, caches
  • Input/output: I/O from the perspective of the CPU, principles of passing data, point-to-point connections, busses
Skills

The students perceive computer systems from the architect's perspective, i.e., they identify the internal structure and the physical composition of computer systems. The students can analyze, how highly specific and individual computers can be built based on a collection of few and simple components. They are able to distinguish between and to explain the different abstraction layers of today's computing systems - from gates and circuits up to complete processors.

After successful completion of the module, the students are able to judge the interdependencies between a physical computer system and the software executed on it. In particular, they shall understand the consequences that the execution of software has on the hardware-centric abstraction layers from the assembly language down to gates. This way, they will be enabled to evaluate the impact that these low abstraction levels have on an entire system's performance and to propose feasible options.

Personal Competence
Social Competence

Students are able to solve similar problems alone or in a group and to present the results accordingly.

Autonomy

Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Excercises
Examination Written exam
Examination duration and scale 90 minutes, contents of course and labs
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Elective Compulsory
Data Science: Specialisation I. Mathematics/Computer Science: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Elective Compulsory
Mechatronics: Core Qualification: Elective Compulsory
Technomathematics: Specialisation II. Informatics: Elective Compulsory
Course L0321: Computer Engineering
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Heiko Falk
Language DE/EN
Cycle WiSe
Content
  • Introduction
  • Combinational Logic
  • Sequential Logic
  • Technological Foundations
  • Representations of Numbers, Computer Arithmetics
  • Foundations of Computer Architecture
  • Memories
  • Input/Output
Literature
  • A. Clements. The Principles of Computer Hardware. 3. Auflage, Oxford University Press, 2000.
  • A. Tanenbaum, J. Goodman. Computerarchitektur. Pearson, 2001.
  • D. Patterson, J. Hennessy. Rechnerorganisation und -entwurf. Elsevier, 2005.
Course L0324: Computer Engineering
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heiko Falk
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0853: Mathematics III

Courses
Title Typ Hrs/wk CP
Analysis III (L1028) Lecture 2 2
Analysis III (L1029) Recitation Section (small) 1 1
Analysis III (L1030) Recitation Section (large) 1 1
Differential Equations 1 (Ordinary Differential Equations) (L1031) Lecture 2 2
Differential Equations 1 (Ordinary Differential Equations) (L1032) Recitation Section (small) 1 1
Differential Equations 1 (Ordinary Differential Equations) (L1033) Recitation Section (large) 1 1
Module Responsible Prof. Marko Lindner
Admission Requirements None
Recommended Previous Knowledge Mathematics I + II
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name the basic concepts in the area of analysis and differential equations. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in the area of analysis and differential equations with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Course achievement None
Examination Written exam
Examination duration and scale 60 min (Analysis III) + 60 min (Differential Equations 1)
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Logistics and Mobility: Specialisation Information Technology: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Compulsory
Course L1028: Analysis III
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content

Main features of differential and integrational calculus of several variables 

  • Differential calculus for several variables
  • Mean value theorems and Taylor's theorem
  • Maximum and minimum values
  • Implicit functions
  • Minimization under equality constraints
  • Newton's method for multiple variables
  • Fourier series
  • Double integrals over general regions
  • Line and surface integrals
  • Theorems of Gauß and Stokes
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1029: Analysis III
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1030: Analysis III
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1031: Differential Equations 1 (Ordinary Differential Equations)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content

Main features of the theory and numerical treatment of ordinary differential equations 

  • Introduction and elementary methods
  • Exsitence and uniqueness of initial value problems
  • Linear differential equations
  • Stability and qualitative behaviour of the solution
  • Boundary value problems and basic concepts of calculus of variations
  • Eigenvalue problems
  • Numerical methods for the integration of initial and boundary value problems
  • Classification of partial differential equations

Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1032: Differential Equations 1 (Ordinary Differential Equations)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1033: Differential Equations 1 (Ordinary Differential Equations)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1752: Practical module 3 (dual study program, Bachelor's degree)

Courses
Title Typ Hrs/wk CP
Practical term 3 (dual study program, Bachelor's degree) (L2881) 0 6
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of practical module 2 as part of the dual Bachelor’s course
  • course B from the module on interlinking theory and practice as part of the dual Bachelor’s course
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

  • … understand the company’s strategic orientation, as well as the functions and organisation of central departments with their decision-making structures, network relationships.
  • … understand the requirements of the engineering profession and correctly estimate the resulting responsibility. 
  • … combine their knowledge of facts, principles, theories and methods gained from previous study content with acquired practical knowledge - in particular their knowledge of practical professional procedures and approaches, in the current field of activity.


Skills

Dual students …

  • … apply technical theoretical knowledge to current problems in their own area of work, and evaluate work processes and results.
  • … use technology, equipment and resources in accordance with the assigned work areas and tasks, and assess operational processes and procedures with regard to the intended work results/objectives.
  • … implement the university’s application recommendations in relation to their current tasks.
Personal Competence
Social Competence

Dual students …

  • … plan work processes cooperatively, including across work areas. 
  • … communicate professionally with operational stakeholders and present complex issues in a structured, targeted and convincing manner.
Autonomy

Dual students …

  • … assume responsibility for work assignments and areas.
  • … document and reflect on the relevance of subject modules and specialisations for work as an engineer, as well as the implementation of the university’s application recommendations and the associated challenges of a positive transfer of knowledge between theory and practice.
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2881: Practical term 3 (dual study program, Bachelor's degree)
Typ
Hrs/wk 0
CP 6
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle WiSe
Content

Company onboarding process

  • Assigning work area(s)
  • Extending responsibilities and authorisations of the dual student within the company
  • Independent work tasks and areas
  • Participating in project teams
  • Scheduling the relevant practical modules with work tasks
  • Theory/practice transfer options
  • Scheduling the examination phase/subsequent study semester

Operational knowledge and skills

  • Company-specific: strategic direction, organisation of central business and work areas, departments, decision-making structures, network relationships and internal communication
  • Linking facts, principles and theories with practical knowledge
  • Process and procedure options within the labour-market-relevant field of engineering
  • Operational technology, equipment and resources
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company

Sharing/reflecting on learning

  • E-portfolio
  • Relevance of subject modules and specialisations when working as an engineer
  • University application recommendations for transferring knowledge between theory and practice
Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Module M0610: Electrical Machines and Actuators

Courses
Title Typ Hrs/wk CP
Electrical Machines and Actuators (L0293) Lecture 3 4
Electrical Machines and Actuators (L0294) Recitation Section (large) 2 2
Module Responsible Prof. Thorsten Kern
Admission Requirements None
Recommended Previous Knowledge

Basics of mathematics, in particular complexe numbers, integrals, differentials

Basics of electrical engineering and mechanical engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can to draw and explain the basic principles of electric and magnetic fields. 

They can describe the function of the standard types of electric machines and present the corresponding equations and characteristic curves. For typically used drives they can explain the major parameters of the energy efficiency of the whole system from the power grid to the driven engine.

Skills

Students are able to calculate two-dimensional electric and magnetic fields in particular ferromagnetic circuits with air gap. For this they apply the usual methods of the design auf electric machines.

They can calulate the operational performance of electric machines from their given characteristic data and selected quantities and characteristic curves. They apply the usual equivalent circuits and graphical methods.


Personal Competence
Social Competence none
Autonomy

Students are able independently to calculate electric and magnatic fields for applications. They are able to analyse independently the operational performance of electric machines from the charactersitic data and theycan calculate thereof selected quantities and characteristic curves.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Design of four machines and actuators, review of design files
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Specialisation Electrical Engineering: Elective Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Energy Technology: Elective Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Maritime Technologies: Elective Compulsory
Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Mechanical Engineering: Core Qualification: Elective Compulsory
Mechatronics: Specialisation Naval Engineering: Compulsory
Mechatronics: Core Qualification: Compulsory
Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory
Mechatronics: Specialisation Electrical Systems: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Course L0293: Electrical Machines and Actuators
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Thorsten Kern, Dennis Kähler
Language DE
Cycle SoSe
Content

Electric field: Coulomb´s law, flux (field) line, work, potential, capacitor, energy, force, capacitive actuators

Magnetic field: force, flux line, Ampere´s law, field at bounderies, flux, magnetic circuit, hysteresis, induction, self-induction, mutual inductance, transformer, electromagnetic actuators

Synchronous machines, construction and layout, equivalent single line diagrams, no-load and short-cuircuit characteristics, vector diagrams, motor and generator operation, stepper motors

DC-Machines: Construction and layout, torque generation mechanismen, torque vs speed characteristics, commutation,

Asynchronous Machines. Magnetic field, construction and layout, equivalent single line diagram, complex stator current diagram (Heylands´diagram), torque vs. speed characteristics, rotor layout (squirrel-cage vs. sliprings),

Drives with variable speed, inverter fed operation, special drives

Literature

Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313

Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122

"Grundlagen der Elektrotechnik" - anderer Autoren

Fachbücher "Elektrische Maschinen"

Course L0294: Electrical Machines and Actuators
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Thorsten Kern, Dennis Kähler
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0567: Theoretical Electrical Engineering I: Time-Independent Fields

Courses
Title Typ Hrs/wk CP
Theoretical Electrical Engineering I: Time-Independent Fields (L0180) Lecture 3 5
Theoretical Electrical Engineering I: Time-Independent Fields (L0181) Recitation Section (small) 2 1
Module Responsible Prof. Christian Schuster
Admission Requirements None
Recommended Previous Knowledge

Basic principles of electrical engineering and advanced mathematics


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the fundamental formulas, relations, and methods of the theory of time-independent electromagnetic fields. They can explicate the principal behavior of electrostatic, magnetostatic, and current density fields with regard to respective sources. They can describe the properties of complex electromagnetic fields by means of superposition of solutions for simple fields. The students are aware of applications for the theory of time-independent electromagnetic fields and are able to explicate these.


