Program description

Content

Core Qualification

Module M0575: Procedural Programming

Courses
Title Typ Hrs/wk CP
Procedural Programming (L0197) Lecture 1 2
Procedural Programming (L0201) Recitation Section (large) 1 1
Procedural Programming (L0202) Practical Course 2 3
Module Responsible Prof. Siegfried Rump
Admission Requirements None
Recommended Previous Knowledge

Elementary PC handling skills

Elementary mathematical skills

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students acquire the following knowledge:

  • They know basic elements of the programming language C. They know the basic data types and know how to use them.

  • They have an understanding of elementary compiler tasks, of the preprocessor and programming environment and know how those interact.

  • They know how to bind programs and how to include external libraries to enhance software packages.

  • They know how to use header files and how to declare function interfaces to create larger programming projects.

  • The acquire some knowledge how the program interacts with the operating system. This allows them to develop programs interacting with the programming environment as well.

  • They learnt several possibilities how to model and implement frequently occurring standard algorithms.

Skills
  • The students know how to judge the complexity of an algorithms and how to program algorithms efficiently.

  • The students are able to model and implement algorithms for a number of standard functionalities. Moreover, they are able to adapt a given API.

Personal Competence
Social Competence

The students acquire the following skills:

  • They are able to work in small teams to solve given weekly tasks, to identify and analyze programming errors and to present their results.

  • They are able to explain simple phenomena to each other directly at the PC.

  • They are able to plan and to work out a project in small teams.

  • They communicate final results and present programs to their tutor.

Autonomy
  • The students take individual examinations as well as a final written examn to prove their programming skills and ability to solve new tasks.

  • The students have many possibilities to check their abilities when solving several given programming exercises.

  • In order to solve the given tasks efficiently, the students have to split those appropriately within their group, where every student solves his or her part individually.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula Computer Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory
Mechatronics: Core Qualification: Compulsory
Orientierungsstudium: Core Qualification: Elective Compulsory
Technomathematics: Core Qualification: Compulsory
Course L0197: Procedural Programming
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Siegfried Rump
Language DE
Cycle WiSe
Content
  • basic data types (integers, floating point format, ASCII-characters) and their dependencies on the CPU architecture
  • advanced data types (pointers, arrays, strings, structs, lists)

  • operators (arithmetical operations, logical operations, bit operations)

  • control flow (choice, loops, jumps)

  • preprocessor directives (macros, conditional compilation, modular design)

  • functions (function definitions/interface, recursive functions, "call by value" versus "call by reference", function pointers)

  • essential standard libraries and functions (stdio.h, stdlib.h, math.h, string.h, time.h)

  • file concept, streams

  • basic algorithms (sorting functions, series expansion, uniformly distributed permutation)

  • exercise programs to deepen the programming skills



Literature

Kernighan, Brian W (Ritchie, Dennis M.;)
The C programming language
ISBN: 9780131103702
Upper Saddle River, NJ [u.a.] : Prentice Hall PTR, 2009

Sedgewick, Robert 
Algorithms in C
ISBN: 0201316633
Reading, Mass. [u.a.] : Addison-Wesley, 2007 

Kaiser, Ulrich (Kecher, Christoph.;)
C/C++: Von den Grundlagen zur professionellen Programmierung
ISBN: 9783898428392
Bonn : Galileo Press, 2010

Wolf, Jürgen 
C von A bis Z : das umfassende Handbuch
ISBN: 3836214113
Bonn : Galileo Press, 2009

Course L0201: Procedural Programming
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Siegfried Rump
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0202: Procedural Programming
Typ Practical Course
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Siegfried Rump
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0577: Non-technical Courses for Bachelors

Module Responsible Dagmar Richter
Admission Requirements None
Recommended Previous Knowledge None
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The Non-technical Academic Programms (NTA)

imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses.

The Learning Architecture

consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses.

The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”

The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies.

Teaching and Learning Arrangements

provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses.

Fields of Teaching

are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, migration studies, communication studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.

The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations.

The Competence Level

of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc.

This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life.

Specialized Competence (Knowledge)

Students can

  • locate selected specialized areas with the relevant non-technical mother discipline,
  • outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area,
  • different specialist disciplines relate to their own discipline and differentiate it as well as make connections, 
  • sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity,
  • Can communicate in a foreign language in a manner appropriate to the subject.
Skills

Professional Competence (Skills)

In selected sub-areas students can

  • apply basic methods of the said scientific disciplines,
  • auestion a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline,
  • to handle simple questions in aforementioned scientific disciplines in a sucsessful manner,
  • justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to the subject.
Personal Competence
Social Competence

Personal Competences (Social Skills)

Students will be able

  • to learn to collaborate in different manner,
  • to present and analyze problems in the abovementioned fields in a partner or group situation in a manner appropriate to the addressees,
  • to express themselves competently, in a culturally appropriate and gender-sensitive manner in the language of the country (as far as this study-focus would be chosen), 
  • to explain nontechnical items to auditorium with technical background knowledge.


Autonomy

Personal Competences (Self-reliance)

Students are able in selected areas

  • to reflect on their own profession and professionalism in the context of real-life fields of application
  • to organize themselves and their own learning processes      
  • to reflect and decide questions in front of a broad education background
  • to communicate a nontechnical item in a competent way in writen form or verbaly
  • to organize themselves as an entrepreneurial subject country (as far as this study-focus would be chosen)      
Workload in Hours Depends on choice of courses
Credit points 6
Courses
Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M0642: Physics for Engineers

Courses
Title Typ Hrs/wk CP
Physics for Engineers (L0367) Lecture 2 3
Physics for Engineers (Problem Solving Course) (L0368) Recitation Section (small) 1 1
Physics-Lab for ET (L0948) Practical Course 1 2
Module Responsible Prof. Manfred Eich
Admission Requirements None
Recommended Previous Knowledge
  • Calculus and linear algebra on high school level
  • Physics on high school level
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain fundamental topics and laws of physics such as in the areas of mechanics, oscillations,
waves, and optics.

Students can relate physics topics to technical problems.

Skills

Students can describe physical problems mathematically and solve such problems within the framework of
their acquired mathematical expertise.

Students are able to write meaningful reports on experiments and to discuss the results in a conclusive way.

Personal Competence
Social Competence

Students can jointly solve subject related problems in groups. They can present their results effectively
within the framework of the problem solving and lab courses.


Autonomy

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work 4-seitige handschriftliche Versuchsvorbereitung, Ausarbeitung unter Anleitung und Testat
Examination Written exam
Examination duration and scale 120 Minutes
Assignment for the Following Curricula Electrical Engineering: Core Qualification: Compulsory
Course L0367: Physics for Engineers
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Manfred Eich
Language DE
Cycle WiSe
Content
  • Introduction
  • Kinematics and dynamics
  • Work, Energy, momentum
  • Rotatory Motion, moments of inertia
  • Gravitation
  • Special Theory of Relativity
  • Oscillations
  • Waves
  • Geometrical optics
  • Wave optics
  • Matter waves
  • Fundamentals of quantum mechanics
Literature
  • Giancoli, Physics for Scientists & Engineers Vol. 1, 2, Pearson
  • Halliday/Resnik/Walker, Fundamentals of physics, Wiley 
  • K. Cummings, P. Laws, E. Redish, and P. Cooney (“CLRC”), Understanding Physics, Wiley
  • Gerthsen/Vogel, Physik, Springer Verlag 
  • Hering/Martin/Stohrer, Physik für Ingenieure, VDI-Verlag
Course L0368: Physics for Engineers (Problem Solving Course)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Manfred Eich
Language DE
Cycle WiSe
Content

see lecture Physics for Engineers

Literature

see lecture Physics for Engineers

Course L0948: Physics-Lab for ET
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Wolfgang Hansen
Language DE/EN
Cycle SoSe
Content

In the physics lab a number of key experiments on physical phenomena in mechanics, oscillatory and wave motion, thermodynamics, electricity, and optics will be conducted by the students under assistance of a lecturing tutor. The experiments are part of the physics education program presented in the course "Physics for TUHH-ET Engineers".

Beyond teaching of fundamental physical background the objectives are basic skills in preparation and performing physical measurements, usage of physical equipment, analysis of the results and preparation of a report on the experimental data.

Literature

Zu den Versuchen gibt es individuelle Versuchsanleitungen, die vor der Versuchsdurchführung ausgegeben werden.  

Zum Teil müssen die zur Versuchsdurchführung notwendigen physikalischen Hintergründe selbstständig erarbeitet werden, wozu die zur Vorlesung "Physik für TUHH-ET Ingenieure" angegebene Literatur gut geeignet ist.

Module M0743: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields

Courses
Title Typ Hrs/wk CP
Electrical Engineering I: Direct Current Networks and Electromagnetic Fields (L0675) Lecture 3 5
Electrical Engineering I: Direct Current Networks and Electromagnetic Fields (L0676) Recitation Section (small) 2 1
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Excercises
Examination Written exam
Examination duration and scale 120 Minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientierungsstudium: Core Qualification: Elective Compulsory
Course L0675: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Matthias Kuhl
Language DE
Cycle WiSe
Content
Literature
  1. M. Kasper, Skript zur Vorlesung Elektrotechnik 1, 2013
  2. M. Albach: Grundlagen der Elektrotechnik 1, Pearson Education, 2004
  3. F. Moeller, H. Frohne, K.H. Löcherer, H. Müller: Grundlagen der Elektrotechnik, Teubner, 2005
  4. A. R. Hambley: Electrical Engineering, Principles and Applications, Pearson Education, 2008
Course L0676: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields
Typ Recitation Section (small)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Matthias Kuhl
Language DE
Cycle WiSe
Content
Literature
  1. Übungsaufgaben zur Elektrotechnik 1, TUHH, 2013
  2. Ch. Kautz: Tutorien zur Elektrotechnik, Pearson Studium, 2010

Module M0829: Foundations of Management

Courses
Title Typ Hrs/wk CP
Management Tutorial (L0882) Recitation Section (large) 2 3
Introduction to Management (L0880) Lecture 3 3
Module Responsible Prof. Christoph Ihl
Admission Requirements None
Recommended Previous Knowledge Basic Knowledge of Mathematics and Business
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After taking this module, students know the important basics of many different areas in Business and Management, from Planning and Organisation to Marketing and Innovation, and also to Investment and Controlling. In particular they are able to

  • explain the differences between Economics and Management and the sub-disciplines in Management and to name important definitions from the field of Management
  • explain the most important aspects of and goals in Management and name the most important aspects of entreprneurial projects 
  • describe and explain basic business functions as production, procurement and sourcing, supply chain management, organization and human ressource management, information management, innovation management and marketing 
  • explain the relevance of planning and decision making in Business, esp. in situations under multiple objectives and uncertainty, and explain some basic methods from mathematical Finance 
  • state basics from accounting and costing and selected controlling methods.
Skills

Students are able to analyse business units with respect to different criteria (organization, objectives, strategies etc.) and to carry out an Entrepreneurship project in a team. In particular, they are able to

  • analyse Management goals and structure them appropriately
  • analyse organisational and staff structures of companies
  • apply methods for decision making under multiple objectives, under uncertainty and under risk
  • analyse production and procurement systems and Business information systems
  • analyse and apply basic methods of marketing
  • select and apply basic methods from mathematical finance to predefined problems
  • apply basic methods from accounting, costing and controlling to predefined problems

Personal Competence
Social Competence

Students are able to

  • work successfully in a team of students
  • to apply their knowledge from the lecture to an entrepreneurship project and write a coherent report on the project
  • to communicate appropriately and
  • to cooperate respectfully with their fellow students. 
Autonomy

Students are able to

  • work in a team and to organize the team themselves
  • to write a report on their project.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale several written exams during the semester
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Civil Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Energy and Environmental Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Civil Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Logistics and Mobility: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientierungsstudium: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0882: Management Tutorial
Typ Recitation Section (large)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Christoph Ihl, Katharina Roedelius, Tobias Vlcek
Language DE
Cycle WiSe/SoSe
Content

In the management tutorial, the contents of the lecture will be deepened by practical examples and the application of the discussed tools.

