Program description
Content
Master of Science in ‘Water and Environmental Engineering’
The Master of Science in Water and Environmental Engineering gives students a choice of three areas of specialization - Water, Environment and City. Graduates of the Master in Water and Environmental Engineering are able to translate the engineering, mathematical and scientific knowledge gained on the course into practice in order to analyze problems scientifically and solve them even when they are unusually or incompletely defined and have complex specifications. Graduates have the ability to work independently, to apply the methods and processes required to solve technical and planning problems, and to apply, critically scrutinize, and further develop new findings. They are also qualified to plan exacting (household) water management projects and projects geared to environmental protection and to plan them paying due attention to the necessary clarifications and examination of existing information and resources. They can
- Collaborate successfully with professional and non-professional players in public administration, industry, and academia
- Independently define research tasks for theoretical and experimental exploration of environmental and water management issues and plan and execute projects in those areas
- Responsibly assess and take into account the concerns of those affected by planning and implementation and of society in general
- work
together in international teams on international subjects with cross-cultural competence.
Core Qualification
Module M0523: Business & Management |
Module Responsible | Prof. Matthias Meyer |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Courses |
Information regarding lectures and courses can be found in the corresponding module handbook published separately. |
Module M0524: Non-technical Courses for Master |
Module Responsible | Dagmar Richter |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The Nontechnical Academic Programms (NTA) imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses. The Learning Architecture consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses. The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”. The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies. Teaching and Learning Arrangements provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses. Fields of Teaching are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way. The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations. The Competence Level of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc. This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life. Specialized Competence (Knowledge) Students can
|
Skills |
Professional Competence (Skills) In selected sub-areas students can
|
Personal Competence | |
Social Competence |
Personal Competences (Social Skills) Students will be able
|
Autonomy |
Personal Competences (Self-reliance) Students are able in selected areas
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Courses |
Information regarding lectures and courses can be found in the corresponding module handbook published separately. |
Module M0826: Biology, Geology and Chemistry |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Dr. Dorothea Rechtenbach |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of inorganic/organic chemistry and biology (knowledge acquired at school) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
With the completion of this module students acquire profound knowledge of the geo- and pedosphere, biogeochemical processes and the fate of migrating compounds in soil and groundwater. They learn about methods to investigate sites for different use. |
Skills |
With the completion of this module students can apply the acquired theoretical knowledge to model sites and assess the situation technically and conceptually. They are able to draw comparisons on different investigation strategies and techniques. Model projects can be devised and treated. |
Personal Competence | |
Social Competence |
Students can discuss technical and scientific tasks within a seminar subject specific and interdisciplinary . |
Autonomy |
Students can independently exploit sources , acquire the particular knowledge of the subject and apply it to new problems. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 Std. 15 Min. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Water and Environmental Engineering: Core Qualification: Compulsory |
Course L1428: Biology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Johannes Gescher |
Language | EN |
Cycle | WiSe |
Content | |
Literature | Umweltmikrobiologie, Reineke, W. und Schlömann, M. (2015) 2. Aufl., Springer Spektrum Verlag |
Course L0903: Geology and Soil Science |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Gerth, Sonja Götz |
Language | DE |
Cycle | WiSe |
Content |
Geology: formation of the Earth, plate tectonics, macroscopic rock identification, introduction to Earth history, introduction to halokinesis. Soil science: soil use and function in ecosystems, faktors and processes of soil formation, mineral and organic components, surface types and properties, retention of nutrients and pollutants, hazards from faulty land use, erosion, salinization, and contamination, measures to preserve soils |
Literature |
R. Vinx (2011): "Gesteinsbestimmung im Gelände" H. Bahlburg & C. Breitkreutz (2012): "Grundlagen der Geologie", TUB Signatur GWB-318 R. Walter (2003): "Ergeschichte" TUB Signatur: 2816-1769 F.Scheffer und P. Schachtschabel (2002): "Lehrbuch der Bodenkunde" TUB Signatur AGG-308 W.E.H. Blum (2007): "Bodenkunde in Stichworten" TUB Signatur AGG-317 |
Course L0354: Environmental Analysis |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Dorothea Rechtenbach, Dr. Henning Mangels |
Language | EN |
Cycle | WiSe |
Content |
Introduction Sampling in different environmental compartments, sample transportation, sample storage Sample preparation Photometry Wastewater analysis Introduction into chromatography Gas chromatography HPLC Mass spectrometry Optical emission spectrometry Atom absorption spectrometry Quality assurance in environmental analysis |
Literature |
Roger Reeve, Introduction to Environmental Analysis, John Wiley & Sons Ltd., 2002 (TUB: USD-728) Pradyot Patnaik, Handbook of environmental analysis: chemical pollutants in air, water, soil, and solid wastes, CRC Press, Boca Raton, 2010 (TUB: USD-716) Chunlong Zhang, Fundamentals of Environmental Sampling and Analysis, John Wiley & Sons Ltd., Hoboken, New Jersey, 2007 (TUB: USD-741) Miroslav Radojević, Vladimir N. Bashkin, Practical Environmental Analysis Werner Funk, Vera Dammann, Gerhild Donnevert, Sarah Iannelli (Translator), Eric Iannelli (Translator), Quality Assurance in Analytical Chemistry: Applications in Environmental, Food and Materials Analysis, Biotechnology, and Medical Engineering, 2nd Edition, WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim, 2007 (TUB: CHF-350) STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 21st Edition, Andrew D. Eaton, Leonore S. Clesceri, Eugene W. Rice, and Arnold E. Greenberg, editors, 2005 (TUB:CHF-428) K. Robards, P. R. Haddad, P. E. Jackson, Principles and Practice of H. M. McNair, J. M. Miller, Basic Gas Chromatography, Wiley B. A. Bidlingmeyer, Practical HPLC Methodology and Applications, Wiley Charles B. Boss and Kenneth J. Fredeen, Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry Atomic absorption spectrometry: theory, design and applications, ed. by S. J. Haswell 1991 (TUB: 2727-5614) Royal Society of Chemistry, Atomic absorption spectometry (http://www.kau.edu.sa/Files/130002/Files/6785_AAs.pdf) |