Skills

Students can apply Maxwell’s Equations in integral notation in order to solve highly symmetrical, time-independent, electromagnetic field problems. Furthermore, they are capable of applying a variety of methods that require solving Maxwell’s Equations for more general problems. The students can assess the principal effects of given time-independent sources of fields and analyze these quantitatively. They can deduce meaningful quantities for the characterization of electrostatic, magnetostatic, and electrical flow fields (capacitances, inductances, resistances, etc.) from given fields and dimension them for practical applications.


Personal Competence
Social Competence

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively (e.g. during exercise sessions).


Autonomy

Students are capable to gather necessary information from provided references and relate this information to the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as short oral quizzes during the lectures and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between their knowledge obtained in this lecture and the content of other lectures (e.g. Electrical Engineering I, Linear Algebra, and Analysis).


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90-150 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Mechatronics: Specialisation Electrical Systems: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0180: Theoretical Electrical Engineering I: Time-Independent Fields
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Christian Schuster
Language DE
Cycle SoSe
Content

- Maxwell’s Equations in integral and differential notation

- Boundary conditions

- Laws of conservation for energy and charge

- Classification of electromagnetic field properties

- Integral characteristics of time-independent fields (R, L, C)

- Generic approaches to solving Poisson’s Equation

- Electrostatic fields and specific methods of solving

- Magnetostatic fields and specific methods of solving

- Fields of electrical current density and specific methods of solving

- Action of force within time-independent fields

- Numerical methods for solving time-independent problems

The practical application of numerical methods will be trained within specifically prepared lectures in an interactive manner using small MATLAB programs.

Literature

- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010)

- H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011)

- W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011)

- D. Griffiths, "Introduction to Electrodynamics", Pearson (2012)

- J. Edminister, " Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013)

- Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011)


Course L0181: Theoretical Electrical Engineering I: Time-Independent Fields
Typ Recitation Section (small)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Christian Schuster
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0672: Signals and Systems

Courses
Title Typ Hrs/wk CP
Signals and Systems (L0432) Lecture 3 4
Signals and Systems (L0433) Recitation Section (small) 2 2
Module Responsible Prof. Gerhard Bauch
Admission Requirements None
Recommended Previous Knowledge

Mathematics 1-3

The modul is an introduction to the theory of signals and systems. Good knowledge in maths as covered by the moduls Mathematik 1-3 is expected. Further experience with spectral transformations (Fourier series, Fourier transform, Laplace transform) is useful but not required.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to classify and describe signals and linear time-invariant (LTI) systems using methods of signal and system theory. They are able to apply the fundamental transformations of continuous-time and discrete-time signals and systems. They can describe and analyse deterministic signals and systems mathematically in both time and image domain. In particular, they understand the effects in time domain and image domain which are caused by the transition of a continuous-time signal to a discrete-time signal.

The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems.

Skills The students are able to describe and analyse deterministic signals and linear time-invariant systems using methods of signal and system theory. They can analyse and design basic systems regarding important properties such as magnitude and phase response, stability, linearity etc.. They can assess the impact of LTI systems on the signal properties in time and frequency domain.
Personal Competence
Social Competence The students can jointly solve specific problems.
Autonomy The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. 
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0432: Signals and Systems
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle SoSe
Content
  • Introduction to signal and system theory

  • Signals
    • Classification of signals
      • Continuous-time and discrete-time signals
      • Analog and digital signals
      • Deterministic and random signals
    • Description of LTI systems by differential equations or difference equations, respectively
    • Basic properties of signals and operations on signals
    • Elementary signals
    • Distributions (Generalized Functions)
    • Power and energy of signals
    • Correlation functions of deterministic signals
      • Autocorrelation function
      • Crosscorrelation function
      • Orthogonal signals
      • Applications of correlation
  • Linear time-invariant (LTI) systems
    • Linearity
    • Time-invariance
    • Description of LTI systems by impulse response and frequency response
    • Convolution
    • Convolution and correlation
    • Properties of LTI-systems
    • Causal systems
    • Stable systems
    • Memoryless systems
  • Fourier Series and Fourier Transform
    • Fourier transform of continuous-time signals, discrete-time signals, periodic signals, non-periodic signals
    • Properties of the Fourier transform
    • Fourier transform of some basic signals
    • Parseval’s theorem
  • Analysis of LTI-systems and signals in the frequency domain
    • Frequency response, magnitude response and phase response
    • Transmission factor, attenuation, gain
    • Frequency-flat and frequency-selective LTI-systems
    • Bandwidth definitions
    • Basic types of systems (filters), lowpass, highpass, bandpass, bandstop systems
    • Phase delay and group delay
    • Linear-phase systems
    • Distortion-free systems
    • Spectrum analysis with limited observation window: Leakage effect
  • Laplace Transform
    • Relation of Fourier transform and Laplace transform
    • Properties of the Laplace transform
    • Laplace transform of some basic signals
  • Analysis of LTI-systems in the s-domain
    • Transfer function of LTI-systems
    • Relation of Laplace transform, magnitude response and phase response
    • Analysis of LTI-systems using pole-zero plots
    • Allpass filters
    • Minimum-phase, maximum-phase and mixed phase filters
    • Stable systems
  • Sampling
    • Sampling theorem
    • Reconstruction of continuous-time signals in frequency domain and time domain
    • Oversampling
    • Aliasing
    • Sampling with pulses of finite duration, sample and hold
    • Decimation and interpolation
  • Discrete-Time Fourier Transform (DTFT)
    • Relation of Fourier transform and DTFT
    • Properties of the DTFT
  • Discrete Fourier Transform (DFT)
    • Relation of DTFT and DFT
    • Cyclic properties of the DFT
    • DFT matrix
    • Zero padding
    • Cyclic convolution
    • Fast Fourier Transform (FFT)
    • Application of the DFT: Orthogonal Frequency Division Multiplex (OFDM)
  • Z-Transform
    • Relation of Laplace transform, DTFT, and z-transform
    • Properties of the z-transform
    • Z-transform of some basic discrete-time signals
  • Discrete-time systems, digital filters
    • FIR and IIR filters
    • Z-transform of digital filters
    • Analysis of discrete-time systems using pole-zero plots in the z-domain
    • Stability
    • Allpass filters
    • Minimum-phase, maximum-phase and mixed-phase filters
    • Linear phase filters
Literature
  • T. Frey , M. Bossert , Signal- und Systemtheorie, B.G. Teubner Verlag 2004

  • K. Kammeyer, K. Kroschel, Digitale Signalverarbeitung, Teubner Verlag.

  • B. Girod ,R. Rabensteiner , A. Stenger , Einführung in die Systemtheorie, B.G. Teubner, Stuttgart, 1997

  • J.R. Ohm, H.D. Lüke , Signalübertragung, Springer-Verlag 8. Auflage, 2002

  • S. Haykin, B. van Veen: Signals and systems. Wiley.

  • Oppenheim, A.S. Willsky: Signals and Systems. Pearson.

  • Oppenheim, R. W. Schafer: Discrete-time signal processing. Pearson.

Course L0433: Signals and Systems
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0734: Electrical Engineering Project Laboratory

Courses
Title Typ Hrs/wk CP
Electrical Engineering Project Laboratory (L0640) Project-/problem-based Learning 8 6
Module Responsible Prof. Christian Becker
Admission Requirements None
Recommended Previous Knowledge

Electrical Engineering I, Electrical Engineering II




Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to give a summary of the technical details of projects in the area of electrical engineering and illustrate respective relationships. They are capable of describing and communicating relevant problems and questions using appropriate technical language. They can explain the typical process of solving practical problems and present related results.


Skills

The students can transfer their fundamental knowledge on electrical engineering to the process of solving practical problems. They identify and overcome typical problems during the realization of projects in the context of electrical engineering. Students are able to develop, compare, and choose conceptual solutions for non-standardized problems.


Personal Competence
Social Competence

Students are able to cooperate in small, mixed-subject groups in order to independently derive solutions to given problems in the context of electrical engineering. They are able to effectively present and explain their results alone or in groups in front of a qualified audience. Students have the ability to develop alternative approaches to an electrical engineering problem independently or in groups and discuss advantages as well as drawbacks.


Autonomy

Students are capable of independently solving electrical engineering problems using provided literature. They are able to fill gaps in as well as extent their knowledge using the literature and other sources provided by the supervisor. Furthermore, they can meaningfully extend given problems and pragmatically solve them by means of corresponding solutions and concepts.


Workload in Hours Independent Study Time 68, Study Time in Lecture 112
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale based on task + presentation
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Specialisation Electrical Engineering: Compulsory
Engineering Science: Specialisation Electrical Engineering: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0640: Electrical Engineering Project Laboratory
Typ Project-/problem-based Learning
Hrs/wk 8
CP 6
Workload in Hours Independent Study Time 68, Study Time in Lecture 112
Lecturer Prof. Christian Becker, Dozenten des SD E
Language DE
Cycle SoSe
Content

Topics and projects cover the entire field of applications of electrical engineering. Typically, the students will prototype functional units and self-contained systems, such as radar devices, networks of sensors, amateur radio transceiver, power electronics based inverters, discrete computers, or atomic force microscopes. Different projects are devised on a yearly basis.