If there is adequate demand, a problem-oriented tutorial will be offered in parallel, which students can choose alternatively. Here, students work in groups on self-selected projects that focus on the elaboration of an innovative business idea from the point of view of an established company or a startup. Again, the business knowledge from the lecture should come to practical use. The group projects are guided by a mentor.


Literature Relevante Literatur aus der korrespondierenden Vorlesung.
Course L0880: Introduction to Management
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Christoph Ihl, Prof. Thorsten Blecker, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Kathrin Fischer, Prof. Cornelius Herstatt, Prof. Wolfgang Kersten, Prof. Matthias Meyer, Prof. Thomas Wrona
Language DE
Cycle WiSe/SoSe
Content
  • Introduction to Business and Management, Business versus Economics, relevant areas in Business and Management
  • Important definitions from Management, 
  • Developing Objectives for Business, and their relation to important Business functions
  • Business Functions: Functions of the Value Chain, e.g. Production and Procurement, Supply Chain Management, Innovation Management, Marketing and Sales
    Cross-sectional Functions, e.g. Organisation, Human Ressource Management, Supply Chain Management, Information Management
  • Definitions as information, information systems, aspects of data security and strategic information systems
  • Definition and Relevance of innovations, e.g. innovation opporunities, risks etc.
  • Relevance of marketing, B2B vs. B2C-Marketing
  • different techniques from the field of marketing (e.g. scenario technique), pricing strategies
  • important organizational structures
  • basics of human ressource management
  • Introduction to Business Planning and the steps of a planning process
  • Decision Analysis: Elements of decision problems and methods for solving decision problems
  • Selected Planning Tasks, e.g. Investment and Financial Decisions
  • Introduction to Accounting: Accounting, Balance-Sheets, Costing
  • Relevance of Controlling and selected Controlling methods
  • Important aspects of Entrepreneurship projects



Literature

Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008

Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003

Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006.

Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001.

Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008.

Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005.

Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008.

Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. 


Module M0850: Mathematics I

Courses
Title Typ Hrs/wk CP
Analysis I (L1010) Lecture 2 2
Analysis I (L1012) Recitation Section (small) 1 1
Analysis I (L1013) Recitation Section (large) 1 1
Linear Algebra I (L0912) Lecture 2 2
Linear Algebra I (L0913) Recitation Section (small) 1 1
Linear Algebra I (L0914) Recitation Section (large) 1 1
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge

School mathematics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name the basic concepts in analysis and linear algebra. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in analysis and linear algebra with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Course achievement None
Examination Written exam
Examination duration and scale 60 min (Analysis I) + 60 min (Linear Algebra I)
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Energy and Environmental Engineering: Core Qualification: Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Logistics and Mobility: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientierungsstudium: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Course L1010: Analysis I
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content

Foundations of differential and integrational calculus of one variable

  • statements, sets and functions
  • natural and real numbers
  • convergence of sequences and series
  • continuous and differentiable functions
  • mean value theorems
  • Taylor series
  • calculus
  • error analysis
  • fixpoint iteration
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html

     

     


Course L1012: Analysis I
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1013: Analysis I
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0912: Linear Algebra I
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz, Prof. Marko Lindner
Language DE
Cycle WiSe
Content
  • vectors: intuition, rules, inner and cross product, lines and planes
  • systems of linear equations: Gauß elimination, matrix product, inverse matrices, transformations, block matrices, determinants 
  • orthogonal projection in R^n, Gram-Schmidt-Orthonormalization
Literature
  • T. Arens u.a. : Mathematik, Spektrum Akademischer Verlag, Heidelberg 2009
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • G. Strang: Lineare Algebra, Springer-Verlag, 2003
  • G. und S. Teschl: Mathematik für Informatiker, Band 1, Springer-Verlag, 2013
Course L0913: Linear Algebra I
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Anusch Taraz, Prof. Marko Lindner
Language DE
Cycle WiSe
Content
  • vectors: intuition, rules, inner and cross product, lines and planes
  • general vector spaces: subspaces, Euclidean vector spaces
  • systems of linear equations: Gauß-elimination, matrix product, inverse matrices, transformations, LR-decomposition, block matrices, determinants 
Literature
  • T. Arens u.a. : Mathematik, Spektrum Akademischer Verlag, Heidelberg 2009
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
Course L0914: Linear Algebra I
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Christian Seifert
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0547: Electrical Engineering II: Alternating Current Networks and Basic Devices

Courses
Title Typ Hrs/wk CP
Electrical Engineering II: Alternating Current Networks and Basic Devices (L0178) Lecture 3 5
Electrical Engineering II: Alternating Current Networks and Basic Devices (L0179) Recitation Section (small) 2 1
Module Responsible Prof. Christian Becker
Admission Requirements None
Recommended Previous Knowledge

Electrical Engineering I

Mathematics I

Direct current networks, complex numbers


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to reproduce and explain fundamental theories, principles, and methods related to the theory of alternating currents. They can describe networks of linear elements using a complex notation for voltages and currents. They can reproduce an overview of applications for the theory of alternating currents in the area of electrical engineering. Students are capable of explaining the behavior of fundamental passive and active devices as well as their impact on simple circuits.


Skills

Students are capable of calculating parameters within simple electrical networks at alternating currents by means of a complex notation for voltages and currents. They can appraise the fundamental effects that may occur within electrical networks at alternating currents. Students are able to analyze simple circuits such as oscillating circuits, filter, and matching networks quantitatively and dimension elements by means of a design. They can motivate and justify the fundamental elements of an electrical power supply (transformer, transmission line, compensation of reactive power, multiphase system) and are qualified to dimension their main features.


Personal Competence
Social Competence

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively.


Autonomy

Students are capable to gather necessary information from the references provided and relate that information to the context of the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as online-tests and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between their knowledge obtained in this lecture and the content of other lectures (e.g. Electrical Engineering I, Linear Algebra, and Analysis).


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Midterm
Examination Written exam
Examination duration and scale 90 - 150 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientierungsstudium: Core Qualification: Elective Compulsory
Course L0178: Electrical Engineering II: Alternating Current Networks and Basic Devices
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Christian Becker
Language DE
Cycle SoSe
Content

- General time-dependency of electrical networks

- Representation and properties of harmonic signals

- RLC-elements at alternating currents/voltages

- Complex notation for the representation of RLC-elements

- Power in electrical networks at alternating currents, compensation of reactive power

- Frequency response locus (Nyquist plot) and Bode-diagrams

- Measurement instrumentation for assessing alternating currents

- Oscillating circuits, filters, electrical transmission lines

- Transformers, three-phase current, energy converters

- Simple non-linear and active electrical devices


Literature

- M. Albach, "Elektrotechnik", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013)  

- R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010)

- C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009)

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013)

- R. Dorf, "The Electrical Engineering Handbook", CRC (2006)


Course L0179: Electrical Engineering II: Alternating Current Networks and Basic Devices
Typ Recitation Section (small)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Christian Becker
Language DE
Cycle SoSe
Content

- General time-dependency of electrical networks

- Representation and properties of harmonic signals

- RLC-elements at alternating currents/voltages

- Complex notation for the representation of RLC-elements

- Power in electrical networks at alternating currents, compensation of reactive power

- Frequency response locus (Nyquist plot) and Bode-diagrams

- Measurement instrumentation for assessing alternating currents

- Oscillating circuits, filters, electrical transmission lines

- Transformers, three-phase current, energy converters

- Simple non-linear and active electrical devices


Literature

- M. Albach, "Elektrotechnik", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013)  

- R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010)

- C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009)

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013)

- R. Dorf, "The Electrical Engineering Handbook", CRC (2006)


Module M0553: Objectoriented Programming, Algorithms and Data Structures

Courses
Title Typ Hrs/wk CP
Objectoriented Programming, Algorithms and Data Structures (L0131) Lecture 4 4
Objectoriented Programming, Algorithms and Data Structures (L0132) Recitation Section (small) 1 2
Module Responsible Prof. Rolf-Rainer Grigat
Admission Requirements None
Recommended Previous Knowledge

This lecture requires proficiency in the German language. For further requirements please refer to the German description.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the essentials of software design and the design of a class architecture with reference to existing class libraries and design patterns.

Students can describe fundamental data structures of discrete mathematics and assess the complexity of important algorithms for sorting and searching.



Skills

Students are able to

  • Design software using given design patterns and applying class hierarchies and polymorphism
  • Carry out software development and tests using version management systems and Google Test
  • Sort and search for data efficiently
  • Assess the complexity of algorithms.


Personal Competence
Social Competence

Students can work in teams and communicate in forums.


Autonomy

Students are able to solve programming tasks such as LZW data compression using SVN Repository and Google Test independently and over a period of two to three weeks.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 Minutes, Content of Lecture, exercises and material in StudIP
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
Computer Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory
Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory
Orientierungsstudium: Core Qualification: Elective Compulsory
Course L0131: Objectoriented Programming, Algorithms and Data Structures
Typ Lecture
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Lecturer Prof. Rolf-Rainer Grigat
Language DE
Cycle SoSe
Content

Object oriented analysis and design:   

  • Objectoriented programming in C++ and Java
  • generic programming
  • UML
  • design patterns

Data structures and algorithmes:

  • complexity of algorithms
  • searching, sorting, hash tables,
  • stack, queues, lists,
  • trees (AVL, heap, 2-3-4, Trie, Huffman, Patricia, B),
  • sets, priority queues,
  • directed and undirected graphs (spanning trees, shortest and longest path)
Literature Skriptum
Course L0132: Objectoriented Programming, Algorithms and Data Structures
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Rolf-Rainer Grigat
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0748: Materials in Electrical Engineering

Courses
Title Typ Hrs/wk CP
Electrotechnical Experiments (L0714) Lecture 1 1
Materials in Electrical Engineering (L0685) Lecture 2 3
Materials in Electrical Engineering (Problem Solving Course) (L0687) Recitation Section (small) 2 2
Module Responsible Prof. Manfred Eich
Admission Requirements None
Recommended Previous Knowledge Highschool level physics and mathematics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the composition and the structural properties of materials used in electrical engineering. Students can explicate the relevance of mechanical, electrical, thermal, dielectric, magnetic and chemical properties of materials in view of their applications in electrical engineering.

Skills

Students can identify appropriate descriptive models and apply them mathematically. They can derive approximative solutions and judge factors influential on the performance of materials in electrical engineering applications.