Module M0962: Sustainability and Risk Management |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Kerstin Kuchta |
Admission Requirements | None |
Recommended Previous Knowledge | none |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to describe single techniques and to give an overview for the field of safety and risk assessment as well as environmental and sustainable engineering, in detail:
|
Skills |
Students are able apply interdisciplinary system-oriented methods for risk assessment and sustainability reporting. They can evaluate the effort and costs for processes and select economically feasible treatment concepts. |
Personal Competence | |
Social Competence | |
Autonomy |
Students can gain knowledge of the subject area from given sources and transform it to new questions. Furthermore, they can define targets for new application or research-oriented duties in for risk management and sustainability concepts accordance with the potential social, economic and cultural impact. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Elaboration and presentation (45 minutes in groups) |
Assignment for the Following Curricula |
Civil Engineering: Core Qualification: Compulsory Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Water and Environmental Engineering: Core Qualification: Compulsory |
Course L1145: Safety, Reliability and Risk Assessment |
Typ | Seminar |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Marco Ritzkowski |
Language | DE |
Cycle | WiSe |
Content |
An introduction in safety and risk assessment is given and some typical problems of structural and environmental engineering are treated:
|
Literature |
- Vorlesungsunterlagen - Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf |
Course L0319: Environment and Sustainability |
Typ | Lecture | |||||||||||||
Hrs/wk | 2 | |||||||||||||
CP | 3 | |||||||||||||
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 | |||||||||||||
Lecturer | Prof. Kerstin Kuchta | |||||||||||||
Language | EN | |||||||||||||
Cycle | WiSe | |||||||||||||
Content |
This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
|
|||||||||||||
Literature | Wird in der Veranstaltung bekannt gegeben. |
Specialization Cities
Module M0830: Environmental Protection and Management |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to describe the basics of regulations, economic instruments, voluntary initiatives, fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements. They can analyse and discuss industrial processes, substance cycles and approaches from end-of-pipe technology to eco-efficiency and eco-effectiveness, showing their sound knowledge of complex industry related problems. They are able to judge environmental issues and to widely consider, apply or carry out innovative technical solutions, remediation measures and further interventions as well as conceptual problem solving approaches in the full range of problems in different industrial sectors. |
Skills |
Students are able to assess current problems and situations in the field of environmental protection. They can consider the best available techniques and to plan and suggest concrete actions in a company- or branch-specific context. By this means they can solve problems on a technical, administrative and legislative level. |
Personal Competence | |
Social Competence |
The students can work together in international groups. |
Autonomy |
Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory Environmental Engineering: Core Qualification: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L0502: Integrated Pollution Control |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content |
The lecture focusses on:
|
Literature |
Förstner, Ulrich (1998): Integrated Pollution Control, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-80313-0 Shen, Thomas T. (1999): Industrial Pollution Prevention, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-65208-3 |
Course L0387: Health, Safety and Environmental Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Hans-Joachim Nau |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315) Exercises can be downloaded from StudIP |
Course L0388: Health, Safety and Environmental Management |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Hans-Joachim Nau |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0902: Wastewater Treatment and Air Pollution Abatement |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Swantje Pietsch-Braune |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of biology and chemistry Basic knowledge of solids process engineering and separation technology |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of the module students are able to
|
Skills |
Students are able to
|
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L0517: Biological Wastewater Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Behrendt |
Language | DE/EN |
Cycle | WiSe |
Content |
Charaterisation of Wastewater |
Literature |
Gujer, Willi |
Course L0203: Air Pollution Abatement |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Swantje Pietsch-Braune, Christian Eichler |
Language | EN |
Cycle | WiSe |
Content |
In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators. |
Literature |
Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002 |
Module M0923: Integrated Transportation Planning |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Carsten Gertz |
Admission Requirements | None |
Recommended Previous Knowledge |
some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineerin |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to:
|
Skills |
Students are able to:
|
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
Students are able to:
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | written assignment with presentation during the semester |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L1068: Integrated Transportation Planning |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Carsten Gertz, Dr. Philine Gaffron, Jacqueline Bianca Maaß |
Language | DE |
Cycle | WiSe |
Content |
The course will provide students with an understanding of interdependencies between land-use and transportation. Specific topics include a.o.:
|
Literature |
Kutter, Eckhard (2005) Entwicklung innovativer Verkehrsstrategien für die mobile Gesellschaft. Erich Schmidt Verlag. Berlin. Bracher, Tilman u. a. (Hrsg.) (68. Ergänzung 2013) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen) |