Literature

Alle zur Durchführung der Projekte sinnvollen Quellen (Skripte, Fachbücher, Manuals, Datenblätter, Internetseiten). / All sources that are useful for completion of the projects (lecture notes, textbooks, manuals, data sheets, internet pages).




Module M0854: Mathematics IV

Courses
Title Typ Hrs/wk CP
Differential Equations 2 (Partial Differential Equations) (L1043) Lecture 2 1
Differential Equations 2 (Partial Differential Equations) (L1044) Recitation Section (small) 1 1
Differential Equations 2 (Partial Differential Equations) (L1045) Recitation Section (large) 1 1
Complex Functions (L1038) Lecture 2 1
Complex Functions (L1041) Recitation Section (small) 1 1
Complex Functions (L1042) Recitation Section (large) 1 1
Module Responsible Prof. Marko Lindner
Admission Requirements None
Recommended Previous Knowledge Mathematics I - III
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name the basic concepts in Mathematics IV. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in Mathematics IV with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 68, Study Time in Lecture 112
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min (Complex Functions) + 60 min (Differential Equations 2)
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Mechanical Engineering: Specialisation Mechatronics: Compulsory
Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Elective Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Course L1043: Differential Equations 2 (Partial Differential Equations)
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content

Main features of the theory and numerical treatment of partial differential equations 

  • Examples of partial differential equations
  • First order quasilinear differential equations
  • Normal forms of second order differential equations
  • Harmonic functions and maximum principle
  • Maximum principle for the heat equation
  • Wave equation
  • Liouville's formula
  • Special functions
  • Difference methods
  • Finite elements
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1044: Differential Equations 2 (Partial Differential Equations)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1045: Differential Equations 2 (Partial Differential Equations)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1038: Complex Functions
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content

Main features of complex analysis 

  • Functions of one complex variable
  • Complex differentiation
  • Conformal mappings
  • Complex integration
  • Cauchy's integral theorem
  • Cauchy's integral formula
  • Taylor and Laurent series expansion
  • Singularities and residuals
  • Integral transformations: Fourier and Laplace transformation
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1041: Complex Functions
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1042: Complex Functions
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1340: Introduction to Waveguides, Antennas, and Electromagnetic Compatibility

Courses
Title Typ Hrs/wk CP
Introduction to Waveguides, Antennas, and Electromagnetic Compatibility (L1669) Lecture 3 4
Introduction to Waveguides, Antennas, and Electromagnetic Compatibility (L1877) Recitation Section (small) 2 2
Module Responsible Prof. Christian Schuster
Admission Requirements None
Recommended Previous Knowledge Basic principles of physics and electrical engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the basic principles, relationships, and methods for the design of waveguides and antennas as well as of Electromagnetic Compatibility. Specific topics are:

- Fundamental properties and phenomena of electrical circuits
- Steady-state sinusoidal analysis of electrical circuits
- Fundamental properties and phenomena of electromagnetic fields and waves
- Steady-state sinusoidal description of electromagnetic fields and waves
- Useful microwave network parameters
- Transmission lines and basic results from transmission line theory
- Plane wave propagation, superposition, reflection and refraction
- General theory of waveguides
- Most important types of waveguides and their properties
- Radiation and basic antenna parameters
- Most important types of antennas and their properties
- Numerical techniques and CAD tools for waveguide and antenna design
- Fundamentals of Electromagnetic Compatibility
- Coupling mechanisms and countermeasures
- Shielding, grounding, filtering
- Standards and regulations
- EMC measurement techniques

Skills

Students know how to apply various methods and models for characterization and choice of waveguides and antennas. They are able to assess and qualify their basic electromagnetic properties. They can apply results and strategies from the field of Electromagnetic Compatibilty to the development of electrical components and systems.

Personal Competence
Social Competence

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively in English (e.g. during small group exercises).

Autonomy Students are capable to gather information from subject related, professional publications and relate that information to the context of the lecture. They are able to make a connection between their knowledge obtained in this lecture with the content of other lectures (e.g. theory of electromagnetic fields, fundamentals of electrical engineering / physics). They can discuss technical problems and physical effects in English.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Specialisation Electrical Engineering: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
Aeronautics: Core Qualification: Elective Compulsory
Mechatronics: Core Qualification: Elective Compulsory
Course L1669: Introduction to Waveguides, Antennas, and Electromagnetic Compatibility
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Christian Schuster
Language DE/EN
Cycle SoSe
Content

This course is intended as an introduction to the topics of wave propagation, guiding, sending, and receiving as well as Electromagnetic Compatibility (EMC). It will be useful for engineers that face the technical challenge of transmitting high frequency / high bandwidth data in e.g. medical, automotive, or avionic applications. Both circuit and field concepts of wave propagation and Electromagnetic Compatibility will be introduced and discussed.

Topics:

- Fundamental properties and phenomena of electrical circuits
- Steady-state sinusoidal analysis of electrical circuits
- Fundamental properties and phenomena of electromagnetic fields and waves
- Steady-state sinusoidal description of electromagnetic fields and waves
- Useful microwave network parameters
- Transmission lines and basic results from transmission line theory
- Plane wave propagation, superposition, reflection and refraction
- General theory of waveguides
- Most important types of waveguides and their properties
- Radiation and basic antenna parameters
- Most important types of antennas and their properties
- Numerical techniques and CAD tools for waveguide and antenna design
- Fundamentals of Electromagnetic Compatibility
- Coupling mechanisms and countermeasures
- Shielding, grounding, filtering
- Standards and regulations
- EMC measurement techniques




Literature

- Zinke, Brunswig, "Hochfrequenztechnik 1", Springer (1999)

- J. Detlefsen, U. Siart, "Grundlagen der Hochfrequenztechnik", Oldenbourg (2012)

- D. M. Pozar, "Microwave Engineering", Wiley (2011)

- Y. Huang, K. Boyle, "Antenna: From Theory to Practice", Wiley (2008)

- H. Ott, "Electromagnetic Compatibility Engineering", Wiley (2009)

- A. Schwab, W. Kürner, "Elektromagnetische Verträglichkeit", Springer (2007)

Course L1877: Introduction to Waveguides, Antennas, and Electromagnetic Compatibility
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Schuster
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1753: Practical module 4 (dual study program, Bachelor's degree)

Courses
Title Typ Hrs/wk CP
Practical term 4 (dual study program, Bachelor's degree) (L2882) 0 6
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of practical module 3 as part of the dual Bachelor’s course
  • course B from the module on interlinking theory and practice as part of the dual Bachelor’s course
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

  • … understand the company’s strategic orientation, as well as the functions and organisation of central departments with their decision-making structures, network relationships, and relevant company communication.
  • … have developed an understanding of the requirements and responsibilities of the engineering profession, know the scope and limits of the professional field of activity. 
  • … can combine their knowledge of facts, principles, theories and methods gained from previous study content with acquired practical knowledge - in particular their knowledge of practical professional procedures and approaches, in the current field of activity.


Skills

Dual students …

  • … apply technical theoretical knowledge to current problems in their own field of work, and evaluate work processes and results, taking into account different possible courses of action.
  • … use technology, equipment and resources in accordance with the assigned work areas and tasks, and can assess operational processes and procedures with regard to the intended work results/objectives.
  • … implement the university’s application recommendations in relation to their current tasks.
Personal Competence
Social Competence

Dual students …

  • … are able to plan work processes cooperatively, across work areas and in heterogeneous groups.
  • … communicate professionally with operational stakeholders and present complex issues in a structured, targeted and convincing manner.
Autonomy

Dual students …

  • … assume responsibility for work assignments and areas, and coordinate the associated work processes.
  • … document and reflect on the relevance of subject modules and specialisations for work as an engineer, as well as the implementation of the university’s application recommendations and the associated challenges of a positive transfer of knowledge between theory and practice.
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2882: Practical term 4 (dual study program, Bachelor's degree)
Typ
Hrs/wk 0
CP 6
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle SoSe
Content

Company onboarding process

  • Assigning work area(s)
  • Extending responsibilities and authorisations of the dual student within the company
  • Independent work tasks and areas
  • Participating in project teams
  • Scheduling the relevant practical module 
  • Theory/practice transfer options
  • Scheduling the examination phase/subsequent study semester

Operational knowledge and skills

  • Company-specific: strategic direction, organisation of central business and work areas, departments, decision-making structures, network relationships and internal communication
  • Linking facts, principles and theories with practical knowledge
  • Process and procedure options within the labour-market-relevant field of engineering
  • Operational technology, equipment and resources
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company

Sharing/reflecting on learning

  • E-portfolio
  • Relevance of subject modules and specialisations when working as an engineer 
  • University application recommendations for transferring knowledge between theory and practice
Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Module M0834: Computernetworks and Internet Security

Courses
Title Typ Hrs/wk CP
Computer Networks and Internet Security (L1098) Lecture 3 5
Computer Networks and Internet Security (L1099) Recitation Section (small) 1 1
Module Responsible Prof. Andreas Timm-Giel
Admission Requirements None
Recommended Previous Knowledge

Basics of Computer Science

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain important and common Internet protocols in detail and classify them, in order to be able to analyse and develop networked systems in further studies and job.