Personal Competence
Social Competence

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Autonomy

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
Computational Science and Engineering: Specialisation Engineering Sciences: Elective Compulsory
Orientierungsstudium: Core Qualification: Elective Compulsory
Course L0714: Electrotechnical Experiments
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Wieland Hingst
Language DE
Cycle SoSe
Content

Agenda:

- Natural sources of electricity

- Oscilloscope

- Characterizing signals

- 2 terminal circuit elements

- 2-ports

- Power

- Matching

- Inductive coupling

- Resonance

- Radio frequencies

- Transistor circuits

- Electrical measurement

- Materials for the EE

- Electrical fun


Literature

Tietze, Schenk: "Halbleiterschaltungstechnik", Springer


Course L0685: Materials in Electrical Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Manfred Eich
Language DE
Cycle SoSe
Content

The Hamiltonian approach to classical mechanics. Analysis of a simple oscillator.
Analysis of vibrations in a one-dimensional lattice.
Phononic bandgap
Introduction to quantum mechanics
Wave function, Schrödinger’s equation, observables and measurements.
Quantum mechanical harmonic oscillator and spectral decomposition.
Symmetries, conserved quantities, and the labeling of states.
Angular momentum
The hydrogen atom
Waves in periodic potentials
Reciprocal lattice and reciprocal lattice vectors
Band gap
Band diagrams
The free electron gas and the density of states
Fermi-Dirac distribution
Density of charge carriers in semiconductors
Conductivity in semiconductors. Engineering conductivity through doping.
The P-N junction (diode)
Light emitting diodes
Electromagnetic waves interacting with materials
Reflection and refraction
Photonic band gaps
Origins of magnetization
Hysteresis in ferromagnetic materials
Magnetic domains

Literature

1.Anikeeva, Beach, Holten-Andersen, Fink, Electronic, Optical and Magnetic Properties of Materials,
Massachusetts Institute of Technology (MIT), 2013

2.Hagelstein et al., Introductory Applied Quantum and Statistical Mechanics, Wiley 2004

3.Griffiths, Introduction to Quantum Mechanics, Prentice Hall, 1994

4.Shankar, Principles of Quantum Mechanics, 2nd ed., Plenum Press, 1994

5.Fick, Einführung in die Grundlagen der Quantentheorie, Akad. Verlagsges., 1979

6.Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2004

7.Ashcroft, Mermin, Solid State Physics, Harcourt, 1976

8.Pierret, Semiconductor Fundamentals Vol. 1, Addison Wesley, 1988

9.Sze, Physics of Semiconductor Devices, Wiley, 1981

10.Saleh, Teich, Fundamentals of Photonics, 2nd ed., 2007

11.Joannopoulos, Johnson, Winn Meade, Photonic Crystals, 2nd ed., Princeton Universty Press, 2008

12.Handley, Modern Magnetic Materials, Wiley, 2000

13.Wikipedia, Wikimedia

Course L0687: Materials in Electrical Engineering (Problem Solving Course)
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Manfred Eich
Language DE
Cycle SoSe
Content
  • Atom structure and periodic system
  • Atom binding and crystal structure
  • Structure and properties of alloys:
    diffusion, phase diagrams, phase separation and grain boundaries
  • Material properties:
    Mechanical, thermal, electrical, dielectric properties
  • Metals
  • Semiconductors
  • Ceramics and glasses
  • Polymers
  • Magnetic materials
  • Electrochemistry
    Oxidation numbers, electrolysis, batteries, fuel cells
Literature

H. Schaumburg: Einführung in die Werkstoffe der Elektrotechnik, Teubner (1993)

Module M0851: Mathematics II

Courses
Title Typ Hrs/wk CP
Analysis II (L1025) Lecture 2 2
Analysis II (L1026) Recitation Section (large) 1 1
Analysis II (L1027) Recitation Section (small) 1 1
Linear Algebra II (L0915) Lecture 2 2
Linear Algebra II (L0916) Recitation Section (small) 1 1
Linear Algebra II (L0917) Recitation Section (large) 1 1
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge Mathematics I
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name further concepts in analysis and linear algebra. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in analysis and linear algebra with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Course achievement None
Examination Written exam
Examination duration and scale 60 min (Analysis II) + 60 min (Linear Algebra II)
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Energy and Environmental Engineering: Core Qualification: Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Logistics and Mobility: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientierungsstudium: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Course L1025: Analysis II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content
  • power series and elementary functions
  • interpolation
  • integration (proper integrals, fundamental theorem, integration rules, improper integrals, parameter dependent integrals
  • applications of integration (volume and surface of bodies of revolution, lines and arc length, line integrals
  • numerical quadrature
  • periodic functions

Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html



Course L1026: Analysis II
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1027: Analysis II
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0915: Linear Algebra II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz, Prof. Marko Lindner
Language DE
Cycle SoSe
Content
  • general vector spaces: subspaces, Euclidean vector spaces
  • linear mappings: basis transformation, orthogonal projection, orthogonal matrices, householder matrices
  • linear regression: normal equations, linear discrete approximation
  • eigenvalues: diagonalising matrices, normal matrices, symmetric and Hermite matrices
  • system of linear differential equations 
  • matrix factorizations: LR-decomposition, QR-decomposition, Schur decomposition, Jordan normal form, singular value decomposition
Literature
  • T. Arens u.a. : Mathematik, Spektrum Akademischer Verlag, Heidelberg 2009
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • G. Strang: Lineare Algebra, Springer-Verlag, 2003 
  • G. und S. Teschl: Mathematik für Informatiker, Band 1, Springer-Verlag, 2013

Course L0916: Linear Algebra II
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Anusch Taraz, Prof. Marko Lindner
Language DE
Cycle SoSe
Content
  • linear mappings: basis transformation, orthogonal projection, orthogonal matrices, householder matrices
  • linear regression: QR-decomposition, normal equations, linear discrete approximation
  • eigenvalues: diagonalising matrices, normal matrices, symmetric and Hermite matrices, Jordan normal form, singular value decomposition
  • system of linear differential equations 
Literature
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
Course L0917: Linear Algebra II
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Christian Seifert, Dr. Julian Großmann
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0783: Measurements: Methods and Data Processing

Courses
Title Typ Hrs/wk CP
EE Experimental Lab (L0781) Practical Course 2 2
Measurements: Methods and Data Processing (L0779) Lecture 2 3
Measurements: Methods and Data Processing (L0780) Recitation Section (small) 1 1
Module Responsible Prof. Alexander Schlaefer
Admission Requirements None
Recommended Previous Knowledge

principles of mathematics
principles of electrical engineering 

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to explain the purpose of metrology and the acquisition and processing of measurements. They can detail aspects of probability theory and errors, and explain the processing of stochastic signals. Students know methods to digitalize and describe measured signals.



Skills

The students are able to evaluate problems of metrology and to apply methods for describing and processing of measurements.


Personal Competence
Social Competence

The students solve problems in small groups.

Autonomy

The students can reflect their knowledge and discuss and evaluate their results.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Excercises
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
Computational Science and Engineering: Specialisation Computer Science: Elective Compulsory
Computational Science and Engineering: Specialisation Engineering Sciences: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0781: EE Experimental Lab
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer, Prof. Christian Schuster, Prof. Thanh Trung Do, Prof. Rolf-Rainer Grigat, Prof. Arne Jacob, Prof. Herbert Werner, Dozenten des SD E, Prof. Heiko Falk, Prof. Thorsten Kern
Language DE
Cycle WiSe
Content lab experiments: digital circuits, semiconductors, micro controllers, analog circuits, AC power, electrical machines
Literature Wird in der Lehrveranstaltung festgelegt
Course L0779: Measurements: Methods and Data Processing
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language DE
Cycle WiSe
Content

introduction, systems and errors in metrology, probability theory, measuring stochastic signals, describing measurements, acquisition of analog signals, applied metrology

Literature

Puente León, Kiencke: Messtechnik, Springer 2012
Lerch: Elektrische Messtechnik, Springer 2012

Weitere Literatur wird in der Veranstaltung bekanntgegeben.

Course L0780: Measurements: Methods and Data Processing
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Alexander Schlaefer
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0708: Electrical Engineering III: Circuit Theory and Transients

Courses
Title Typ Hrs/wk CP
Circuit Theory (L0566) Lecture 3 4
Circuit Theory (L0567) Recitation Section (small) 2 2
Module Responsible Prof. Alexander Kölpin
Admission Requirements None
Recommended Previous Knowledge

Electrical Engineering I and II, Mathematics I and II


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain the basic methods for calculating electrical circuits. They know the Fourier series analysis of linear networks driven by periodic signals. They know the methods for transient analysis of linear networks in time and in frequency domain, and they are able to explain the frequency behaviour and the synthesis of passive two-terminal-circuits.


Skills

The students are able to calculate currents and voltages in linear networks by means of basic methods, also when driven by periodic signals. They are able to calculate transients in electrical circuits in time and frequency domain and are able to explain the respective transient behaviour. They are able to analyse and to synthesize the frequency behaviour of passive two-terminal-circuits.


Personal Competence
Social Competence

Students work on exercise tasks in small guided groups. They are encouraged to present and discuss their results within the group.


Autonomy

The students are able to find out the required methods for solving the given practice problems. Possibilities are given to test their knowledge during the lectures continuously by means of short-time tests. This allows them to control independently their educational objectives. They can link their gained knowledge to other courses like Electrical Engineering I and Mathematics I.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 150 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
Computational Science and Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Computational Science and Engineering: Specialisation Engineering Sciences: Elective Compulsory
Mechatronics: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0566: Circuit Theory
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Arne Jacob, Dr. Fabian Lurz
Language DE
Cycle WiSe
Content

- Circuit theorems

- N-port circuits

- Periodic excitation of linear circuits

- Transient analysis in time domain

- Transient analysis in frequency domain; Laplace Transform

- Frequency behaviour of passive one-ports


Literature

- M. Albach, "Grundlagen der Elektrotechnik 1", Pearson Studium (2011)

- M. Albach, "Grundlagen der Elektrotechnik 2", Pearson Studium (2011)

- L. P. Schmidt, G. Schaller, S. Martius, "Grundlagen der Elektrotechnik 3", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) 

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2008)

- R. C. Dorf, J. A. Svoboda, "Introduction to electrical circuits", Wiley (2006)

- L. Moura, I. Darwazeh, "Introduction to Linear Circuit Analysis and Modeling", Amsterdam Newnes (2005)


Course L0567: Circuit Theory
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Arne Jacob
Language DE
Cycle WiSe
Content see interlocking course
Literature

siehe korrespondierende Lehrveranstaltung

see interlocking course

Module M0730: Computer Engineering

Courses
Title Typ Hrs/wk CP
Computer Engineering (L0321) Lecture 3 4
Computer Engineering (L0324) Recitation Section (small) 1 2
Module Responsible Prof. Heiko Falk
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge in electrical engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

This module deals with the foundations of the functionality of computing systems. It covers the layers from the assembly-level programming down to gates. The module includes the following topics:

  • Introduction
  • Combinational logic: Gates, Boolean algebra, Boolean functions, hardware synthesis, combinational networks
  • Sequential logic: Flip-flops, automata, systematic hardware design
  • Technological foundations
  • Computer arithmetic: Integer addition, subtraction, multiplication and division
  • Basics of computer architecture: Programming models, MIPS single-cycle architecture, pipelining
  • Memories: Memory hierarchies, SRAM, DRAM, caches
  • Input/output: I/O from the perspective of the CPU, principles of passing data, point-to-point connections, busses
Skills

The students perceive computer systems from the architect's perspective, i.e., they identify the internal structure and the physical composition of computer systems. The students can analyze, how highly specific and individual computers can be built based on a collection of few and simple components. They are able to distinguish between and to explain the different abstraction layers of today's computing systems - from gates and circuits up to complete processors.

After successful completion of the module, the students are able to judge the interdependencies between a physical computer system and the software executed on it. In particular, they shall understand the consequences that the execution of software has on the hardware-centric abstraction layers from the assembly language down to gates. This way, they will be enabled to evaluate the impact that these low abstraction levels have on an entire system's performance and to propose feasible options.