Module M0511: Electrical Energy from Solar Radiation and Wind Power |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Dr. Isabel Höfer |
Admission Requirements | None |
Recommended Previous Knowledge |
Module: Technical Thermodynamics I, Module: Technical Thermodynamics II, Module: Fundamentals of Fluid Mechanics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
By ending this module students can explain in detail knowledge of wind turbines with a particular focus of wind energy use in offshore conditions and can critical comment these aspects in consideration of current developments. Furthermore, they are able to describe fundamentally the use of water power to generate electricity. The students reproduce and explain the basic procedure in the implementation of renewable energy projects in countries outside Europe. Through active discussions of various topics within the seminar of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice. |
Skills |
Students are able to apply the acquired theoretical foundations on exemplary water or wind power systems and evaluate and assess technically the resulting relationships in the context of dimensioning and operation of these energy systems. They can in compare critically the special procedure for the implementation of renewable energy projects in countries outside Europe with the in principle applied approach in Europe and can apply this procedure on exemplary theoretical projects. |
Personal Competence | |
Social Competence |
Students can discuss scientific tasks subjet-specificly and multidisciplinary within a seminar. |
Autonomy |
Students can independently exploit sources in the context of the emphasis of the lecture material to clear the contents of the lecture and to acquire the particular knowledge about the subject area. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2.5 hours written exam + written elaboration (incl. presentation) in sustainability management |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0007: Sustainability Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dr. Anne Rödl |
Language | DE |
Cycle | SoSe |
Content |
The lecture "Sustainability Management" gives an insight into the different aspects and dimensions of sustainability. First, essential terms and definitions, significant developments of the last years, and legal framework conditions are explained. The various aspects of sustainability are then presented and discussed in detail. The lecture mainly focuses on concepts for the implementation of the topic sustainability in companies:
Furthermore, the lecture is intended to provide insights into the concrete implementation of sustainability aspects into business practice. External lecturers from companies will be invited to report on how sustainability is integrated into their daily processes. In the course of an independently carried out group work, the students will analyze and discuss the implementation of sustainability aspects based on short case studies. By studying and comparing best practice examples, the students will learn about corporate decisions' effects and implications. It should become clear which risks or opportunities are associated if sustainability aspects are taken into account in management decisions. |
Literature |
Die folgenden Bücher bieten einen Überblick: Engelfried, J. (2011) Nachhaltiges Umweltmanagement. München: Oldenbourg Verlag. 2. Auflage Corsten H., Roth S. (Hrsg.) (2011) Nachhaltigkeit - Unternehmerisches Handeln in globaler Verantwortung. Wiesbaden: Gabler Verlag. |
Course L0013: Hydro Power Use |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Stefan Achleitner |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0011: Wind Turbine Plants |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Rudolf Zellermann |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Course L0012: Wind Energy Use - Focus Offshore |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Martin Skiba |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0827: Modeling in Water Management |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Dr. Klaus Johannsen |
Admission Requirements | None |
Recommended Previous Knowledge |
Groundwater
Pipe Systems
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to describe the modelling of groundwater flow and transport as well as urban water infrastructures. They can carry out systems analyses and can detect technical and conceptual weak points within the systems in case studies. Besides they are able to analyse interdependencies of hydraulic and toxic phenomena in soil and water. |
Skills |
The students are able to construct and apply scientific groundwater models indipendently. They can work on different scenarios and can compare or assess different solutions for existing problems by application of selected software products. The students are able to use different software solutions (e.g. EPANET, EPA-SWMM). |
Personal Competence | |
Social Competence |
Wird nicht vermittelt. |
Autonomy |
Wird nicht vermittelt. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 20 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0543: Groundwater Modeling using Modflow |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Sonja Götz |
Language | DE/EN |
Cycle | SoSe |
Content | Introduction and application of the groundwater model MODFLOW (PMWIN); theoretical backround of the modell, students do work with the model PMWIN for practical case studies. |
Literature |
MODFLOW-Handbuch Chiang, Wen Hsien: PMWIN |
Course L0544: Groundwater Modeling using Modflow |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Sonja Götz |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0875: Modeling of Water Supply and Sewer Network |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Klaus Johannsen, Weitere Mitarbeiter |
Language | DE |
Cycle | SoSe |
Content | |
Literature | Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014. |
Module M1717: Advanced Vadose Zone Hydrology |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2734: Modeling Processes in Vadose Zone |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Hannes Nevermann, Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2735: Modeling Processes in Vadose Zone |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Hannes Nevermann |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2732: Vadose Zone Hydrology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2733: Vadose Zone Hydrology |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1718: Multiphase Flow in Porous Media |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2738: Advanced Modeling Techniques for Multiphase Flow in Porous Media |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2736: Fundamentals of Multiphase Flow in Porous Media |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2737: Fundamentals of Multiphase Flow in Porous Media |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Hannes Nevermann |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1721: Water and Environment: Theory and Application |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Report (about 5-10 pages) and Presentation (about 15 min) |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2754: Water and Environment: Application and Field Work |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Anna Luisa Hemshorn de Sánchez, Dr. Salome Shokri-Kuehni |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2753: Water and Environment: Theory |