Skills

Students are able to analyse common Internet protocols and evaluate the use of them in different domains.

Personal Competence
Social Competence


Autonomy

Students can select relevant parts out of high amount of professional knowledge and can independently learn and understand it.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Elective Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Specialisation I. Mathematics/Computer Science: Elective Compulsory
Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Specialisation Mechatronics: Elective Compulsory
Engineering Science: Specialisation Electrical Engineering: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Elective Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Technomathematics: Specialisation II. Informatics: Elective Compulsory
Course L1098: Computer Networks and Internet Security
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Dr.-Ing. Koojana Kuladinithi, Prof. Sibylle Fröschle
Language EN
Cycle WiSe
Content

In this class an introduction to computer networks with focus on the Internet and its security is given. Basic functionality of complex protocols are introduced. Students learn to understand these and identify common principles. In the exercises these basic principles and an introduction to performance modelling are addressed using computing tasks and physical labs.

In the second part of the lecture an introduction to Internet security is given.

This class comprises:

  • Introduction to the Internet (TCP/IP model)
  • Application layer protocols (HTTP, SMTP, DNS)
  • Transport layer protocols (TCP, UDP)
  • Network Layer (Internet Protocol IPv4 & IPv6, routing in the Internet)
  • Data link layer with media access at the example of WLAN
  • Introduction to Internet Security
  • Security Aspects of Address Resolution (DNS/DNSSEC, ARP/SEND
  • Communication Security (IPSec) - From Address Resolution to Routing (Securing BGP)
  • Botnets + Firewalls
Literature


  • Kurose, Ross, Computer Networking - A Top-Down Approach, 8th Edition, Addison-Wesley
  • Kurose, Ross, Computernetzwerke - Der Top-Down-Ansatz, Pearson Studium; Auflage: 8. Auflage
  • W. Stallings: Cryptography and Network Security: Principles and Practice, 6th edition



Further literature is announced at the beginning of the lecture.


Course L1099: Computer Networks and Internet Security
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr.-Ing. Koojana Kuladinithi, Prof. Sibylle Fröschle
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1235: Electrical Power Systems I: Introduction to Electrical Power Systems

Courses
Title Typ Hrs/wk CP
Electrical Power Systems I: Introduction to Electrical Power Systems (L1670) Lecture 3 4
Electrical Power Systems I: Introduction to Electrical Power Systems (L1671) Recitation Section (small) 2 2
Module Responsible Prof. Christian Becker
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of Electrical Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to give an overview of conventional and modern electric power systems.  They can explain in detail and critically evaluate technologies of electric power generation, transmission, storage, and distribution as well as integration of equipment into electric power systems.

Skills

With completion of this module the students are able to apply the acquired skills in applications of the design, integration, development of electric power systems and to assess the results.

Personal Competence
Social Competence

The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others.

Autonomy

Students can independently tap knowledge of the emphasis of the lectures. 

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 - 150 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory
Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Energy Systems: Specialisation Energy Systems: Elective Compulsory
Engineering Science: Specialisation Electrical Engineering: Elective Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Energy Systems / Renewable Energies: Elective Compulsory
Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Mechatronics: Specialisation Electrical Systems: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Course L1670: Electrical Power Systems I: Introduction to Electrical Power Systems
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Christian Becker
Language DE
Cycle WiSe
Content
  • fundamentals and current development trends in electric power engineering 
  • tasks and history of electric power systems
  • symmetric three-phase systems
  • fundamentals and modelling of eletric power systems 
    • lines
    • transformers
    • synchronous machines
    • induction machines
    • loads and compensation
    • grid structures and substations 
  • fundamentals of energy conversion
    • electro-mechanical energy conversion
    • thermodynamics
    • power station technology
    • renewable energy conversion systems
  • steady-state network calculation
    • network modelling
    • load flow calculation
    • (n-1)-criterion
  • symmetric failure calculations, short-circuit power
  • control in networks and power stations
  • grid protection
  • grid planning
  • power economy fundamentals
Literature

K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013

A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017

R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008

Course L1671: Electrical Power Systems I: Introduction to Electrical Power Systems
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Becker
Language DE
Cycle WiSe
Content
  • fundamentals and current development trends in electric power engineering 
  • tasks and history of electric power systems
  • symmetric three-phase systems
  • fundamentals and modelling of eletric power systems 
    • lines
    • transformers
    • synchronous machines
    • induction machines
    • loads and compensation
    • grid structures and substations 
  • fundamentals of energy conversion
    • electro-mechanical energy conversion
    • thermodynamics
    • power station technology
    • renewable energy conversion systems
  • steady-state network calculation
    • network modelling
    • load flow calculation
    • (n-1)-criterion
  • symmetric failure calculations, short-circuit power
  • control in networks and power stations
  • grid protection
  • grid planning
  • power economy fundamentals
Literature

K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013

A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017

R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008

Module M1802: Engineering Mechanics I (Stereostatics)

Courses
Title Typ Hrs/wk CP
Engineering Mechanics I (Statics) (L1001) Lecture 2 3
Engineering Mechanics I (Statics) (L1003) Recitation Section (large) 1 1
Engineering Mechanics I (Statics) (L1002) Recitation Section (small) 2 2
Module Responsible Prof. Benedikt Kriegesmann
Admission Requirements None
Recommended Previous Knowledge

Solid school knowledge in mathematics and physics.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can

  • describe the axiomatic procedure used in mechanical contexts;
  • explain important steps in model design;
  • present technical knowledge in stereostatics.
Skills

The students can

  • explain the important elements of mathematical / mechanical analysis and model formation, and apply it to the context of their own problems;
  • apply basic statical methods to engineering problems;
  • estimate the reach and boundaries of statical methods and extend them to be applicable to wider problem sets.
Personal Competence
Social Competence

The students can work in groups and support each other to overcome difficulties.

Autonomy

Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Data Science: Specialisation II. Application: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L1001: Engineering Mechanics I (Statics)
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Benedikt Kriegesmann
Language DE
Cycle WiSe
Content
  • Tasks in Mechanics
  • Modelling and model elements
  • Vector calculus for forces and torques
  • Forces and equilibrium in space
  • Constraints and reactions, characterization of constraint systems
  • Planar and spatial truss structures
  • Internal forces and moments for beams and frames
  • Center of mass, volumn, area and line
  • Computation of center of mass by intergals, joint bodies
  • Friction (sliding and sticking)
  • Friction of ropes
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).
Course L1003: Engineering Mechanics I (Statics)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Benedikt Kriegesmann
Language DE
Cycle WiSe
Content Forces and equilibrium
Constraints and reactions
Frames
Center of mass
Friction
Internal forces and moments for beams
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).
Course L1002: Engineering Mechanics I (Statics)
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Benedikt Kriegesmann
Language DE
Cycle WiSe
Content Forces and equilibrium
Constraints and reactions
Frames
Center of mass
Friction
Internal forces and moments for beams
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).

Module M0568: Theoretical Electrical Engineering II: Time-Dependent Fields

Courses
Title Typ Hrs/wk CP
Theoretical Electrical Engineering II: Time-Dependent Fields (L0182) Lecture 3 5
Theoretical Electrical Engineering II: Time-Dependent Fields (L0183) Recitation Section (small) 2 1
Module Responsible Prof. Christian Schuster
Admission Requirements None
Recommended Previous Knowledge

Electrical Engineering I, Electrical Engineering II, Theoretical Electrical Engineering I

Mathematics I, Mathematics II, Mathematics III, Mathematics IV


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain fundamental formulas, relations, and methods related to the theory of time-dependent electromagnetic fields. They can assess the principal behavior and characteristics of quasistationary and fully dynamic fields with regard to respective sources. They can describe the properties of complex electromagnetic fields by means of superposition of solutions for simple fields. The students are aware of applications for the theory of time-dependent electromagnetic fields and are able to explicate these.


Skills

Students are able to apply a variety of procedures in order to solve the diffusion and the wave equation for general time-dependent field problems. They can assess the principal effects of given time-dependent sources of fields and analyze these quantitatively. They can deduce meaningful quantities for the characterization of fully dynamic fields (wave impedance, skin depth, Poynting-vector, radiation resistance, etc.) from given fields and interpret them with regard to practical applications.


Personal Competence
Social Competence

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively (e.g. during exercise sessions).


Autonomy

Students are capable to gather necessary information from provided references and relate this information to the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as short oral quizzes during the lectures and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between acquired knowledge and ongoing research at the Hamburg University of Technology (TUHH), e.g. in the area of high frequency engineering and optics.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90-150 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Specialisation Electrical Engineering: Compulsory
Engineering Science: Specialisation Mechatronics: Elective Compulsory
Mechatronics: Specialisation Electrical Systems: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0182: Theoretical Electrical Engineering II: Time-Dependent Fields
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Christian Schuster
Language DE
Cycle WiSe
Content

- Theory and principal characteristics of quasistationary electromagnetic fields

- Electromagnetic induction and law of induction

- Skin effect and eddy currents

- Shielding of time variable magnetic fields

- Theory and principal characteristics of fully dynamic electromagnetic fields

- Wave equations and properties of planar waves

- Polarization and superposition of planar waves

- Reflection and refraction of planar waves at boundary surfaces

- Waveguide theory

- Rectangular waveguide, planar optical waveguide

- Elektrical and magnetical dipol radiation

- Simple arrays of antennas

The practical application of numerical methods will be trained within specifically prepared lectures in an interactive manner using small MATLAB programs.