Personal Competence
Social Competence

Students are able to solve similar problems alone or in a group and to present the results accordingly.

Autonomy

Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Excercises
Examination Written exam
Examination duration and scale 90 minutes, contents of course and labs
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Civil Engineering: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Civil Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Technomathematics: Specialisation II. Informatics: Elective Compulsory
Course L0321: Computer Engineering
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Heiko Falk
Language DE/EN
Cycle WiSe
Content
  • Introduction
  • Combinational Logic
  • Sequential Logic
  • Technological Foundations
  • Representations of Numbers, Computer Arithmetics
  • Foundations of Computer Architecture
  • Memories
  • Input/Output
Literature
  • A. Clements. The Principles of Computer Hardware. 3. Auflage, Oxford University Press, 2000.
  • A. Tanenbaum, J. Goodman. Computerarchitektur. Pearson, 2001.
  • D. Patterson, J. Hennessy. Rechnerorganisation und -entwurf. Elsevier, 2005.
Course L0324: Computer Engineering
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heiko Falk
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0853: Mathematics III

Courses
Title Typ Hrs/wk CP
Analysis III (L1028) Lecture 2 2
Analysis III (L1029) Recitation Section (small) 1 1
Analysis III (L1030) Recitation Section (large) 1 1
Differential Equations 1 (Ordinary Differential Equations) (L1031) Lecture 2 2
Differential Equations 1 (Ordinary Differential Equations) (L1032) Recitation Section (small) 1 1
Differential Equations 1 (Ordinary Differential Equations) (L1033) Recitation Section (large) 1 1
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge Mathematics I + II
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name the basic concepts in the area of analysis and differential equations. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in the area of analysis and differential equations with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Course achievement None
Examination Written exam
Examination duration and scale 60 min (Analysis III) + 60 min (Differential Equations 1)
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Energy and Environmental Engineering: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Core Qualification: Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Course L1028: Analysis III
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content

Main features of differential and integrational calculus of several variables 

  • Differential calculus for several variables
  • Mean value theorems and Taylor's theorem
  • Maximum and minimum values
  • Implicit functions
  • Minimization under equality constraints
  • Newton's method for multiple variables
  • Double integrals over general regions
  • Line and surface integrals
  • Theorems of Gauß and Stokes
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1029: Analysis III
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1030: Analysis III
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1031: Differential Equations 1 (Ordinary Differential Equations)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content

Main features of the theory and numerical treatment of ordinary differential equations 

  • Introduction and elementary methods
  • Exsitence and uniqueness of initial value problems
  • Linear differential equations
  • Stability and qualitative behaviour of the solution
  • Boundary value problems and basic concepts of calculus of variations
  • Eigenvalue problems
  • Numerical methods for the integration of initial and boundary value problems
  • Classification of partial differential equations

Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1032: Differential Equations 1 (Ordinary Differential Equations)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1033: Differential Equations 1 (Ordinary Differential Equations)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0610: Electrical Machines and Actuators

Courses
Title Typ Hrs/wk CP
Electrical Machines and Actuators (L0293) Lecture 3 4
Electrical Machines and Actuators (L0294) Recitation Section (large) 2 2
Module Responsible Prof. Thorsten Kern
Admission Requirements None
Recommended Previous Knowledge

Basics of mathematics, in particular complexe numbers, integrals, differentials

Basics of electrical engineering and mechanical engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can to draw and  explain the basic principles of electric and magnetic fields. 

They can describe the function of the standard types of electric machines and present the corresponding equations and characteristic curves. For typically used drives they can explain the major parameters of the energy efficiency of the whole system from the power grid to the driven engine.

Skills

Students arw able to calculate two-dimensional electric and magnetic fields in particular ferromagnetic circuits with air gap. For this they apply the usual methods of the design auf electric machines.

They can calulate the operational performance of electric machines from their given characteristic data and selected quantities and characteristic curves. They apply the usual equivalent circuits and graphical methods.


Personal Competence
Social Competence none
Autonomy

Students are able independently to calculate electric and magnatic fields for applications. They are able to analyse independently the operational performance of electric machines from the charactersitic data and theycan calculate thereof selected quantities and characteristic curves.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Design of four machines and actuators, review of design files
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Energy and Environmental Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Elective Compulsory
Computational Science and Engineering: Specialisation Engineering Sciences: Elective Compulsory
Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory
Mechanical Engineering: Core Qualification: Elective Compulsory
Mechatronics: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0293: Electrical Machines and Actuators
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Thorsten Kern, Dennis Kähler
Language DE
Cycle SoSe
Content

Electric field: Coulomb´s law, flux (field) line, work, potential, capacitor, energy, force, capacitive actuators

Magnetic field: force, flux line, Ampere´s law, field at bounderies, flux, magnetic circuit, hysteresis, induction, self-induction, mutual inductance, transformer, electromagnetic actuators

Synchronous machines, construction and layout, equivalent single line diagrams, no-load and short-cuircuit characteristics, vector diagrams, motor and generator operation, stepper motors

DC-Machines: Construction and layout, torque generation mechanismen, torque vs speed characteristics, commutation,

Asynchronous Machines. Magnetic field, construction and layout, equivalent single line diagram, complex stator current diagram (Heylands´diagram), torque vs. speed characteristics, rotor layout (squirrel-cage vs. sliprings),

Drives with variable speed, inverter fed operation, special drives

Literature

Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313

Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122

"Grundlagen der Elektrotechnik" - anderer Autoren

Fachbücher "Elektrische Maschinen"

Course L0294: Electrical Machines and Actuators
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Thorsten Kern, Dennis Kähler
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0567: Theoretical Electrical Engineering I: Time-Independent Fields

Courses
Title Typ Hrs/wk CP
Theoretical Electrical Engineering I: Time-Independent Fields (L0180) Lecture 3 5
Theoretical Electrical Engineering I: Time-Independent Fields (L0181) Recitation Section (small) 2 1
Module Responsible Prof. Christian Schuster
Admission Requirements None
Recommended Previous Knowledge

Basic principles of electrical engineering and advanced mathematics


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the fundamental formulas, relations, and methods of the theory of time-independent electromagnetic fields. They can explicate the principal behavior of electrostatic, magnetostatic, and current density fields with regard to respective sources. They can describe the properties of complex electromagnetic fields by means of superposition of solutions for simple fields. The students are aware of applications for the theory of time-independent electromagnetic fields and are able to explicate these.


Skills

Students can apply Maxwell’s Equations in integral notation in order to solve highly symmetrical, time-independent, electromagnetic field problems. Furthermore, they are capable of applying a variety of methods that require solving Maxwell’s Equations for more general problems. The students can assess the principal effects of given time-independent sources of fields and analyze these quantitatively. They can deduce meaningful quantities for the characterization of electrostatic, magnetostatic, and electrical flow fields (capacitances, inductances, resistances, etc.) from given fields and dimension them for practical applications.


Personal Competence
Social Competence

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively (e.g. during exercise sessions).


Autonomy

Students are capable to gather necessary information from provided references and relate this information to the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as short oral quizzes during the lectures and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between their knowledge obtained in this lecture and the content of other lectures (e.g. Electrical Engineering I, Linear Algebra, and Analysis).


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90-150 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Computational Science and Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0180: Theoretical Electrical Engineering I: Time-Independent Fields
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Christian Schuster
Language DE
Cycle SoSe
Content

- Maxwell’s Equations in integral and differential notation

- Boundary conditions

- Laws of conservation for energy and charge

- Classification of electromagnetic field properties

- Integral characteristics of time-independent fields (R, L, C)

- Generic approaches to solving Poisson’s Equation

- Electrostatic fields and specific methods of solving

- Magnetostatic fields and specific methods of solving

- Fields of electrical current density and specific methods of solving

- Action of force within time-independent fields

- Numerical methods for solving time-independent problems

The practical application of numerical methods will be trained within specifically prepared lectures in an interactive manner using small MATLAB programs.

Literature

- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010)

- H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011)

- W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011)

- D. Griffiths, "Introduction to Electrodynamics", Pearson (2012)

- J. Edminister, " Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013)

- Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011)


Course L0181: Theoretical Electrical Engineering I: Time-Independent Fields
Typ Recitation Section (small)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Christian Schuster
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0672: Signals and Systems

Courses
Title Typ Hrs/wk CP
Signals and Systems (L0432) Lecture 3 4
Signals and Systems (L0433) Recitation Section (small) 2 2
Module Responsible Prof. Gerhard Bauch
Admission Requirements None
Recommended Previous Knowledge

Mathematics 1-3

The modul is an introduction to the theory of signals and systems. Good knowledge in maths as covered by the moduls Mathematik 1-3 is expected. Further experience with spectral transformations (Fourier series, Fourier transform, Laplace transform) is useful but not required.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to classify and describe signals and linear time-invariant (LTI) systems using methods of signal and system theory. They are able to apply the fundamental transformations of continuous-time and discrete-time signals and systems. They can describe and analyse deterministic signals and systems mathematically in both time and image domain. In particular, they understand the effects in time domain and image domain which are caused by the transition of a continuous-time signal to a discrete-time signal.
Skills The students are able to describe and analyse deterministic signals and linear time-invariant systems using methods of signal and system theory. They can analyse and design basic systems regarding important properties such as magnitude and phase response, stability, linearity etc.. They can assess the impact of LTI systems on the signal properties in time and frequency domain.
Personal Competence
Social Competence The students can jointly solve specific problems.
Autonomy The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. 
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0432: Signals and Systems
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle SoSe
Content
  • Introduction to signal and system theory

  • Signals
    • Classification of signals
      • Continuous-time and discrete-time signals
      • Analog and digital signals
      • Deterministic and random signals
    • Description of LTI systems by differential equations or difference equations, respectively
    • Basic properties of signals and operations on signals
    • Elementary signals
    • Distributions (Generalized Functions)
    • Power and energy of signals
    • Correlation functions of deterministic signals
      • Autocorrelation function
      • Crosscorrelation function
      • Orthogonal signals
      • Applications of correlation
  • Linear time-invariant (LTI) systems
    • Linearity
    • Time-invariance
    • Description of LTI systems by impulse response and frequency response
    • Convolution
    • Convolution and correlation
    • Properties of LTI-systems
    • Causal systems
    • Stable systems
    • Memoryless systems
  • Fourier Series and Fourier Transform
    • Fourier transform of continuous-time signals, discrete-time signals, periodic signals, non-periodic signals
    • Properties of the Fourier transform
    • Fourier transform of some basic signals
    • Parseval’s theorem
  • Analysis of LTI-systems and signals in the frequency domain
    • Frequency response, magnitude response and phase response
    • Transmission factor, attenuation, gain
    • Frequency-flat and frequency-selective LTI-systems
    • Bandwidth definitions
    • Basic types of systems (filters), lowpass, highpass, bandpass, bandstop systems
    • Phase delay and group delay
    • Linear-phase systems
    • Distortion-free systems
    • Spectrum analysis with limited observation window: Leakage effect
  • Laplace Transform
    • Relation of Fourier transform and Laplace transform
    • Properties of the Laplace transform
    • Laplace transform of some basic signals
  • Analysis of LTI-systems in the s-domain
    • Transfer function of LTI-systems
    • Relation of Laplace transform, magnitude response and phase response
    • Analysis of LTI-systems using pole-zero plots
    • Allpass filters
    • Minimum-phase, maximum-phase and mixed phase filters
    • Stable systems
  • Sampling
    • Sampling theorem
    • Reconstruction of continuous-time signals in frequency domain and time domain
    • Oversampling
    • Aliasing
    • Sampling with pulses of finite duration, sample and hold
    • Decimation and interpolation
  • Discrete-Time Fourier Transform (DTFT)
    • Relation of Fourier transform and DTFT
    • Properties of the DTFT
  • Discrete Fourier Transform (DFT)
    • Relation of DTFT and DFT
    • Cyclic properties of the DFT
    • DFT matrix
    • Zero padding
    • Cyclic convolution
    • Fast Fourier Transform (FFT)
    • Application of the DFT: Orthogonal Frequency Division Multiplex (OFDM)
  • Z-Transform
    • Relation of Laplace transform, DTFT, and z-transform
    • Properties of the z-transform
    • Z-transform of some basic discrete-time signals
  • Discrete-time systems, digital filters
    • FIR and IIR filters
    • Z-transform of digital filters
    • Analysis of discrete-time systems using pole-zero plots in the z-domain
    • Stability
    • Allpass filters
    • Minimum-phase, maximum-phase and mixed-phase filters
    • Linear phase filters
Literature
  • T. Frey , M. Bossert , Signal- und Systemtheorie, B.G. Teubner Verlag 2004

  • K. Kammeyer, K. Kroschel, Digitale Signalverarbeitung, Teubner Verlag.