Typ | Lecture |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Module M0749: Waste Treatment and Solid Matter Process Technology |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Kerstin Kuchta |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics of
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can name, describe current issue and problems in the field of thermal waste treatment and particle process engineering and contemplate them in the context of their field. The industrial application of unit operations as part of process engineering is explained by actual examples of waste incineration technologies and solid biomass processes. Compostion, particle sizes, transportation and dosing, drying and agglomeration of renewable resources and wastes are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, electricity , heat and mineral recyclables. |
Skills |
The students are able to select suitable processes for the treatment of wastes or raw material with respect to their characteristics and the process aims. They can evaluate the efforts and costs for processes and select economically feasible treatment concepts. |
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0052: Solid Matter Process Technology for Biomass |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Werner Sitzmann |
Language | DE |
Cycle | SoSe |
Content | The industrial application of unit operations as part of process engineering is explained by actual examples of solid biomass processes. Size reduction, transportation and dosing, drying and agglomeration of renewable resources are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, when making Btl - and WPC - products. Aspects of explosion protection and plant design complete the lecture. |
Literature |
Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe, Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175 |
Course L0320: Thermal Waste Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013. |
Course L1177: Thermal Waste Treatment |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0828: Urban Environmental Management |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Dorothea Rechtenbach |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can
describe urban development corridors as well as current and future urban environmental
problems. They are able to explain the causes of environmental problems (like
noise).
Students can specify applications for various technical innovations and explain why these contribute to the improvement of urban life. They can, for example, derive and discuss measures for effective noise abatement. |
Skills | Students are able to develop specific solutions for correcting existing or future environment-related problems of urban development. They can define a range of conceptual and technical solutions for environmental problems for different development paths. To solve specific urban environmental problems they can select technical innovations and integrate them into the urban context. |
Personal Competence | |
Social Competence |
The students can work together in international groups. |
Autonomy |
Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Written Report plus oral Presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L1109: Noise Protection |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Martin Jäschke |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
1) Müller & Möser (2013): Handbook of Engineering Acoustics (also
available in German)
|
Course L0874: Urban Infrastructures |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Dr. Dorothea Rechtenbach |
Language | EN |
Cycle | SoSe |
Content |
Problem Based Learning Main topics are:
|
Literature | Depends on chosen topic. |
Module M0857: Geochemical Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Dr. Marco Ritzkowski |
Admission Requirements | None |
Recommended Previous Knowledge |
Module: General and Inorganic Chemistry, Module:Organic Chemistry, Biology (Basic Knowledge) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
With the completion of this module students acquire profound knowledge of biogeochemical processes, the fate of pollutants in soil and groundwater, and techniques to deposit contaminated waste material. They are able to describe in principle the behaviour of chemicals in the environment. Students can explain and report the approach to remediate contaminated sites. |
Skills |
With the completion of this module students can apply the acquired theoretical knowledge to model cases of site pollution and critically assess the situation technically and conceptually. They are able to draw comparisons on different remediation strategies and techniques. Model projects can be devised and treated. |
Personal Competence | |
Social Competence |
Students can discuss technical and scientific tasks within a seminar subject specific and interdisciplinary . |
Autonomy |
Students can independently exploit sources , acquire the particular knowledge of the subject and apply it to new problems. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 hours |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0906: Contaminated Sites and Landfilling |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Marco Ritzkowski, Dr. Joachim Gerth |
Language | EN |
Cycle | SoSe |
Content |
The part Contaminated Sites gives an introduction into different scales of pollution and identifies key pollutants. Geochemical attenuation mechanisms and the role of organisms are highlighted affecting the fate of pollutants in leachate and groundwater. Techniques for site characterization and remediation are discussed including economical aspects. The part Landfilling is introduced by discussing fundamental aspects and the worldwide situation of waste management. The lecture highlights transformation processes in landfill bodies, emissions of gases and leachate, and the long-term behaviour of landfill sites with measures of aftercare. |
Literature |
1) Waste Management. Bernd Bilitewski; Georg Härdtle; Klaus Marek (Eds.), ISBN: 9783540592105 , Springer Verlag 3) Natural attenuation of fuels and chlorinated solvents in the subsurface. Todd H. Wiedemeier(Ed.), ISBN: 0471197491 Lesesaal 2: US - Umweltschutz, Signatur USH-844 |