Literature

- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010)

- H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011)

- W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011)

- D. Griffiths, "Introduction to Electrodynamics", Pearson (2012)

- J. Edminister, "Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013)

- Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011)


Course L0183: Theoretical Electrical Engineering II: Time-Dependent Fields
Typ Recitation Section (small)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Christian Schuster
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0662: Numerical Mathematics I

Courses
Title Typ Hrs/wk CP
Numerical Mathematics I (L0417) Lecture 2 3
Numerical Mathematics I (L0418) Recitation Section (small) 2 3
Module Responsible Prof. Sabine Le Borne
Admission Requirements None
Recommended Previous Knowledge
  • Mathematik I + II for Engineering Students (german or english) or Analysis & Linear Algebra I + II for Technomathematicians
  • basic MATLAB/Python knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to

  • name numerical methods for interpolation, integration, least squares problems, eigenvalue problems, nonlinear root finding problems and to explain their core ideas,
  • repeat convergence statements for the numerical methods,
  • explain aspects for the practical execution of numerical methods with respect to computational and storage complexitx.


Skills

Students are able to

  • implement, apply and compare numerical methods using MATLAB/Python,
  • justify the convergence behaviour of numerical methods with respect to the problem and solution algorithm,
  • select and execute a suitable solution approach for a given problem.
Personal Competence
Social Competence

Students are able to

  • work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge), explain theoretical foundations and support each other with practical aspects regarding the implementation of algorithms.
Autonomy

Students are capable

  • to assess whether the supporting theoretical and practical excercises are better solved individually or in a team,
  • to assess their individual progess and, if necessary, to ask questions and seek help.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Advanced Materials: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Data Science: Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Energy Technology: Elective Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Compulsory
Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0417: Numerical Mathematics I
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Sabine Le Borne
Language EN
Cycle WiSe
Content
  1. Finite precision arithmetic, error analysis, conditioning and stability
  2. Linear systems of equations: LU and Cholesky factorization, condition
  3. Interpolation: polynomial, spline and trigonometric interpolation
  4. Nonlinear equations: fixed point iteration, root finding algorithms, Newton's method
  5. Linear and nonlinear least squares problems: normal equations, Gram Schmidt and Householder orthogonalization, singular value decomposition, regularizatio, Gauss-Newton and Levenberg-Marquardt methods
  6. Eigenvalue problems: power iteration, inverse iteration, QR algorithm
  7. Numerical differentiation
  8. Numerical integration: Newton-Cotes rules, error estimates, Gauss quadrature, adaptive quadrature
Literature
  • Gander/Gander/Kwok: Scientific Computing: An introduction using Maple and MATLAB, Springer (2014)
  • Stoer/Bulirsch: Numerische Mathematik 1, Springer
  • Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer


Course L0418: Numerical Mathematics I
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Sabine Le Borne, Dr. Jens-Peter Zemke
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0675: Introduction to Communications and Random Processes

Courses
Title Typ Hrs/wk CP
Introduction to Communications and Random Processes (L0442) Lecture 3 4
Introduction to Communications and Random Processes (L0443) Recitation Section (large) 1 1
Introduction to Communications and Random Processes (L2354) Recitation Section (small) 1 1
Module Responsible Prof. Gerhard Bauch
Admission Requirements None
Recommended Previous Knowledge
  • Mathematics 1-3
  • Signals and Systems
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know and understand the fundamental building blocks of a communications system. They can describe and analyse the individual building blocks using knowledge of signal and system theory as well as the theory of stochastic processes. The are aware of the essential resources and evaluation criteria of information transmission and are able to design and evaluate a basic communications system. 

The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems.

Skills The students are able to design and evaluate a basic communications system. In particular, they can estimate the required resources in terms of bandwidth and power. They are able to assess essential evaluation parameters of a basic communications system such as bandwidth efficiency or bit error rate and to decide for a suitable transmission method.
Personal Competence
Social Competence

 The students can jointly solve specific problems.

Autonomy

The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Data Science: Core Qualification: Elective Compulsory
Data Science: Specialisation I. Mathematics/Computer Science: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechatronics: Specialisation Electrical Systems: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0442: Introduction to Communications and Random Processes
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle WiSe
Content
  • Introduction to communications engineering
  • Open Systems Interconnection (OSI) reference model
  • Components of a digital communications system
  • Fundamentals of signals and systems
    • Analog and digital signals
    • Principles of Analog-to-digital (A/D) conversion
    • Deterministic and random signals
    • Power and energy of signals
    • Linear time-invariant (LTI) systems
    • Quadrature amplitude modulation (QAM) 
  • Introduction to stochastics
  • Probability theory
    • Random experiments
    • Probability model, probability space, sample space
    • Definitions of probability
      • Probability according to Bernoulli/Laplace
      • Probability according to van Mises, relative frequency
      • Bertrand’s paradox
      • Axiomatic definition of probability according to Kolmogorov
      • Probability of disjoint and non-disjoint events
      • Venn diagrams
    • Continuous and discrete random variables
      • Probability density function (pdf), cululative distribution function (cdf)
      • Expected value, mean, median, quadratic mean, variance, standard deviation, higher moments
      • Examples for probability distributions (Bernoulli distribution, two-point distribution, uniform distribution, Gaussian (normal) distribution, Rayleigh distribution, etc.)
    • Multiple random variables
      • Conditional probability, joint probability
      • Conditional and joint probability density function
      • Bayes’ rule
      • Correlation coefficient
      • Two-dimensional Gaussian distribution
      • Statistically independent, uncorrelated and orthogonal random variables
      • Independent identically distributed (iid) random variables
      • Properties of expected value and variance
      • Covariance
      • Probability density function (pdf) and cumulative distribution function (cdf) of the sum of statistically independent random variables
      • Central limit theorem
    • Probability density functions (pdfs) in data transmission
  • Continuous-time and discrete-time random processes
    • Examples for random processes
    • Ensemble average and time average
    • Ergodic random processes
    • Quadratic mean and variance
    • Probability density function (pdf) and cumulative distribution function (cdf)
    • Joint probability density function (pdf) and joint cumulative distribution function (cdf)
    • Statistically independent, uncorrelated and orthogonal random processes
    • Stationary random processes
    • Correlation functions: Autocorrelation function, crosscorrelation function, average autocorrelation function of non-stationary random processes, autocorrelation and crosscorrelation function of stationary processes, autocovariance function, crosscovariance function
    • Autocorrelation matrix, crosscorrelation matrix, autocovariance matrix, crosscovariance matrix
    • Pseudo-noise sequences, example: Code division multiple access (CDMA)
    • Autocorrelation function, power spectral density (psd), signal power, Einstein-Wiener-Khintchine relations
    • White (Gaussian) noise
  • Filtering of random processes by LTI systems
    • Transformation of the probability density function (pdf)
    • Transformation of the mean
    • Transformation of the power spectral density (psd)
    • Correlation functions of input and output signal
    • Filtering of white Gaussian noise
    • Bandlimitation for noise power limitation
    • Preemphasis and deemphasis
  • Companding, mu-law, A-law
  • Functions of random variables
    • Transformation of probabilities and of the probability density function (pdf)
    • Application: Non-linear amplifiers
  • Functions of two random variables
    • Probability density function
    • Examples: Rayleigh distribution, magnitude of an OFDM signal, magnitude of a received radio signal
  • Transmission channels and channel models
    • Wireline channels: Telephone cable, coaxial cable, optical fiber
    • Wireless channels: Fading radio channel, underwater channels
    • Frequency-flat and frequency-selective channels
    • Additive white Gaussian noise (AWGN) channel
    • Signal to noise power ratio (SNR)
    • Discrete-time channel models
    • Discrete memoryless channels (DMC)
  • Analog-to-digital conversion
    • Sampling
      • Sampling theorem
    • Pulse modulation
      • Pulse-amplitude modulation (PAM)
      • Pulse-duration modulation (PDM), pulse-width modulation (PWM)
      • Pulse-position modulation (PPM)
      • Pulse-code modulation (PCM)
    • Quantization
      • Linear quantizaton, midtread and midrise characteristic
      • Quantization error, quantization noise
      • Signal-to-quantization noise ratio
      • Non-linear quantization, compressor characteristics, mu-law, A-law
      • Speech transmission with PCM
    • Differential pulse-code modulation (DPCM)
      • Linear prediction according to the minimum mean squared error (MMSE) criterion.
      • DPCM with forward prediction and backward prediction
      • SNR gain of DPCM over PCM
      • Delta modulation
  • Fundamentals of information theory and coding
    • Definitions of information: Self-information, entropy
    • Binary entropy function
    • Source coding theorem
    • Source coding: Huffman code
    • Mutual information and channel capacity
    • Channel capacity of the AWGN channel and the binary input AWGN channel
    • Channel coding theorem
    • Principles of channel coding: Code rate and data rate, Hamming distance, minimum Hamming distance, error detection and error correction
    • Examples for channel codes: Block codes and convolutional codes, repetition code, single parity check code, Hamming code, Turbo codes
  • Combinatorics
    • Variation with and without repetition
    • Combination with and without repetition
    • Permutation, Permutation of multisets
    • Word error probabilities of linear block codes
  • Baseband transmission
    • Pulse shaping: Non-return to zero (NRZ) rectangular pulses, Manchester pulses, raised-cosine pulses, square-root raised-cosine pulses, Gaussian pulses
    • Transmit signal energy, average energy per symbol
    • Power spectral density (psd) of baseband signals
    • Definitions of signal bandwidth
    • Bandwidth efficiency
    • Intersymbol interference (ISI)
    • First and second Nyquist criterion
    • Eye patterns
    • Receive filter design: Matched filter
    • Matched-filter receiver and correlation receiver
    • Square-root Nyquist pulse shaping
    • Discrete-time AWGN channel model
  • Maximum a posteriori probability (MAP) and maximum likelihood (ML) detection
  • Bit error probability in AWGN channels for binary antipodal and on-off signaling
  • Band-pass transmission via carrier modulation
    • Amplitude modulation, frequency modulation, phase modulation
    • Linear digital modulation methods: On-off keying (OOK), phase-shift keying (PSK), amplitude shift keying (ASK), quadrature amplitude shift keying (QAM)

 


Literature

K. Kammeyer: Nachrichtenübertragung, Teubner

P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner.