  • B. Girod ,R. Rabensteiner , A. Stenger , Einführung in die Systemtheorie, B.G. Teubner, Stuttgart, 1997

  • J.R. Ohm, H.D. Lüke , Signalübertragung, Springer-Verlag 8. Auflage, 2002

  • S. Haykin, B. van Veen: Signals and systems. Wiley.

  • Oppenheim, A.S. Willsky: Signals and Systems. Pearson.

  • Oppenheim, R. W. Schafer: Discrete-time signal processing. Pearson.

Course L0433: Signals and Systems
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0734: Electrical Engineering Project Laboratory

Courses
Title Typ Hrs/wk CP
Electrical Engineering Project Laboratory (L0640) Project-/problem-based Learning 8 6
Module Responsible Prof. Christian Becker
Admission Requirements None
Recommended Previous Knowledge

Electrical Engineering I, Electrical Engineering II




Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to give a summary of the technical details of projects in the area of electrical engineering and illustrate respective relationships. They are capable of describing and communicating relevant problems and questions using appropriate technical language. They can explain the typical process of solving practical problems and present related results.


Skills

The students can transfer their fundamental knowledge on electrical engineering to the process of solving practical problems. They identify and overcome typical problems during the realization of projects in the context of electrical engineering. Students are able to develop, compare, and choose conceptual solutions for non-standardized problems.


Personal Competence
Social Competence

Students are able to cooperate in small, mixed-subject groups in order to independently derive solutions to given problems in the context of electrical engineering. They are able to effectively present and explain their results alone or in groups in front of a qualified audience. Students have the ability to develop alternative approaches to an electrical engineering problem independently or in groups and discuss advantages as well as drawbacks.


Autonomy

Students are capable of independently solving electrical engineering problems using provided literature. They are able to fill gaps in as well as extent their knowledge using the literature and other sources provided by the supervisor. Furthermore, they can meaningfully extend given problems and pragmatically solve them by means of corresponding solutions and concepts.


Workload in Hours Independent Study Time 68, Study Time in Lecture 112
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale based on task + presentation
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0640: Electrical Engineering Project Laboratory
Typ Project-/problem-based Learning
Hrs/wk 8
CP 6
Workload in Hours Independent Study Time 68, Study Time in Lecture 112
Lecturer Prof. Christian Becker, Dozenten des SD E
Language DE
Cycle SoSe
Content

Topics and projects cover the entire field of applications of electrical engineering. Typically, the students will prototype functional units and self-contained systems, such as radar devices, networks of sensors, amateur radio transceiver, power electronics based inverters, discrete computers, or atomic force microscopes. Different projects are devised on a yearly basis.



Literature

Alle zur Durchführung der Projekte sinnvollen Quellen (Skripte, Fachbücher, Manuals, Datenblätter, Internetseiten). / All sources that are useful for completion of the projects (lecture notes, textbooks, manuals, data sheets, internet pages).




Module M0854: Mathematics IV

Courses
Title Typ Hrs/wk CP
Differential Equations 2 (Partial Differential Equations) (L1043) Lecture 2 1
Differential Equations 2 (Partial Differential Equations) (L1044) Recitation Section (small) 1 1
Differential Equations 2 (Partial Differential Equations) (L1045) Recitation Section (large) 1 1
Complex Functions (L1038) Lecture 2 1
Complex Functions (L1041) Recitation Section (small) 1 1
Complex Functions (L1042) Recitation Section (large) 1 1
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge Mathematics 1 - III
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name the basic concepts in Mathematics IV. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in Mathematics IV with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 68, Study Time in Lecture 112
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min (Complex Functions) + 60 min (Differential Equations 2)
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory
Computer Science: Specialisation Computational Mathematics: Elective Compulsory
Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
Computational Science and Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Mechanical Engineering: Specialisation Mechatronics: Compulsory
Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Elective Compulsory
Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Course L1043: Differential Equations 2 (Partial Differential Equations)
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content

Main features of the theory and numerical treatment of partial differential equations 

  • Examples of partial differential equations
  • First order quasilinear differential equations
  • Normal forms of second order differential equations
  • Harmonic functions and maximum principle
  • Maximum principle for the heat equation
  • Wave equation
  • Liouville's formula
  • Special functions
  • Difference methods
  • Finite elements
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1044: Differential Equations 2 (Partial Differential Equations)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1045: Differential Equations 2 (Partial Differential Equations)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1038: Complex Functions
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content

Main features of complex analysis 

  • Functions of one complex variable
  • Complex differentiation
  • Conformal mappings
  • Complex integration
  • Cauchy's integral theorem
  • Cauchy's integral formula
  • Taylor and Laurent series expansion
  • Singularities and residuals
  • Integral transformations: Fourier and Laplace transformation
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1041: Complex Functions
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1042: Complex Functions
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1340: Introduction to Waveguides, Antennas, and Electromagnetic Compatibility

Courses
Title Typ Hrs/wk CP
Introduction to Waveguides, Antennas, and Electromagnetic Compatibility (L1669) Lecture 3 4
Introduction to Waveguides, Antennas, and Electromagnetic Compatibility (L1877) Recitation Section (small) 2 2
Module Responsible Prof. Christian Schuster
Admission Requirements None
Recommended Previous Knowledge Basic principles of physics and electrical engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the basic principles, relationships, and methods for the design of waveguides and antennas as well as of Electromagnetic Compatibility. Specific topics are:

- Fundamental properties and phenomena of electrical circuits
- Steady-state sinusoidal analysis of electrical circuits
- Fundamental properties and phenomena of electromagnetic fields and waves
- Steady-state sinusoidal description of electromagnetic fields and waves
- Useful microwave network parameters
- Transmission lines and basic results from transmission line theory
- Plane wave propagation, superposition, reflection and refraction
- General theory of waveguides
- Most important types of waveguides and their properties
- Radiation and basic antenna parameters
- Most important types of antennas and their properties
- Numerical techniques and CAD tools for waveguide and antenna design
- Fundamentals of Electromagnetic Compatibility
- Coupling mechanisms and countermeasures
- Shielding, grounding, filtering
- Standards and regulations
- EMC measurement techniques

Skills

Students know how to apply various methods and models for characterization and choice of waveguides and antennas. They are able to assess and qualify their basic electromagnetic properties. They can apply results and strategies from the field of Electromagnetic Compatibilty to the development of electrical components and systems.

Personal Competence
Social Competence

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively in English (e.g. during small group exercises).

Autonomy Students are capable to gather information from subject related, professional publications and relate that information to the context of the lecture. They are able to make a connection between their knowledge obtained in this lecture with the content of other lectures (e.g. theory of electromagnetic fields, fundamentals of electrical engineering / physics). They can discuss technical problems and physical effects in English.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory
Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Course L1669: Introduction to Waveguides, Antennas, and Electromagnetic Compatibility
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Christian Schuster
Language DE/EN
Cycle SoSe
Content

This course is intended as an introduction to the topics of wave propagation, guiding, sending, and receiving as well as Electromagnetic Compatibility (EMC). It will be useful for engineers that face the technical challenge of transmitting high frequency / high bandwidth data in e.g. medical, automotive, or avionic applications. Both circuit and field concepts of wave propagation and Electromagnetic Compatibility will be introduced and discussed.

Topics:

- Fundamental properties and phenomena of electrical circuits
- Steady-state sinusoidal analysis of electrical circuits
- Fundamental properties and phenomena of electromagnetic fields and waves
- Steady-state sinusoidal description of electromagnetic fields and waves
- Useful microwave network parameters
- Transmission lines and basic results from transmission line theory
- Plane wave propagation, superposition, reflection and refraction
- General theory of waveguides
- Most important types of waveguides and their properties
- Radiation and basic antenna parameters
- Most important types of antennas and their properties
- Numerical techniques and CAD tools for waveguide and antenna design
- Fundamentals of Electromagnetic Compatibility
- Coupling mechanisms and countermeasures
- Shielding, grounding, filtering
- Standards and regulations
- EMC measurement techniques




Literature

- Zinke, Brunswig, "Hochfrequenztechnik 1", Springer (1999)

- J. Detlefsen, U. Siart, "Grundlagen der Hochfrequenztechnik", Oldenbourg (2012)

- D. M. Pozar, "Microwave Engineering", Wiley (2011)

- Y. Huang, K. Boyle, "Antenna: From Theory to Practice", Wiley (2008)

- H. Ott, "Electromagnetic Compatibility Engineering", Wiley (2009)

- A. Schwab, W. Kürner, "Elektromagnetische Verträglichkeit", Springer (2007)

Course L1877: Introduction to Waveguides, Antennas, and Electromagnetic Compatibility
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Schuster
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0675: Introduction to Communications and Random Processes

Courses
Title Typ Hrs/wk CP
Introduction to Communications and Random Processes (L0442) Lecture 3 4
Introduction to Communications and Random Processes (L0443) Recitation Section (large) 1 1
Introduction to Communications and Random Processes (L2354) Recitation Section (small) 1 1
Module Responsible Prof. Gerhard Bauch
Admission Requirements None
Recommended Previous Knowledge
  • Mathematics 1-3
  • Signals and Systems
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students know and understand the fundamental building blocks of a communications system. They can describe and analyse the individual building blocks using knowledge of signal and system theory as well as the theory of stochastic processes. The are aware of the essential resources and evaluation criteria of information transmission and are able to design and evaluate a basic communications system. 
Skills The students are able to design and evaluate a basic communications system. In particular, they can estimate the required resources in terms of bandwidth and power. They are able to assess essential evaluation parameters of a basic communications system such as bandwidth efficiency or bit error rate and to decide for a suitable transmission method.
Personal Competence
Social Competence

 The students can jointly solve specific problems.

Autonomy

The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Computer Science: Specialisation Computer and Software Engineering: Elective Compulsory
Computer Science: Specialisation Computational Mathematics: Elective Compulsory
Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0442: Introduction to Communications and Random Processes
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle WiSe
Content
  • Fundamentals of random processes

  • Introduction to communications engineering

  • Quadrature amplitude modulation

  • Description of radio frequency transmission in the equivalent complex baseband

  • Transmission channels, channel models

  • Analog digital conversion: Sampling, quantization, pulsecode modulation (PCM)

  • Fundamentals of information theory, source coding, channel coding

  • Digital baseband transmission: Pulse shaping, eye diagramm, 1. and 2. Nyquist condition, matched filter, detection, error probability

  • Fundamentals of digital modulation

Literature

K. Kammeyer: Nachrichtenübertragung, Teubner

P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner.