Course L0907: Contaminated Sites and Landfilling |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dr. Marco Ritzkowski, Dr. Joachim Gerth |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0904: Geochemical Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Gerth |
Language | EN |
Cycle | SoSe |
Content |
As an introduction cases are presented in which geochemical engineering was used to solve environmental problems. Environmentally important minerals are discussed and methods for their detection. It is demonstrated how solution equilibria can be modified to eliminate elevated concentrations of unwanted species in solution and how carbon dioxide concentration affects pH and the dissolution of carbonate minerals. Modifications of redox conditions, pH, and electrolyte concentration are shown to be effective tools for controlling the mobility and fate of hazardous species in the environment. |
Literature |
Geochemistry, groundwater and pollution. C. A. J. Appelo; D. Postma Leiden [u.a.] Balkema 2005 Lehrbuchsammlung der TUB, Signatur GWC-515 |
Module M0870: Management of Surface Water |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Peter Fröhle |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals of Hydromechanics, Hydraulics, Hydrology and Hydraulic Engineering; Hydraulic Engineering I and Hydraulic Engineering II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to define in detail the basic processes that are related to the modelling of flows in hydraulic engineering. Besides, they can describe the basic aspects of numerical modelling and actual numerical models for the simulation of flows and waves. They can also depict the concepts of nature oriented hydraulic engineering. |
Skills |
Students are able to apply hydrodynamic-numerical models to practical hydraulic engineering tasks. Furthermore, the students are able to set up flood-risk management concepts and are able to apply basic concepts of renaturation to practical problems. |
Personal Competence | |
Social Competence | The students are able to deploy their gained knowledge in applied problems of the practical nature-based hydraulic engineering. Additionaly, they will be able to work in team with engineers of other disciplines. |
Autonomy |
The students will be able to independently extend their knowledge and apply it to new problems. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | The duration of the examination is 150 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0810: Modelling of Flow in Rivers and Estuaries |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Edgar Nehlsen, Prof. Peter Fröhle |
Language | EN |
Cycle | SoSe |
Content |
Introduction to numerical flow modelling
|
Literature |
Vorlesungsskript Literaturempfehlungen Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (1997): Hydraulische Berechnung von naturnahen Fließgewässern. Düsseldorf: BWK (BWK-Merkblatt). Chow, Ven-te (1959): Open-channel Hydraulics. New York usw.: McGraw-Hill (McGraw-Hill Civil Engineering Series). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019a): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 1: Geodaten in der Fließgewässermodellierung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-1). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019b): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 2: Bedarfsgerechte Datenerfassung und -aufbereitung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-2). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019c): Merkblatt DWA-M 543-3 Geodaten in der Fließgewässermodellierung - Teil 3: Aspekte der Strömungsmodellierung und Fallbeispiele. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-3). Hervouet, Jean-Michel (2007): Hydrodynamics of free surface flows. Modelling with the finite element method. Chichester: Wiley. Online verfügbar unter http://www.loc.gov/catdir/enhancements/fy0741/2007296953-b.html. IAHR (2015): Professional Specifications for Physical and Numerical Studies in Environmental Hydraulics. In: Hydrolink (3/2015), S. 90-92. Olsen, Nils Reidar B. (2012): Numerical Modelling and Hydraulics. 3. Aufl. Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology. Szymkiewicz, Romuald (2010): Numerical modeling in open channel hydraulics. Dordrecht: Springer (Water science and technology library, 83). van Waveren, Harold (1999-): Good modelling practice handbook. [Utrecht], Lelystad, Den Haag: STOWA; Rijkswaterstaat-RIZA; SDU, afd. SEO/RIZA [etc. distr.] (Nota, nr. 99.036). Zielke, Werner (Hg.) (1999): Numerische Modelle von Flüssen, Seen und Küstengewässern. Deutscher Verband für Wasserwirtschaft und Kulturbau. Bonn: Wirtschafts- und Verl.-Ges. Gas und Wasser (Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau, 127). |
Course L0961: Nature-Oriented Hydraulic Engineering / Integrated Flood Protection |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Natasa Manojlovic, Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
Vorlesungsumdruck |
Module M0871: Hydrological Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Peter Fröhle |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals of Hydromechanics and Hydraulic Engineering: Hydraulic Engineering I and Hydraulic Engineering II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to define the basic concepts of hydrology and water management. They are able to describe and quantify the relevant processes of the hydrological water cycle. Besides, the students know the main aspects of rainfall-run-off-models and are able to theoretically derive established reservoir / storage models and a unit-hydrograph. |
Skills |
The students are able to use the basic hydrological concepts and approaches and are able to theoretically derive established reservoir / storage models or a unit-hydrograph as the basis for rainfall-run-off-models. The student are able to explain the basic concepts of measurements of hydrological and hydrodynamic values in nature and are able to perform, analyze and statistically assess these measurements. Furthermore, they are able to apply a hydrological model to basic hydrological problems. |
Personal Competence | |
Social Competence | The students are able to deploy their gained knowledge in applied problems of the hydrology and water management. Additionaly, they will be able to work in team with engineers of other disciplines. |
Autonomy |
The students will be able to independently extend their knowledge and apply it to new problems |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | The duration of the examination is 90 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0289: Applied Surface Hydrology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content |
Basics of hydrology:
|
Literature |
http://de.wikipedia.org/wiki/Kalypso_(Software) http://kalypso.bjoernsen.de/ http://sourceforge.net/projects/kalypso/ |
Course L1412: Applied Surface Hydrology |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0295: Interaction Water - Environment in Fluvial Areas |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content |