M. Bossert: Einführung in die Nachrichtentechnik, Oldenbourg.

J.G. Proakis, M. Salehi: Grundlagen der Kommunikationstechnik. Pearson Studium.

J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill.

S. Haykin: Communication Systems. Wiley

J.G. Proakis, M. Salehi: Communication Systems Engineering. Prentice-Hall.

J.G. Proakis, M. Salehi, G. Bauch, Contemporary Communication Systems. Cengage Learning.






Course L0443: Introduction to Communications and Random Processes
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L2354: Introduction to Communications and Random Processes
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0760: Electronic Devices

Courses
Title Typ Hrs/wk CP
Electronic Devices (L0720) Lecture 3 4
Electronic Devices (L0721) Project-/problem-based Learning 2 2
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge

Atomic model and quantum theory, electrical currents in solid state materials, basics in solid-state physics

Successful participation of Physics for Engineers and Materials in Electrical Engineering or courses with equivalent contents

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge


Students are able

  • to represent the basics of semiconductor physics,

  • to explain the operating principle of important semiconductor devices,

  • to outline device characteristics and equivalent circuits as well as to explain their derivation and

  • to discuss the limitation of device models.


Skills


Students are capable

  • to apply devices in basic circuits,

  • to realize the physical context and to solve complex problems by oneself


Personal Competence
Social Competence

Students are able to prepare and perform their lab experiments in team work as well as to present and discuss the results in front of audience.

Autonomy Students are capable to acquire knowledge based on literature in order to prepare their experiments.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Subject theoretical and practical work Studierenden erarbeiten in Kleingruppen Wissen zu einem bestimmten Thema, demonstrieren dieses in Form eines Versuches mit Präsentation und Diskussion. Darüber hinaus betreut jede Gruppe eine Übungsaufgabe, die inhaltlich zu dem jeweiligen Versuch gehört.
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Mechatronics: Specialisation Electrical Systems: Compulsory
Course L0720: Electronic Devices
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Hoc Khiem Trieu
Language DE
Cycle WiSe
Content
  • Uniformly doped semiconductor (semiconductor, crystal structure, energy band diagram, effective mass, density of state, probability of occupancy, mass action law, generation and recombination processes, generation and recombination lifetime, carrier transport mechanisms: drift current, diffusion current; equilibriums in semiconductor, semiconductor equations)
  • pn-junction (zero applied bias, energy band diagram in thermal equilibrium, current-voltage characteristics, derivation of diode equation, consideration of space charge recombination, transient behaviour, breakdown mechanisms, various types of diodes: Zener diode, tunnel diode, backward diode, photo diode, LED, laser diode)
  • Bipolar transistor (principle of operation, current-voltage characteristics: calculation of  base, collector and emitter current, operating modes; non-ideality: actual doping profile, Early effect, breakdown, generation and recombination current and high injection; Ebers-Moll model: family of characteristics, equivalent circuit; frequency response, switching characteristics, heterojunction bipolar transistor)
  • Unipolar devices (surface effects: surface states, work function, energy band diagram; metal-semiconductor junctions: Schottky contact, current-voltage characteristics, ohmic  contact; junction field effect transistor: operating principle, current-voltage characteristics, small-signal model, breakdown characteristics; MESFET: operating principle,  depletion mode and enhancement mode MESFET; MIS structure: accumulation, depletion, inversion, strong inversion, flatband voltage, oxide charges, threshold voltage, capacitance voltage characteristics; MOSFET: basic structure, principle of operation, current voltage characteristics, frequency response, subthreshold behaviour, threshold voltage, device scaling; CMOS)

 

Literature

S.M. Sze: Semiconductor devices, Physics and Technology, John Wiley & Sons (1985)F. Thuselt: Physik der Halbleiterbauelemente, Springer (2011)

T. Thille, D. Schmitt-Landsiedel: Mikroelektronik, Halbleiterbauelemente und deren Anwendung in elektronischen Schaltungen, Springer (2004)

B.L. Anderson, R.L. Anderson: Fundamentals of Semiconductor Devices, McGraw-Hill (2005)

D.A. Neamen: Semiconductor Physics and Devices, McGraw-Hill (2011)

M. Shur: Introduction to Electronic Devices, John Wiley & Sons (1996)

S.M. Sze: Physics of semiconductor devices, John Wiley & Sons (2007)

H. Schaumburg: Halbleiter, B.G. Teubner (1991)

A. Möschwitzer: Grundlagen der Halbleiter-&Mikroelektronik, Bd1 Elektronische Halbleiterbauelemente, Carl Hanser (1992)

H.-G. Unger, W. Schultz, G. Weinhausen: Elektronische Bauelemente und Netzwerke I, Physikalische Grundlagen der Halbleiterbauelemente, Vieweg (1985)
Course L0721: Electronic Devices
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Hoc Khiem Trieu
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0833: Introduction to Control Systems

Courses
Title Typ Hrs/wk CP
Introduction to Control Systems (L0654) Lecture 2 4
Introduction to Control Systems (L0655) Recitation Section (small) 2 2
Module Responsible NN
Admission Requirements None
Recommended Previous Knowledge

Representation of signals and systems in time and frequency domain, Laplace transform


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can represent dynamic system behavior in time and frequency domain, and can in particular explain properties of first and second order systems
  • They can explain the dynamics of simple control loops and interpret dynamic properties in terms of frequency response and root locus
  • They can explain the Nyquist stability criterion and the stability margins derived from it.
  • They can explain the role of the phase margin in analysis and synthesis of control loops
  • They can explain the way a PID controller affects a control loop in terms of its frequency response
  • They can explain issues arising when controllers designed in continuous time domain are implemented digitally
Skills
  • Students can transform models of linear dynamic systems from time to frequency domain and vice versa
  • They can simulate and assess the behavior of systems and control loops
  • They can design PID controllers with the help of heuristic (Ziegler-Nichols) tuning rules
  • They can analyze and synthesize simple control loops with the help of root locus and frequency response techniques
  • They can calculate discrete-time approximations of controllers designed in continuous-time and use it for digital implementation
  • They can use standard software tools (Matlab Control Toolbox, Simulink) for carrying out these tasks
Personal Competence
Social Competence Students can work in small groups to jointly solve technical problems, and experimentally validate their controller designs
Autonomy

Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems.

They can assess their knowledge in weekly on-line tests and thereby control their learning progress.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Data Science: Core Qualification: Elective Compulsory
Data Science: Specialisation II. Application: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Elective Compulsory
Logistics and Mobility: Specialisation Information Technology: Elective Compulsory
Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Course L0654: Introduction to Control Systems
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer NN
Language DE
Cycle WiSe
Content

Signals and systems

  • Linear systems, differential equations and transfer functions
  • First and second order systems, poles and zeros, impulse and step response
  • Stability

Feedback systems

  • Principle of feedback, open-loop versus closed-loop control
  • Reference tracking and disturbance rejection
  • Types of feedback, PID control
  • System type and steady-state error, error constants
  • Internal model principle

Root locus techniques

  • Root locus plots
  • Root locus design of PID controllers

Frequency response techniques

  • Bode diagram
  • Minimum and non-minimum phase systems
  • Nyquist plot, Nyquist stability criterion, phase and gain margin
  • Loop shaping, lead lag compensation
  • Frequency response interpretation of PID control

Time delay systems

  • Root locus and frequency response of time delay systems
  • Smith predictor

Digital control

  • Sampled-data systems, difference equations
  • Tustin approximation, digital implementation of PID controllers

Software tools

  • Introduction to Matlab, Simulink, Control toolbox
  • Computer-based exercises throughout the course
Literature
  • Werner, H., Lecture Notes „Introduction to Control Systems“
  • G.F. Franklin, J.D. Powell and A. Emami-Naeini "Feedback Control of Dynamic Systems", Addison Wesley, Reading, MA, 2009
  • K. Ogata "Modern Control Engineering", Fourth Edition, Prentice Hall, Upper Saddle River, NJ, 2010
  • R.C. Dorf and R.H. Bishop, "Modern Control Systems", Addison Wesley, Reading, MA 2010
Course L0655: Introduction to Control Systems
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer NN
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1242: Quantum Mechanics for Engineers

Courses
Title Typ Hrs/wk CP
Quantum Mechanics for Engineers (L1686) Lecture 2 3
Quantum Mechanics for Engineers (L1688) Recitation Section (small) 2 3
Module Responsible Prof. Michael Alexander Rübhausen
Admission Requirements None
Recommended Previous Knowledge
  • Knowledge in physics, particularly in optics and wave phenomena;
  • knowledge in mathematics, particularly linear algebra, vector calculus, complex numbers and Fourier expansion
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to describe and explain basic terms and principles of quantum mechanics.  They can distinguish commons and differences to classical physics and know, in which situations quantum mechanical phenomena may be expected.
Skills The students get the ability to apply concepts and methods of quantum mechanics to simple problems and systems. Vice versa, they are also able to comprehend requirements and principles of quantum mechanical devices.
Personal Competence
Social Competence The students discuss contents of the lectures and present solutions to simple quantum mechanical problems in small groups during the exercises.
Autonomy The students are able to independently find answers to simple questions on quantum mechanical systems. The students are able to independently comprehend literature to more complex subjects with quantum mechanical background.  
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No None Written elaboration optionale Vorlage von selbst ausgearbeiteten Lösungen zu den Übungen
Examination Oral exam
Examination duration and scale 90 Minuten
Assignment for the Following Curricula Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Course L1686: Quantum Mechanics for Engineers
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer NN Dozenten des Fachbereiches Physik der UHH
Language DE
Cycle WiSe
Content

This lecture introduces into fundamental concepts, methods, and definitions in quantum mechanics, which are needed in modern material and device science. Applications will be discussed using examples in the field of electronic and optical devices.