M. Bossert: Einführung in die Nachrichtentechnik, Oldenbourg.

J.G. Proakis, M. Salehi: Grundlagen der Kommunikationstechnik. Pearson Studium.

J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill.

S. Haykin: Communication Systems. Wiley

J.G. Proakis, M. Salehi: Communication Systems Engineering. Prentice-Hall.

J.G. Proakis, M. Salehi, G. Bauch, Contemporary Communication Systems. Cengage Learning.






Course L0443: Introduction to Communications and Random Processes
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L2354: Introduction to Communications and Random Processes
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0834: Computernetworks and Internet Security

Courses
Title Typ Hrs/wk CP
Computer Networks and Internet Security (L1098) Lecture 3 5
Computer Networks and Internet Security (L1099) Recitation Section (small) 1 1
Module Responsible Prof. Andreas Timm-Giel
Admission Requirements None
Recommended Previous Knowledge

Basics of Computer Science

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain important and common Internet protocols in detail and classify them, in order to be able to analyse and develop networked systems in further studies and job.

Skills

Students are able to analyse common Internet protocols and evaluate the use of them in different domains.

Personal Competence
Social Competence


Autonomy

Students can select relevant parts out of high amount of professional knowledge and can independently learn and understand it.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Elective Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Specialisation Mechatronics: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Elective Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Technomathematics: Specialisation II. Informatics: Elective Compulsory
Course L1098: Computer Networks and Internet Security
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Andreas Timm-Giel, Prof. Dieter Gollmann, Dr.-Ing. Koojana Kuladinithi
Language EN
Cycle WiSe
Content

In this class an introduction to computer networks with focus on the Internet and its security is given. Basic functionality of complex protocols are introduced. Students learn to understand these and identify common principles. In the exercises these basic principles and an introduction to performance modelling are addressed using computing tasks and (virtual) labs.

In the second part of the lecture an introduction to Internet security is given.

This class comprises:

  • Application layer protocols (HTTP, FTP, DNS)
  • Transport layer protocols (TCP, UDP)
  • Network Layer (Internet Protocol, routing in the Internet)
  • Data link layer with media access at the example of Ethernet
  • Multimedia applications in the Internet
  • Network management
  • Internet security: IPSec
  • Internet security: Firewalls
Literature


  • Kurose, Ross, Computer Networking - A Top-Down Approach, 6th Edition, Addison-Wesley
  • Kurose, Ross, Computernetzwerke - Der Top-Down-Ansatz, Pearson Studium; Auflage: 6. Auflage
  • W. Stallings: Cryptography and Network Security: Principles and Practice, 6th edition



Further literature is announced at the beginning of the lecture.


Course L1099: Computer Networks and Internet Security
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Andreas Timm-Giel, Prof. Dieter Gollmann
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1235: Electrical Power Systems I: Introduction to Electrical Power Systems

Courses
Title Typ Hrs/wk CP
Electrical Power Systems I: Introduction to Electrical Power Systems (L1670) Lecture 3 4
Electrical Power Systems I: Introduction to Electrical Power Systems (L1671) Recitation Section (small) 2 2
Module Responsible Prof. Christian Becker
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of Electrical Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to give an overview of conventional and modern electric power systems.  They can explain in detail and critically evaluate technologies of electric power generation, transmission, storage, and distribution as well as integration of equipment into electric power systems.

Skills

With completion of this module the students are able to apply the acquired skills in applications of the design, integration, development of electric power systems and to assess the results.

Personal Competence
Social Competence

The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others.

Autonomy

Students can independently tap knowledge of the emphasis of the lectures. 

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 - 150 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory
Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Energy and Environmental Engineering: Specialisation Energy Engineering: Elective Compulsory
Energy Systems: Specialisation Energy Systems: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory
Computational Science and Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Course L1670: Electrical Power Systems I: Introduction to Electrical Power Systems
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Christian Becker
Language DE
Cycle WiSe
Content
  • fundamentals and current development trends in electric power engineering 
  • tasks and history of electric power systems
  • symmetric three-phase systems
  • fundamentals and modelling of eletric power systems 
    • lines
    • transformers
    • synchronous machines
    • induction machines
    • loads and compensation
    • grid structures and substations 
  • fundamentals of energy conversion
    • electro-mechanical energy conversion
    • thermodynamics
    • power station technology
    • renewable energy conversion systems
  • steady-state network calculation
    • network modelling
    • load flow calculation
    • (n-1)-criterion
  • symmetric failure calculations, short-circuit power
  • control in networks and power stations
  • grid protection
  • grid planning
  • power economy fundamentals
Literature

K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013

A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017

R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008

Course L1671: Electrical Power Systems I: Introduction to Electrical Power Systems
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Becker
Language DE
Cycle WiSe
Content
  • fundamentals and current development trends in electric power engineering 
  • tasks and history of electric power systems
  • symmetric three-phase systems
  • fundamentals and modelling of eletric power systems 
    • lines
    • transformers
    • synchronous machines
    • induction machines
    • loads and compensation
    • grid structures and substations 
  • fundamentals of energy conversion
    • electro-mechanical energy conversion
    • thermodynamics
    • power station technology
    • renewable energy conversion systems
  • steady-state network calculation
    • network modelling
    • load flow calculation
    • (n-1)-criterion
  • symmetric failure calculations, short-circuit power
  • control in networks and power stations
  • grid protection
  • grid planning
  • power economy fundamentals
Literature

K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013

A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017

R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008

Module M0889: Mechanics I (Statics)

Courses
Title Typ Hrs/wk CP
Mechanics I (Statics) (L1001) Lecture 2 3
Mechanics I (Statics) (L1002) Recitation Section (small) 2 2
Mechanics I (Statics) (L1003) Recitation Section (large) 1 1
Module Responsible Prof. Robert Seifried
Admission Requirements None
Recommended Previous Knowledge

Solid school knowledge in mathematics and physics.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can

  • describe the axiomatic procedure used in mechanical contexts;
  • explain important steps in model design;
  • present technical knowledge in stereostatics.
Skills

The students can

  • explain the important elements of mathematical / mechanical analysis and model formation, and apply it to the context of their own problems;
  • apply basic statical methods to engineering problems;
  • estimate the reach and boundaries of statical methods and extend them to be applicable to wider problem sets.
Personal Competence
Social Competence

The students can work in groups and support each other to overcome difficulties.

Autonomy

Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Data Science: Specialisation Mechanics: Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computational Science and Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Logistics and Mobility: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L1001: Mechanics I (Statics)
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Robert Seifried
Language DE
Cycle WiSe
Content
  • Tasks in Mechanics
  • Modelling and model elements
  • Vector calculus for forces and torques
  • Forces and equilibrium in space
  • Constraints and reactions, characterization of constraint systems
  • Planar and spatial truss structures
  • Internal forces and moments for beams and frames
  • Center of mass, volumn, area and line
  • Computation of center of mass by intergals, joint bodies
  • Friction (sliding and sticking)
  • Friction of ropes
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).
Course L1002: Mechanics I (Statics)
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Robert Seifried
Language DE
Cycle WiSe
Content Forces and equilibrium
Constraints and reactions
Frames
Center of mass
Friction
Internal forces and moments for beams
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).
Course L1003: Mechanics I (Statics)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Robert Seifried
Language DE
Cycle WiSe
Content Forces and equilibrium
Constraints and reactions
Frames
Center of mass
Friction
Internal forces and moments for beams
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).

Module M0568: Theoretical Electrical Engineering II: Time-Dependent Fields

Courses
Title Typ Hrs/wk CP
Theoretical Electrical Engineering II: Time-Dependent Fields (L0182) Lecture 3 5
Theoretical Electrical Engineering II: Time-Dependent Fields (L0183) Recitation Section (small) 2 1
Module Responsible Prof. Christian Schuster
Admission Requirements None
Recommended Previous Knowledge

Electrical Engineering I, Electrical Engineering II, Theoretical Electrical Engineering I

Mathematics I, Mathematics II, Mathematics III, Mathematics IV


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain fundamental formulas, relations, and methods related to the theory of time-dependent electromagnetic fields. They can assess the principal behavior and characteristics of quasistationary and fully dynamic fields with regard to respective sources. They can describe the properties of complex electromagnetic fields by means of superposition of solutions for simple fields. The students are aware of applications for the theory of time-dependent electromagnetic fields and are able to explicate these.


Skills

Students are able to apply a variety of procedures in order to solve the diffusion and the wave equation for general time-dependent field problems. They can assess the principal effects of given time-dependent sources of fields and analyze these quantitatively. They can deduce meaningful quantities for the characterization of fully dynamic fields (wave impedance, skin depth, Poynting-vector, radiation resistance, etc.) from given fields and interpret them with regard to practical applications.


Personal Competence
Social Competence

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively (e.g. during exercise sessions).


Autonomy

Students are capable to gather necessary information from provided references and relate this information to the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as short oral quizzes during the lectures and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between acquired knowledge and ongoing research at the Hamburg University of Technology (TUHH), e.g. in the area of high frequency engineering and optics.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90-150 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0182: Theoretical Electrical Engineering II: Time-Dependent Fields
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Christian Schuster
Language DE
Cycle WiSe
Content

- Theory and principal characteristics of quasistationary electromagnetic fields

- Electromagnetic induction and law of induction

- Skin effect and eddy currents

- Shielding of time variable magnetic fields

- Theory and principal characteristics of fully dynamic electromagnetic fields

- Wave equations and properties of planar waves

- Polarization and superposition of planar waves

- Reflection and refraction of planar waves at boundary surfaces

- Waveguide theory

- Rectangular waveguide, planar optical waveguide

- Elektrical and magnetical dipol radiation

- Simple arrays of antennas

The practical application of numerical methods will be trained within specifically prepared lectures in an interactive manner using small MATLAB programs.

Literature

- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010)

- H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011)

- W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011)

- D. Griffiths, "Introduction to Electrodynamics", Pearson (2012)

- J. Edminister, "Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013)

- Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011)


Course L0183: Theoretical Electrical Engineering II: Time-Dependent Fields
Typ Recitation Section (small)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Christian Schuster
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0662: Numerical Mathematics I

Courses
Title Typ Hrs/wk CP
Numerical Mathematics I (L0417) Lecture 2 3
Numerical Mathematics I (L0418) Recitation Section (small) 2 3
Module Responsible Prof. Sabine Le Borne
Admission Requirements None
Recommended Previous Knowledge
  • Mathematik I + II for Engineering Students (german or english) or Analysis & Linear Algebra I + II for Technomathematicians
  • basic MATLAB/Python knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to

  • name numerical methods for interpolation, integration, least squares problems, eigenvalue problems, nonlinear root finding problems and to explain their core ideas,
  • repeat convergence statements for the numerical methods,
  • explain aspects for the practical execution of numerical methods with respect to computational and storage complexitx.