A problem based learning course. The problem will be solved by the students more or less self-contained. The topics will be introduced and elaborated over the semester. |
Literature | - |
Module M0874: Wastewater Systems |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of wastewater management and the key processes involved in wastewater treatment. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to outline key areas of the full range of treatment systems in waste water management, as well as their mutual dependence for sustainable water protection. They can describe relevant economic, environmental and social factors. |
Skills |
Students are able to pre-design and explain the available wastewater treatment processes and the scope of their application in municipal and for some industrial treatment plants. |
Personal Competence | |
Social Competence |
Social skills are not targeted in this module. |
Autonomy |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L0934: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content |
•Understanding the global situation with water and wastewater •Regional planning and decentralised systems •Overview on innovative approaches •In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse •Mathematical Modelling of Nitrogen Removal •Exercises with calculations and design |
Literature |
Henze, Mogens: George Tchobanoglous, Franklin L. Burton, H. David Stensel: |
Course L0943: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0357: Advanced Wastewater Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Behrendt |
Language | EN |
Cycle | SoSe |
Content |
Survey on advanced wastewater treatment reuse of reclaimed municipal wastewater Precipitation Flocculation Depth filtration Membrane Processes Activated carbon adsorption Ozonation "Advanced Oxidation Processes" Disinfection |
Literature |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Course L0358: Advanced Wastewater Treatment |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Joachim Behrendt |
Language | EN |
Cycle | SoSe |
Content |
Aggregate organic compounds (sum parameters) Industrial wastewater Processes for industrial wastewater treatment Precipitation Flocculation Activated carbon adsorption Recalcitrant organic compounds |
Literature |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Module M0875: Nexus Engineering - Water, Soil, Food and Energy |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of the global situation with rising poverty, soil degradation, migration to cities, lack of water resources and sanitation |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can describe the facets of the global water situation. Students can judge the enormous potential of the implementation of synergistic systems in Water, Soil, Food and Energy supply. |
Skills |
Students are able to design ecological settlements for different geographic and socio-economic conditions for the main climates around the world. |
Personal Competence | |
Social Competence |
The students are able to develop a specific topic in a team and to work out milestones according to a given plan. |
Autonomy |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information can be found at the beginning of the smester in the StudIP course module handbook. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L1229: Ecological Town Design - Water, Energy, Soil and Food Nexus |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0939: Water & Wastewater Systems in a Global Context |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0922: City Planning |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Carsten Gertz |
Admission Requirements | None |
Recommended Previous Knowledge |
for "Principles of Urban Planning": none for "Designing Urban Streetscapes": some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineering“ |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to:
|
Skills |
Students are able to:
|
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
Students are able to:
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | written assignment, designwork during the semester |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L1066: City Planning |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Carsten Gertz |
Language | DE |
Cycle | SoSe |
Content |
„Principles of Urban Planning“ deals with the determinants of urban development and their interactions. Topics include:
The project work deals with a real life scenario and includes drawing up a development plan, an urban design concept, a building masterplan and a street redesign. |
Literature |
Albers, Gerd; Wekel, Julian (2009) Stadtplanung: Eine illustrierte Einführung. Primus Verlag. Darmstadt. Frick, Dieter (2008) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. Wasmuth-Verlag. Tübingen Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York. |
Module M0982: Transportation Modelling |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Carsten Gertz |
Admission Requirements | None |
Recommended Previous Knowledge |
some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineering" |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to understand the operation and potential applications of transport models. |
Skills |
Students are able to:
|
Personal Competence | |
Social Competence | Students are able to independently develop and document solutions. |
Autonomy |
Students are able to:
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | written assignment with presentation during the semester |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L1180: Transportation Modelling |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Carsten Gertz |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Lohse, Dieter und Schnabel, Werner (2011): Grundlagen der Straßenverkehrstechnik und der Verkehrsplanung – Band 2. 3. Auflage. Beuth. Ortúzar, Juan de Dios und Willumsen, Luis G. (2011): Modelling Transport. 4. Auflage. John Wiley & Sons. |
Module M0663: Marine Geotechnics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Jürgen Grabe |
Admission Requirements | None |
Recommended Previous Knowledge |
complete modules: Geotechnics I-III, Mathematics I-III courses: Soil laboratory course |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L0548: Marine Geotechnics |
Typ | Lecture |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Jürgen Grabe |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0549: Marine Geotechnics |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Jürgen Grabe |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1146: Steel Structures in Foundation and Hydraulic Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Frank Feindt |
Language | DE |
Cycle | SoSe |
Content | Design of a sheet pile wall, design of a combined sheet pile wall, piles, walings, connections, fatigue |
Literature | EAU 2012, EA-Pfähle, EAB |