Central topics are:

Schrödinger equation, wave function, operators, eigenstates, eigenvalues, quantum wells, harmonic oscillator, tunnel processes, resonant tunnel diode, band structure, density of states, quantum statistics,  Zener-diode, stationary perturbation calculation with the quantum-confined Stark effect as an example, Fermi’s golden rule and transition matrix elements, heterostructure laser, quantum cascade laser, many-particle physics, molecules and exchange interaction, quantum bits and quantum cryptography.

Literature
  • David J. Griffiths: "Quantenmechanik, eine Einführung", Pearson (2012), ISBN 978-3-8632-6514-4.
  • David K. Ferry: "Quantum Mechanics", IOP Publishing (1995), ISBN 0-7503-0327-1 (hbk) bzw. 0-7503-0328-X (pbk).
  • M. Jaros: " Physics and Applications of Semiconductor Microstructures ", Clarendon Press (1989), ISBN: 0-19-851994-X bzw. 0-19-853927-4 (Pbk).
  • Randy Harris, "Modernes Physik Lehr- und Übungsbuch",  2. aktualisierte Auflage, Kapitel 3-10, Pearson (2013), ISBN 978-3-86894-115-9.
  • Michael A Nielsen and Isaac L. Chuang: "Quantum Computation and Quantum Informatioin", 10. Auflage, Cambridge University Press (2011), ISBN: 1107002176 9781107002173.
  • Hiroyuki  Sagawa and Nobuaki Yoshida: "Fundamentals of Quantum Information", World Scientific Publishing (2010), ISBN-13: 978-9814324236.
Course L1688: Quantum Mechanics for Engineers
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer NN Dozenten des Fachbereiches Physik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1754: Practical module 5 (dual study program, Bachelor's degree)

Courses
Title Typ Hrs/wk CP
Practical term 5 (dual study program, Bachelor's degree) (L2883) 0 6
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of practical module 4 as part of the dual Bachelor’s course
  • course C from the module on interlinking theory and practice as part of the dual Bachelor’s course
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

  • … combine their knowledge of facts, principles, theories and methods gained from previous study content with acquired practical knowledge - in particular their knowledge of practical professional procedures and approaches, in the current field of activity. 
  • … have a critical understanding of the practical applications of their engineering subject.


Skills

Dual students …

  • … apply technical theoretical knowledge to complex, interdisciplinary problems within the company, and evaluate the associated work processes and results, taking into account different possible courses of action.
  • … implement the university’s application recommendations with regard to their current tasks. 
  • … develop new solutions as well as procedures and approaches in their field of activity and area of responsibility - including in the case of frequently changing requirements (systemic skills).
  • … are able to analyse and evaluate operational issues using academic methods.
Personal Competence
Social Competence

Dual students …

  • … work responsibly in operational project teams and proactively deal with problems within their team.
  • … represent complex engineering viewpoints, facts, problems and solution approaches in discussions with internal and external stakeholders and develop these further together.
Autonomy

Dual students …

  • … define goals for their own learning and working processes as engineers.
  • … document and reflect on learning and work processes in their area of responsibility.
  • … document and reflect on the relevance of subject modules, specialisations and research for work as an engineer, as well as the implementation of the university’s application recommendations and the associated challenges of a positive transfer of knowledge between theory and practice.
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2883: Practical term 5 (dual study program, Bachelor's degree)
Typ
Hrs/wk 0
CP 6
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle WiSe
Content

Company onboarding process

  • Assigning a future professional field of activity as an engineer (B.Sc.) and associated areas of work
  • Extending responsibilities and authorisations of the dual student within the company up to the intended first assignment after completing their studies or to the assignment completed during the subsequent dual Master’s course
  • Taking personal responsibility within a team - in their own area of responsibility and across departments
  • Scheduling the final practical module with a clear correlation to work structures 
  • Internal agreement on a potential topic for the Bachelor’s dissertation
  • Planning the Bachelor’s dissertation within the company in cooperation with TU Hamburg  
  • Scheduling the examination phase/sixth study semester

Operational knowledge and skills

  • Company-specific: dealing with change, team development, responsibility as an engineer in their own future field of work (B.Sc.), dealing with complex contexts and unresolved problems, developing and implementing innovative solutions
  • Specialising in one field of work (final dissertation)
  • Systemic skills
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company 

Sharing/reflecting on learning

  • E-portfolio
  • Relevance of subject modules and specialisations when working as an engineer
  • Importance of research and innovation when working as an engineer 
  • University application recommendations for transferring knowledge between theory and practice
Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Module M0634: Introduction into Medical Technology and Systems

Courses
Title Typ Hrs/wk CP
Introduction into Medical Technology and Systems (L0342) Lecture 2 3
Introduction into Medical Technology and Systems (L0343) Project Seminar 2 2
Introduction into Medical Technology and Systems (L1876) Recitation Section (large) 1 1
Module Responsible Prof. Alexander Schlaefer
Admission Requirements None
Recommended Previous Knowledge

principles of math (algebra, analysis/calculus)
principles of  stochastics
principles of programming, R/Matlab

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can explain principles of medical technology, including imaging systems, computer aided surgery, and medical information systems. They are able to give an overview of regulatory affairs and standards in medical technology.

Skills

The students are able to evaluate systems and medical devices in the context of clinical applications.

Personal Competence
Social Competence

The students describe a problem in medical technology as a project, and define tasks that are solved in a joint effort.
The students can critically reflect on the results of other groups and make constructive suggestions for improvement.


Autonomy

The students can assess their level of knowledge and document their work results.  They can critically evaluate the results achieved and present them in an appropriate manner.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Written elaboration
Yes 10 % Presentation
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory
Data Science: Specialisation II. Application: Elective Compulsory
Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Mechatronics: Specialisation Medical Engineering: Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0342: Introduction into Medical Technology and Systems
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language DE
Cycle SoSe
Content

- imaging systems
- computer aided surgery
- medical sensor systems
- medical information systems
- regulatory affairs
- standard in medical technology
The students will work in groups to apply the methods introduced during the lecture using problem based learning.


Literature

Bernhard Priem, "Visual Computing for Medicine", 2014
Heinz Handels, "Medizinische Bildverarbeitung", 2009 (https://katalog.tub.tuhh.de/Record/745558097)
Valery Tuchin, "Tissue Optics - Light Scattering Methods and Instruments for Medical Diagnosis", 2015
Olaf Drössel, "Biomedizinische Technik - Medizinische Bildgebung", 2014
H. Gross, "Handbook of Optical Systems", 2008 (https://katalog.tub.tuhh.de/Record/856571687)
Wolfgang Drexler, "Optical Coherence Tomography", 2008
Kramme, "Medizintechnik", 2011
Thorsten M. Buzug, "Computed Tomography", 2008
Otmar Scherzer, "Handbook of Mathematical Methods in Imaging", 2015
Weishaupt, "Wie funktioniert MRI?", 2014
Paul Suetens, "Fundamentals of Medical Imaging", 2009
Vorlesungsunterlagen

Course L0343: Introduction into Medical Technology and Systems
Typ Project Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1876: Introduction into Medical Technology and Systems
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Alexander Schlaefer
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1803: Engineering Mechanics II (Elastostatics)

Courses
Title Typ Hrs/wk CP
Engineering Mechanics II (Elastostatics) (L0493) Lecture 2 2
Engineering Mechanics II (Elastostatics) (L1691) Recitation Section (large) 2 2
Engineering Mechanics II (Elastostatics) (L0494) Recitation Section (small) 2 2
Module Responsible Prof. Christian Cyron
Admission Requirements None
Recommended Previous Knowledge

Engineering Mechanics I, Mathematics I (basic knowledge of rigid body mechanics such as balance of linear and angular momentum, basic knowledge of linear algebra like vector-matrix calculus, basic knowledge of analysis such as differential and integral calculus)


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Having accomplished this module, the students know and understand the basic concepts of continuum mechanics and elastostatics, in particular stress, strain, constitutive laws, stretching, bending, torsion, failure analysis, energy methods and stability of structures.