Skills

Students are able to

  • implement, apply and compare numerical methods using MATLAB/Python,
  • justify the convergence behaviour of numerical methods with respect to the problem and solution algorithm,
  • select and execute a suitable solution approach for a given problem.
Personal Competence
Social Competence

Students are able to

  • work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge), explain theoretical foundations and support each other with practical aspects regarding the implementation of algorithms.
Autonomy

Students are capable

  • to assess whether the supporting theoretical and practical excercises are better solved individually or in a team,
  • to assess their individual progess and, if necessary, to ask questions and seek help.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Computer Science: Specialisation Computational Mathematics: Elective Compulsory
Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Elective Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Compulsory
Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Mechanical Engineering: Specialisation Mechatronics: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0417: Numerical Mathematics I
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Sabine Le Borne
Language EN
Cycle WiSe
Content
  1. Finite precision arithmetic, error analysis, conditioning and stability
  2. Linear systems of equations: LU and Cholesky factorization, condition
  3. Interpolation: polynomial, spline and trigonometric interpolation
  4. Nonlinear equations: fixed point iteration, root finding algorithms, Newton's method
  5. Linear and nonlinear least squares problems: normal equations, Gram Schmidt and Householder orthogonalization, singular value decomposition, regularizatio, Gauss-Newton and Levenberg-Marquardt methods
  6. Eigenvalue problems: power iteration, inverse iteration, QR algorithm
  7. Numerical differentiation
  8. Numerical integration: Newton-Cotes rules, error estimates, Gauss quadrature, adaptive quadrature
Literature
  • Gander/Gander/Kwok: Scientific Computing: An introduction using Maple and MATLAB, Springer (2014)
  • Stoer/Bulirsch: Numerische Mathematik 1, Springer
  • Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer


Course L0418: Numerical Mathematics I
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Sabine Le Borne, Dr. Jens-Peter Zemke
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0760: Electronic Devices

Courses
Title Typ Hrs/wk CP
Electronic Devices (L0720) Lecture 3 4
Electronic Devices (L0721) Project-/problem-based Learning 2 2
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge

Atomic model and quantum theory, electrical currents in solid state materials, basics in solid-state physics

Successful participation of Physics for Engineers and Materials in Electrical Engineering or courses with equivalent contents

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge


Students are able

  • to represent the basics of semiconductor physics,

  • to explain the operating principle of important semiconductor devices,

  • to outline device characteristics and equivalent circuits as well as to explain their derivation and

  • to discuss the limitation of device models.


Skills


Students are capable

  • to apply devices in basic circuits,

  • to realize the physical context and to solve complex problems by oneself


Personal Competence
Social Competence

Students are able to prepare and perform their lab experiments in team work as well as to present and discuss the results in front of audience.

Autonomy Students are capable to acquire knowledge based on literature in order to prepare their experiments.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Subject theoretical and practical work Studierenden erarbeiten in Kleingruppen Wissen zu einem bestimmten Thema, demonstrieren dieses in Form eines Versuches mit Präsentation und Diskussion. Darüber hinaus betreut jede Gruppe eine Übungsaufgabe, die inhaltlich zu dem jeweiligen Versuch gehört.
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
Computational Science and Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Course L0720: Electronic Devices
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Hoc Khiem Trieu
Language DE
Cycle WiSe
Content
  • Uniformly doped semiconductor (semiconductor, crystal structure, energy band diagram, effective mass, density of state, probability of occupancy, mass action law, generation and recombination processes, generation and recombination lifetime, carrier transport mechanisms: drift current, diffusion current; equilibriums in semiconductor, semiconductor equations)
  • pn-junction (zero applied bias, energy band diagram in thermal equilibrium, current-voltage characteristics, derivation of diode equation, consideration of space charge recombination, transient behaviour, breakdown mechanisms, various types of diodes: Zener diode, tunnel diode, backward diode, photo diode, LED, laser diode)
  • Bipolar transistor (principle of operation, current-voltage characteristics: calculation of  base, collector and emitter current, operating modes; non-ideality: actual doping profile, Early effect, breakdown, generation and recombination current and high injection; Ebers-Moll model: family of characteristics, equivalent circuit; frequency response, switching characteristics, heterojunction bipolar transistor)
  • Unipolar devices (surface effects: surface states, work function, energy band diagram; metal-semiconductor junctions: Schottky contact, current-voltage characteristics, ohmic  contact; junction field effect transistor: operating principle, current-voltage characteristics, small-signal model, breakdown characteristics; MESFET: operating principle,  depletion mode and enhancement mode MESFET; MIS structure: accumulation, depletion, inversion, strong inversion, flatband voltage, oxide charges, threshold voltage, capacitance voltage characteristics; MOSFET: basic structure, principle of operation, current voltage characteristics, frequency response, subthreshold behaviour, threshold voltage, device scaling; CMOS)

 

Literature

S.M. Sze: Semiconductor devices, Physics and Technology, John Wiley & Sons (1985)F. Thuselt: Physik der Halbleiterbauelemente, Springer (2011)

T. Thille, D. Schmitt-Landsiedel: Mikroelektronik, Halbleiterbauelemente und deren Anwendung in elektronischen Schaltungen, Springer (2004)

B.L. Anderson, R.L. Anderson: Fundamentals of Semiconductor Devices, McGraw-Hill (2005)

D.A. Neamen: Semiconductor Physics and Devices, McGraw-Hill (2011)

M. Shur: Introduction to Electronic Devices, John Wiley & Sons (1996)

S.M. Sze: Physics of semiconductor devices, John Wiley & Sons (2007)

H. Schaumburg: Halbleiter, B.G. Teubner (1991)

A. Möschwitzer: Grundlagen der Halbleiter-&Mikroelektronik, Bd1 Elektronische Halbleiterbauelemente, Carl Hanser (1992)

H.-G. Unger, W. Schultz, G. Weinhausen: Elektronische Bauelemente und Netzwerke I, Physikalische Grundlagen der Halbleiterbauelemente, Vieweg (1985)
Course L0721: Electronic Devices
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Hoc Khiem Trieu
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0833: Introduction to Control Systems

Courses
Title Typ Hrs/wk CP
Introduction to Control Systems (L0654) Lecture 2 4
Introduction to Control Systems (L0655) Recitation Section (small) 2 2
Module Responsible Prof. Herbert Werner
Admission Requirements None
Recommended Previous Knowledge

Representation of signals and systems in time and frequency domain, Laplace transform


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can represent dynamic system behavior in time and frequency domain, and can in particular explain properties of first and second order systems
  • They can explain the dynamics of simple control loops and interpret dynamic properties in terms of frequency response and root locus
  • They can explain the Nyquist stability criterion and the stability margins derived from it.
  • They can explain the role of the phase margin in analysis and synthesis of control loops
  • They can explain the way a PID controller affects a control loop in terms of its frequency response
  • They can explain issues arising when controllers designed in continuous time domain are implemented digitally
Skills
  • Students can transform models of linear dynamic systems from time to frequency domain and vice versa
  • They can simulate and assess the behavior of systems and control loops
  • They can design PID controllers with the help of heuristic (Ziegler-Nichols) tuning rules
  • They can analyze and synthesize simple control loops with the help of root locus and frequency response techniques
  • They can calculate discrete-time approximations of controllers designed in continuous-time and use it for digital implementation
  • They can use standard software tools (Matlab Control Toolbox, Simulink) for carrying out these tasks
Personal Competence
Social Competence Students can work in small groups to jointly solve technical problems, and experimentally validate their controller designs
Autonomy

Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems.

They can assess their knowledge in weekly on-line tests and thereby control their learning progress.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Specialisation Computational Mathematics: Elective Compulsory
Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
Energy and Environmental Engineering: Core Qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Civil Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory
Logistics and Mobility: Specialisation Information Technology: Elective Compulsory
Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Course L0654: Introduction to Control Systems
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Herbert Werner
Language DE
Cycle WiSe
Content

Signals and systems

  • Linear systems, differential equations and transfer functions
  • First and second order systems, poles and zeros, impulse and step response
  • Stability

Feedback systems

  • Principle of feedback, open-loop versus closed-loop control
  • Reference tracking and disturbance rejection
  • Types of feedback, PID control
  • System type and steady-state error, error constants
  • Internal model principle

Root locus techniques

  • Root locus plots
  • Root locus design of PID controllers

Frequency response techniques

  • Bode diagram
  • Minimum and non-minimum phase systems
  • Nyquist plot, Nyquist stability criterion, phase and gain margin
  • Loop shaping, lead lag compensation
  • Frequency response interpretation of PID control

Time delay systems

  • Root locus and frequency response of time delay systems
  • Smith predictor

Digital control

  • Sampled-data systems, difference equations
  • Tustin approximation, digital implementation of PID controllers

Software tools

  • Introduction to Matlab, Simulink, Control toolbox
  • Computer-based exercises throughout the course
Literature
  • Werner, H., Lecture Notes „Introduction to Control Systems“
  • G.F. Franklin, J.D. Powell and A. Emami-Naeini "Feedback Control of Dynamic Systems", Addison Wesley, Reading, MA, 2009
  • K. Ogata "Modern Control Engineering", Fourth Edition, Prentice Hall, Upper Saddle River, NJ, 2010
  • R.C. Dorf and R.H. Bishop, "Modern Control Systems", Addison Wesley, Reading, MA 2010
Course L0655: Introduction to Control Systems
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Herbert Werner
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1242: Quantum Mechanics for Engineers

Courses
Title Typ Hrs/wk CP
Quantum Mechanics for Engineers (L1686) Lecture 2 3
Quantum Mechanics for Engineers (L1688) Recitation Section (small) 2 3
Module Responsible Prof. Wolfgang Hansen
Admission Requirements None
Recommended Previous Knowledge
  • Knowledge in physics, particularly in optics and wave phenomena;
  • knowledge in mathematics, particularly linear algebra, vector calculus, complex numbers and Fourier expansion
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to describe and explain basic terms and principles of quantum mechanics.  They can distinguish commons and differences to classical physics and know, in which situations quantum mechanical phenomena may be expected.
Skills The students get the ability to apply concepts and methods of quantum mechanics to simple problems and systems. Vice versa, they are also able to comprehend requirements and principles of quantum mechanical devices.
Personal Competence
Social Competence The students discuss contents of the lectures and present solutions to simple quantum mechanical problems in small groups during the exercises.
Autonomy The students are able to independently find answers to simple questions on quantum mechanical systems. The students are able to independently comprehend literature to more complex subjects with quantum mechanical background.  
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No None Written elaboration optionale Vorlage von selbst ausgearbeiteten Lösungen zu den Übungen
Examination Oral exam
Examination duration and scale 90 Minuten
Assignment for the Following Curricula Computer Science: Specialisation Computational Mathematics: Elective Compulsory
Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory
Computer Science: Specialisation Computer and Software Engineering: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Course L1686: Quantum Mechanics for Engineers
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Wolfgang Hansen
Language DE
Cycle WiSe
Content

This lecture introduces into fundamental concepts, methods, and definitions in quantum mechanics, which are needed in modern material and device science. Applications will be discussed using examples in the field of electronic and optical devices.

Central topics are:

Schrödinger equation, wave function, operators, eigenstates, eigenvalues, quantum wells, harmonic oscillator, tunnel processes, resonant tunnel diode, band structure, density of states, quantum statistics,  Zener-diode, stationary perturbation calculation with the quantum-confined Stark effect as an example, Fermi’s golden rule and transition matrix elements, heterostructure laser, quantum cascade laser, many-particle physics, molecules and exchange interaction, quantum bits and quantum cryptography.