Module M1724: Smart Monitoring |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Kay Smarsly |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge or interest in object-oriented modeling, programming, and sensor technologies are helpful. Interest in modern research and teaching areas, such as Internet of Things, Industry 4.0 and cyber-physical systems, as well as the will to deepen skills of scientific working, are required. Basic knowledge in scientific writing and good English skills. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students will become familiar with the principles and practices of smart monitoring. The students will be able to design decentralized smart systems to be applied for continuous (remote) monitoring of systems in the built and in the natural environment. In addition, the students will learn to design and to implement intelligent sensor systems using state-of-the-art data analysis techniques, modern software design concepts, and embedded computing methodologies. Besides lectures, project work is also part of this module. In small groups, the students will design smart monitoring systems that integrate a number of “intelligent” sensors to be implemented by the students. Specific focus will be put on the application of machine learning techniques. The smart monitoring systems will be mounted on real-world (built or natural) systems, such as bridges or slopes, or on scaled lab structures for validation purposes. The outcome of every group will be documented in a paper. All students of this module will “automatically” participate with their smart monitoring system in the annual "Smart Monitoring" competition. The written papers and oral examinations form the final grades. The module will be taught in English. Limited enrollment. |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | 10 pages of work with 15-minute oral presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory Environmental Engineering: Specialisation Biotechnology: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory Environmental Engineering: Specialisation Biotechnology: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2762: Smart Monitoring |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Kay Smarsly |
Language | EN |
Cycle |
WiSe/ |
Content |
In this course, principles of smart monitoring will be taught, focusing on modern concepts of data acquisition, data storage, and data analysis. Also, fundamentals of intelligent sensors and embedded computing will be illuminated. Autonomous software and decentralized data processing are further crucial parts of the course, including concepts of the Internet of Things, Industry 4.0 and cyber-physical systems. Furthermore, measuring principles, data acquisition systems, data management and data analysis algorithms will be discussed. Besides the theoretical background, numerous practical examples will be shown to demonstrate how smart monitoring may advantageously be used for assessing the condition of systems in the built or natural environment. |
Literature |
Course L2763: Smart Monitoring |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Kay Smarsly |
Language | EN |
Cycle |
WiSe/ |
Content |
The contents of the exercises are based on the lecture contents. In addition to the exercises, project work will be conducted, which will consume the majority of the workload. As part of the project work, students will design smart monitoring systems that will be tested in the laboratory or in the field. As mentioned in the module description, the students will participate in the “Smart Monitoring” competition, hosted annually by the Institute of Digital and Autonomous Construction. Students are encouraged to contribute their own ideas. The tools required to implement the smart monitoring systems will be taught in the group exercises as well as through external sources, such as video tutorials and literature. |
Literature |
Module M1123: Selected Topics in Environmental Engineering |
||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||
|
Module Responsible | Prof. Mathias Ernst |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Environmental Engineering: Core Qualification: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L1444: Environmental Aquatic Chemistry |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dr. Klaus Johannsen |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Worch, E.: Hydrochemistry. Basic Concepts and Exercises. De Gruyter, Berlin, 2015 |
Course L2387: Excellence in International Project Delivery |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 2 h |
Lecturer | Dr. Jens Huckfeldt |
Language | EN |
Cycle | SoSe |
Content | Simply and easy to avoid mistake in project delivery can deliver projects within budget and as per schedule.You have to attend if you see yourself in project execution and potentially even abroad. |
Literature |
Course L0520: Sludge Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dr. Joachim Behrendt |
Language | EN |
Cycle | SoSe |
Content |
Sedimentation characteristic and thickening, |
Literature |
Tchobanoglous, George (Metcalf & Eddy, Inc., ;) |
Course L1767: Thermal Biomass Utilization |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE |
Cycle | WiSe |
Content |
Goal of this course is it to discuss the physical, chemical, and biological as well as the technical, economic, and environmental basics of all options to provide energy from biomass from a German and international point of view. Additionally different system approaches to use biomass for energy, aspects to integrate bioenergy within the energy system, technical and economic development potentials, and the current and expected future use within the energy system are presented. The course is structured as follows:
|
Literature |
Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage |
Course L2386: Thermal Biomass Utilization |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | Protokolle |
Lecturer | Prof. Martin Kaltschmitt, Dr. Marvin Scherzinger |
Language | DE |
Cycle | WiSe |
Content |
The experiments of the practical lab course illustrate the different
aspects of heat generation from biogenic solid fuels. First,
different biomasses (e.g. wood, straw or agricultural residues) will
be investigated; the focus will be on the calorific value of the
biomass. Furthermore, the used biomass will be pelletized, the
pellet properties analysed and a combustion test carried out on a
pellet combustion system. The gaseous and solid pollutant emissions,
especially the particulate matter emissions, are measured and the
composition of the particulate matter is investigated in a further
experiment. Another focus of the practical course is the
consideration of options for the reduction of particulate matter
emissions from biomass combustion. In the practical course, a method
for particulate matter reduction will be developed and tested. All
experiments will be evaluated and the results presented. |
Literature |
- Kaltschmitt, Martin; Hartmann, Hans; Hofbauer, Hermann: Energie
aus Biomasse: Grundlagen, Techniken und Verfahren. 3. Auflage.
Berlin Heidelberg: Springer Science & Business Media, 2016.