Skills

Having accomplished this module, the students are able to
- apply the fundamental concepts of mathematical and mechanical modeling and analysis to problems of their choice
- apply the basic methods of elastostatics to problems of engineering, in particular in the design of mechanical structures
- to educate themselves about more advanced aspects of elastostatics

Personal Competence
Social Competence Ability to communicate complex problems in elastostatics, to work out solution to these problems together with others, and to communicate these solutions.
Autonomy Self-discipline and endurance in tackling independently complex challenges in elastostatics; ability to learn also very abstract knowledge.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L0493: Engineering Mechanics II (Elastostatics)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron
Language DE
Cycle SoSe
Content

The lecture Engineering Mechanics II introduces the fundamental concepts of stress and strain and explains how these can be used to characterize and compute elastic deformations of mechanical bodies under loading. The focus of the lecture lies on: 

  • basis of continuum mechanics: stress, strain, constitutive laws
  • truss
  • torsion bar
  • beam theory: bending, moment of inertia of area, transverse shear
  • energy methods: Maxwell-Betti reciprocal work theorem, Castigliano's second theorem, theorem of Menabrea
  • strength of materials: maximum principle stress criterion, yield criteria according to Tresca and von Mises
  • stability of mechanical structures: Euler buckling strut
Literature
  • Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik 1, Springer
  • Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik 2 Elastostatik, Springer


Course L1691: Engineering Mechanics II (Elastostatics)
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0494: Engineering Mechanics II (Elastostatics)
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0777: Semiconductor Circuit Design

Courses
Title Typ Hrs/wk CP
Semiconductor Circuit Design (L0763) Lecture 3 4
Semiconductor Circuit Design (L0864) Recitation Section (small) 1 2
Module Responsible NN
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of electrical engineering

Basics of physics, especially semiconductor physics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to explain the functionality of different MOS devices in electronic circuits.
  • Students are able to explain how analog circuits functions and where they are applied.
  • Students are able to explain the functionality of fundamental operational amplifiers and their specifications.
  • Students know the fundamental digital logic circuits and can discuss their advantages and disadvantages.
  • Students have knowledge about memory circuits and can explain their functionality and specifications.
  • Students know the appropriate fields for the use of bipolar transistors.


Skills
  • Students can calculate the specifications of different MOS devices and can define the parameters of electronic circuits.
  • Students are able to develop different logic circuits and can design different types of logic circuits.
  • Students can use MOS devices, operational amplifiers and bipolar transistors for specific applications.


Personal Competence
Social Competence
  • Students are able work efficiently in heterogeneous teams.
  • Students working together in small groups can solve problems and answer professional  questions.


Autonomy
  • Students are able to assess their level of knowledge.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Specialisation Electrical Engineering: Compulsory
Engineering Science: Specialisation Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Compulsory
Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Mechanical Engineering: Specialisation Mechatronics: Compulsory
Mechatronics: Specialisation Electrical Systems: Compulsory
Mechatronics: Core Qualification: Compulsory
Mechatronics: Specialisation Robot- and Machine-Systems: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0763: Semiconductor Circuit Design
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Matthias Kuhl
Language DE
Cycle SoSe
Content
  • Repetition Semiconductorphysics and Diodes
  • Functionality and characteristic curve of bipolar transistors
  • Basic circuits with bipolar transistors
  • Functionality and characteristic curve of MOS transistors
  • Basic circuits with MOS transistors for amplifiers
  • Operational amplifiers and their applications
  • Typical applications for analog and digital circuits
  • Realization of logical functions 
  • Basic circuits with MOS transistors for combinational logic
  • Memory circuits
  • Basic circuits with MOS transistors for sequential logic
  • Basic concepts of analog-to-digital and digital-to-analog-converters
Literature

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Course L0864: Semiconductor Circuit Design
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Matthias Kuhl, Weitere Mitarbeiter
Language DE
Cycle SoSe
Content
  • Basic circuits and characteristic curves of bipolar transistors 
  • Basic circuits and characteristic curves of MOS transistors for amplifiers
  • Realization and dimensioning of operational amplifiers
  • Realization of logic functions
  • Basic circuits with MOS transistors for combinational and sequential logic
  • Memory circuits
  • Circuits for analog-to-digital and digital-to-analog converters
  • Design of exemplary circuits
Literature

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Module M0803: Embedded Systems

Courses
Title Typ Hrs/wk CP
Embedded Systems (L0805) Lecture 3 3
Embedded Systems (L2938) Project-/problem-based Learning 1 1
Embedded Systems (L0806) Recitation Section (small) 1 2
Module Responsible Prof. Heiko Falk
Admission Requirements None
Recommended Previous Knowledge Computer Engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Embedded systems can be defined as information processing systems embedded into enclosing products. This course teaches the foundations of such systems. In particular, it deals with an introduction into these systems (notions, common characteristics) and their specification languages (models of computation, hierarchical automata, specification of distributed systems, task graphs, specification of real-time applications, translations between different models).

Another part covers the hardware of embedded systems: Sonsors, A/D and D/A converters, real-time capable communication hardware, embedded processors, memories, energy dissipation, reconfigurable logic and actuators. The course also features an introduction into real-time operating systems, middleware and real-time scheduling. Finally, the implementation of embedded systems using hardware/software co-design (hardware/software partitioning, high-level transformations of specifications, energy-efficient realizations, compilers for embedded processors) is covered.

Skills After having attended the course, students shall be able to realize simple embedded systems. The students shall realize which relevant parts of technological competences to use in order to obtain a functional embedded systems. In particular, they shall be able to compare different models of computations and feasible techniques for system-level design. They shall be able to judge in which areas of embedded system design specific risks exist.
Personal Competence
Social Competence

Students are able to solve similar problems alone or in a group and to present the results accordingly.

Autonomy

Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 90 minutes, contents of course and labs
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Specialisation Mechatronics: Elective Compulsory
Engineering Science: Specialisation Electrical Engineering: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Elective Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Aeronautics: Core Qualification: Elective Compulsory
Mechatronics: Core Qualification: Elective Compulsory
Mechatronics: Specialisation Naval Engineering: Compulsory
Mechatronics: Specialisation Electrical Systems: Compulsory
Mechatronics: Specialisation Dynamic Systems and AI: Compulsory
Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory
Mechatronics: Specialisation Medical Engineering: Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Course L0805: Embedded Systems
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Heiko Falk
Language EN
Cycle SoSe
Content
  • Introduction
  • Specifications and Modeling
  • Embedded/Cyber-Physical Systems Hardware
  • System Software
  • Evaluation and Validation
  • Mapping of Applications to Execution Platforms
  • Optimization
Literature
  • Peter Marwedel. Embedded System Design - Embedded Systems Foundations of Cyber-Physical Systems. 2nd Edition, Springer, 2012., Springer, 2012.
Course L2938: Embedded Systems
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Heiko Falk
Language EN
Cycle SoSe
Content
  • Introduction
  • Specifications and Modeling
  • Embedded/Cyber-Physical Systems Hardware
  • System Software
  • Evaluation and Validation
  • Mapping of Applications to Execution Platforms
  • Optimization
Literature
  • Peter Marwedel. Embedded System Design - Embedded Systems Foundations of Cyber-Physical Systems. 2nd Edition, Springer, 2012., Springer, 2012.
Course L0806: Embedded Systems
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heiko Falk
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Thesis

Module M1800: Bachelor thesis (dual study program)

Courses
Title Typ Hrs/wk CP
Module Responsible Professoren der TUHH
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students…

  • … choose central theoretical principles from their field of study (facts, theories, methods) in relation to problems and applications, present them and discuss them critically.
  • … further develop their subject-related and practical knowledge as appropriate and link both areas of knowledge together. 
  • … present the current research available on a chosen topic or on a chosen operational issue linked to their subject.

Skills

Dual students…

  • … evaluate both the basic knowledge linked to their field of study acquired at the university and professional knowledge gained through the company, then purposefully use it to solve technical and application-related problems.
  • … analyse questions and problems using the methods learned throughout their studies (including practical phases), reach factually justifiable decisions and develop application-specific solutions.
  • … critically analyse the results of their own research work from a subject-specific and professional perspective.

Personal Competence
Social Competence

Dual students…

  • … present a professional problem in the form of an academic question for a specialist audience in a structured, comprehensible and factually correct manner, both orally and in writing. 
  • … respond to questions as part of a specialist discussion and answer them appropriately. In doing so, they argue their own evaluations and points of view convincingly.


Autonomy

Dual students…

  • … structure a comprehensive, chronological workflow and work independently on a question to a high academic level within a given period of time.
  • … identify, develop and link necessary knowledge and material to handle an academic and application-related problem. 
  • … apply the essential techniques of academic work when conducting their own research on an operational issue.


Workload in Hours Independent Study Time 360, Study Time in Lecture 0
Credit points 12
Course achievement None
Examination Thesis
Examination duration and scale According to General Regulations
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Thesis: Compulsory
Civil- and Environmental Engineering: Thesis: Compulsory
Chemical and Bioprocess Engineering: Thesis: Compulsory
Computer Science: Thesis: Compulsory
Data Science: Thesis: Compulsory
Electrical Engineering: Thesis: Compulsory
Engineering Science: Thesis: Compulsory
Green Technologies: Energy, Water, Climate: Thesis: Compulsory
Computer Science in Engineering: Thesis: Compulsory
Mechanical Engineering: Thesis: Compulsory
Mechatronics: Thesis: Compulsory
Naval Architecture: Thesis: Compulsory
Technomathematics: Thesis: Compulsory
Engineering and Management - Major in Logistics and Mobility: Thesis: Compulsory