Literature
  • David J. Griffiths: "Quantenmechanik, eine Einführung", Pearson (2012), ISBN 978-3-8632-6514-4.
  • David K. Ferry: "Quantum Mechanics", IOP Publishing (1995), ISBN 0-7503-0327-1 (hbk) bzw. 0-7503-0328-X (pbk).
  • M. Jaros: " Physics and Applications of Semiconductor Microstructures ", Clarendon Press (1989), ISBN: 0-19-851994-X bzw. 0-19-853927-4 (Pbk).
  • Randy Harris, "Modernes Physik Lehr- und Übungsbuch",  2. aktualisierte Auflage, Kapitel 3-10, Pearson (2013), ISBN 978-3-86894-115-9.
  • Michael A Nielsen and Isaac L. Chuang: "Quantum Computation and Quantum Informatioin", 10. Auflage, Cambridge University Press (2011), ISBN: 1107002176 9781107002173.
  • Hiroyuki  Sagawa and Nobuaki Yoshida: "Fundamentals of Quantum Information", World Scientific Publishing (2010), ISBN-13: 978-9814324236.
Course L1688: Quantum Mechanics for Engineers
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Wolfgang Hansen
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0634: Introduction into Medical Technology and Systems

Courses
Title Typ Hrs/wk CP
Introduction into Medical Technology and Systems (L0342) Lecture 2 3
Introduction into Medical Technology and Systems (L0343) Project Seminar 2 2
Introduction into Medical Technology and Systems (L1876) Recitation Section (large) 1 1
Module Responsible Prof. Alexander Schlaefer
Admission Requirements None
Recommended Previous Knowledge

principles of math (algebra, analysis/calculus)
principles of  stochastics
principles of programming, R/Matlab

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can explain principles of medical technology, including imaging systems, computer aided surgery, and medical information systems. They are able to give an overview of regulatory affairs and standards in medical technology.

Skills

The students are able to evaluate systems and medical devices in the context of clinical applications.

Personal Competence
Social Competence

The students describe a problem in medical technology as a project, and define tasks that are solved in a joint effort.

Autonomy

The students can reflect their knowledge and document the results of their work. They can present the results in an appropriate manner.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Written elaboration
Yes 10 % Presentation
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
Computer Science: Specialisation Computer and Software Engineering: Elective Compulsory
Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory
Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
Computational Science and Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0342: Introduction into Medical Technology and Systems
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language DE
Cycle SoSe
Content

- imaging systems
- computer aided surgery
- medical sensor systems
- medical information systems
- regulatory affairs
- standard in medical technology
The students will work in groups to apply the methods introduced during the lecture using problem based learning.


Literature

Wird in der Veranstaltung bekannt gegeben.

Course L0343: Introduction into Medical Technology and Systems
Typ Project Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1876: Introduction into Medical Technology and Systems
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Alexander Schlaefer
Language DE
Cycle SoSe
Content

- imaging systems
- computer aided surgery
- medical sensor systems
- medical information systems
- regulatory affairs
- standard in medical technology
The students will work in groups to apply the methods introduced during the lecture using problem based learning.

Literature

Wird in der Veranstaltung bekannt gegeben.

Module M0696: Mechanics II: Mechanics of Materials

Courses
Title Typ Hrs/wk CP
Mechanics II (L0493) Lecture 2 2
Mechanics II (L0494) Recitation Section (small) 2 2
Mechanics II (L1691) Recitation Section (large) 2 2
Module Responsible Prof. Christian Cyron
Admission Requirements None
Recommended Previous Knowledge Mechanics I
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Having accomplished this module, the students know and understand the basic concepts of continuum mechanics and elastostatics, in particular stress, strain, constitutive laws, stretching, bending, torsion, failure analysis, energy methods and stability of structures.
Skills

Having accomplished this module, the students are able to
- apply the fundamental concepts of mathematical and mechanical modeling and analysis to problems of their choice
- apply the basic methods of elastostatics to problems of engineering, in particular in the design of mechanical structures
- to educate themselves about more advanced aspects of elastostatics

Personal Competence
Social Competence -
Autonomy -
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Data Science: Specialisation Mechanics: Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Logistics and Mobility: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L0493: Mechanics II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron
Language DE
Cycle SoSe
Content

stresses and strains
Hooke's law
tension and compression
torsion
bending
stability
buckling
energy methods

Literature
  • Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik 1, Springer
  • Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik 2 Elastostatik, Springer


Course L0494: Mechanics II
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1691: Mechanics II
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron, Dr. Konrad Schneider
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0777: Semiconductor Circuit Design

Courses
Title Typ Hrs/wk CP
Semiconductor Circuit Design (L0763) Lecture 3 4
Semiconductor Circuit Design (L0864) Recitation Section (small) 1 2
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of electrical engineering

Basics of physics, especially semiconductor physics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to explain the functionality of different MOS devices in electronic circuits.
  • Students are able to explain how analog circuits functions and where they are applied.
  • Students are able to explain the functionality of fundamental operational amplifiers and their specifications.
  • Students know the fundamental digital logic circuits and can discuss their advantages and disadvantages.
  • Students have knowledge about memory circuits and can explain their functionality and specifications.
  • Students know the appropriate fields for the use of bipolar transistors.


Skills
  • Students can calculate the specifications of different MOS devices and can define the parameters of electronic circuits.
  • Students are able to develop different logic circuits and can design different types of logic circuits.
  • Students can use MOS devices, operational amplifiers and bipolar transistors for specific applications.


Personal Competence
Social Competence
  • Students are able work efficiently in heterogeneous teams.
  • Students working together in small groups can solve problems and answer professional  questions.


Autonomy
  • Students are able to assess their level of knowledge.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Specialisation Electrical Engineering: Compulsory
Engineering Science: Specialisation Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Compulsory
Computational Science and Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Mechanical Engineering: Specialisation Mechatronics: Compulsory
Mechatronics: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0763: Semiconductor Circuit Design
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Matthias Kuhl
Language DE
Cycle SoSe
Content
  • Repetition Semiconductorphysics and Diodes
  • Functionality and characteristic curve of bipolar transistors
  • Basic circuits with bipolar transistors
  • Functionality and characteristic curve of MOS transistors
  • Basic circuits with MOS transistors for amplifiers
  • Operational amplifiers and their applications
  • Typical applications for analog and digital circuits
  • Realization of logical functions 
  • Basic circuits with MOS transistors for combinational logic
  • Memory circuits
  • Basic circuits with MOS transistors for sequential logic
  • Basic concepts of analog-to-digital and digital-to-analog-converters
Literature

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Course L0864: Semiconductor Circuit Design
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Matthias Kuhl, Weitere Mitarbeiter
Language DE
Cycle SoSe
Content
  • Basic circuits and characteristic curves of bipolar transistors 
  • Basic circuits and characteristic curves of MOS transistors for amplifiers
  • Realization and dimensioning of operational amplifiers
  • Realization of logic functions
  • Basic circuits with MOS transistors for combinational and sequential logic
  • Memory circuits
  • Circuits for analog-to-digital and digital-to-analog converters
  • Design of exemplary circuits
Literature

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Module M0803: Embedded Systems

Courses
Title Typ Hrs/wk CP
Embedded Systems (L0805) Lecture 3 4
Embedded Systems (L0806) Recitation Section (small) 1 2
Module Responsible Prof. Heiko Falk
Admission Requirements None
Recommended Previous Knowledge Computer Engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Embedded systems can be defined as information processing systems embedded into enclosing products. This course teaches the foundations of such systems. In particular, it deals with an introduction into these systems (notions, common characteristics) and their specification languages (models of computation, hierarchical automata, specification of distributed systems, task graphs, specification of real-time applications, translations between different models).

Another part covers the hardware of embedded systems: Sonsors, A/D and D/A converters, real-time capable communication hardware, embedded processors, memories, energy dissipation, reconfigurable logic and actuators. The course also features an introduction into real-time operating systems, middleware and real-time scheduling. Finally, the implementation of embedded systems using hardware/software co-design (hardware/software partitioning, high-level transformations of specifications, energy-efficient realizations, compilers for embedded processors) is covered.

Skills After having attended the course, students shall be able to realize simple embedded systems. The students shall realize which relevant parts of technological competences to use in order to obtain a functional embedded systems. In particular, they shall be able to compare different models of computations and feasible techniques for system-level design. They shall be able to judge in which areas of embedded system design specific risks exist.
Personal Competence
Social Competence

Students are able to solve similar problems alone or in a group and to present the results accordingly.

Autonomy

Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 90 minutes, contents of course and labs
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
Computer Science: Specialisation Computer and Software Engineering: Elective Compulsory
Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Specialisation Mechatronics: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Elective Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory
Mechatronics: Core Qualification: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Course L0805: Embedded Systems
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Heiko Falk
Language EN
Cycle SoSe
Content
  • Introduction
  • Specifications and Modeling
  • Embedded/Cyber-Physical Systems Hardware
  • System Software
  • Evaluation and Validation
  • Mapping of Applications to Execution Platforms
  • Optimization
Literature
  • Peter Marwedel. Embedded System Design - Embedded Systems Foundations of Cyber-Physical Systems. 2nd Edition, Springer, 2012., Springer, 2012.
Course L0806: Embedded Systems
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heiko Falk
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Thesis

Module M-001: Bachelor Thesis

Courses
Title Typ Hrs/wk CP
Module Responsible Professoren der TUHH
Admission Requirements
  • According to General Regulations §21 (1):

    At least 126 ECTS credit points have to be achieved in study programme. The examinations board decides on exceptions.

Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • The students can select, outline and, if need be, critically discuss the most important scientific fundamentals of their course of study (facts, theories, and methods).
  • On the basis of their fundamental knowledge of their subject the students are capable in relation to a specific issue of opening up and establishing links with extended specialized expertise.
  • The students are able to outline the state of research on a selected issue in their subject area.
Skills
  • The students can make targeted use of the basic knowledge of their subject that they have acquired in their studies to solve subject-related problems.
  • With the aid of the methods they have learnt during their studies the students can analyze problems, make decisions on technical issues, and develop solutions.
  • The students can take up a critical position on the findings of their own research work from a specialized perspective.


Personal Competence
Social Competence
  • Both in writing and orally the students can outline a scientific issue for an expert audience accurately, understandably and in a structured way.
  • The students can deal with issues in an expert discussion and answer them in a manner that is appropriate to the addressees. In doing so they can uphold their own assessments and viewpoints convincingly.


Autonomy
  • The students are capable of structuring an extensive work process in terms of time and of dealing with an issue within a specified time frame.
  • The students are able to identify, open up, and connect knowledge and material necessary for working on a scientific problem.
  • The students can apply the essential techniques of scientific work to research of their own.
Workload in Hours Independent Study Time 360, Study Time in Lecture 0
Credit points 12
Course achievement None
Examination Thesis
Examination duration and scale According to General Regulations
Assignment for the Following Curricula General Engineering Science (German program): Thesis: Compulsory
General Engineering Science (German program, 7 semester): Thesis: Compulsory
Civil- and Environmental Engineering: Thesis: Compulsory
Bioprocess Engineering: Thesis: Compulsory
Computer Science: Thesis: Compulsory
Data Science: Thesis: Compulsory
Digital Mechanical Engineering: Thesis: Compulsory
Electrical Engineering: Thesis: Compulsory
Energy and Environmental Engineering: Thesis: Compulsory
Engineering Science: Thesis: Compulsory
General Engineering Science (English program): Thesis: Compulsory
General Engineering Science (English program, 7 semester): Thesis: Compulsory
Green Technologies: Energy, Water, Climate: Thesis: Compulsory
Computational Science and Engineering: Thesis: Compulsory
Logistics and Mobility: Thesis: Compulsory
Mechanical Engineering: Thesis: Compulsory
Mechatronics: Thesis: Compulsory
Naval Architecture: Thesis: Compulsory
Technomathematics: Thesis: Compulsory
Teilstudiengang Lehramt Elektrotechnik-Informationstechnik: Thesis: Compulsory
Teilstudiengang Lehramt Metalltechnik: Thesis: Compulsory
Process Engineering: Thesis: Compulsory
Engineering and Management - Major in Logistics and Mobility: Thesis: Compulsory