-ISBN 978-3-662-47437-2 |
Module M0581: Water Protection |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can describe the basic principles of the regulatory framework related to the international and European water sector. They can explain limnological processes, substance cycles and water morphology in detail. They are able to assess complex problems related to water protection, such as ecosystem service and wastewater treatment with a special focus on innovative solutions, remediation measures as well as conceptual approaches. |
Skills |
Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems. |
Personal Competence | |
Social Competence |
The students can work together in international groups. |
Autonomy |
Students are able to organize their work flow to prepare presentations and discussions. They can acquire appropriate knowledge by making enquiries independently. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Presentation |
Examination duration and scale | Term paper plus presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory |
Course L0226: Water Protection and Wastewater Management |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content |
The lecture focusses on:
|
Literature |
The literature listed below is available in the library of the TUHH.
|
Course L2008: Water Protection and Wastewater Management |
Typ | Project Seminar |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Module M0620: Special Aspects of Waste Resource Management |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Kerstin Kuchta | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | basics in waste treatment technologies | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students are able to describe waste as a resource as well as advanced technologies for recycling and recovery of resources from waste in detail. This covers collection, transport, treatment and disposal in national and international contexts. |
||||||||
Skills |
Students are able to select suitable processes for the treatment with respect to the national or cultural and developmental context. They can evaluate the ecological impact and the technical effort of different technologies and management systems. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can work together as a team of 2-5 persons, participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of colleagues. Furthermore, they can give and accept professional constructive criticisms. |
||||||||
Autonomy |
Students can independently gain additional knowledge of the subject area and apply it in solving the given course tasks and projects. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Presentation | ||||||||
Examination duration and scale | PowerPoint presentation (10-15 minutes) | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L1055: Advanced Topics in Waste Resource Management |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Rüdiger Siechau |
Language | EN |
Cycle | WiSe |
Content |
Focus of the course "Advanced topics of waste resource management" lies on the organisational structures in waste management - such as planning, financing and logistics. One excursion will be offered to take part in (incineration plant, vehicle fleet and waste collection systems). The course is split into two parts: 2. part: Project base learning: You will get a project to work out in groups of 4 to 6 students; all tools and data you need to work out the project were given before during the conventional lecture. Course documents are published in StudIP and communication during project work takes place via StudIP. The results of the project work are presented at the end of the semester. The final mark for the course consists of the grade for the presentation. |
Literature |
Einführung in die Abfallwirtschaft; Martin Kranert, Klaus Cord-Landwehr (Hrsg.); Vieweg + Teubner Verlag; 2010 PowerPoint slides in Stud IP |
Course L0317: International Waste Management |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | WiSe |
Content |
Waste avoidance and recycling are the focus of this lecture. Additionally, waste logistics ( Collection, transport, export, fees and taxes) as well as international waste shipment solutions are presented. Other specific wastes, e.g. industrial waste, treatment concepts will be presented and developed by students themselves Waste composition and production on international level, wast eulogistic, collection and treatment in emerging and developing countries. Single national projects and studies will be prepared and presented by students |
Literature |
Basel convention |
Module M0619: Waste Treatment Technologies |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Kerstin Kuchta | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | chemical and biological basics | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The module aims possess knowledge concerning the planning of biological waste treatment plants. Students are able to explain the design and layout of anaerobic and aerobic waste treatment plants in detail, describe different techniques for waste gas treatment plants for biological waste treatment plants and explain different methods for waste analytics. |
||||||||
Skills |
The students are able to discuss the compilation of design and layout of plants. They can critically evaluate techniques and quality control measurements. The students can recherché and evaluate literature and date connected to the tasks given in der module and plan additional tests. They are capable of reflecting and evaluating findings in the group. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development in front of colleagues. Furthermore, they can give and accept professional constructive criticism. |
||||||||
Autonomy |
Students can independently tap knowledge from literature, business or test reports and transform it to the course projects. They are capable, in consultation with supervisors as well as in the interim presentation, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Presentation | ||||||||
Examination duration and scale | Elaboration and Presentation (15-25 minutes in groups) | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory |
Course L0328: Waste and Environmental Chemistry |
Typ | Practical Course |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Kerstin Kuchta |
Language | DE/EN |
Cycle | WiSe |
Content |
The participants are divided into groups. Each group prepares a transcript on the experiment performed, which is then used as basis for discussing the results and to evaluate the performance of the group and the individual student. In some experiments the test procedure and the results are presented in seminar form, accompanied by discussion and results evaluation. Experiments ar e.g. Screening and particle size determination Fos/Tac AAS Chalorific value |
Literature | Scripte |
Course L0318: Biological Waste Treatment |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
Module M0801: Water Resources and -Supply |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Mathias Ernst |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of water management and the key processes involved in water treatment. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students will be able to outline key areas of conflict in water management, as well as their mutual dependence for sustainable water supply. They will understand relevant economic, environmental and social factors. Students will be able to explain and outline the organisational structures of water companies. They will be able to explain the available water treatment processes and the scope of their application. |
Skills |
Students will be able to assess complex problems in drinking water production and establish solutions involving water management and technical measures. They will be able to assess the evaluation methods that can be used for this. Students will be able to carry out chemical calculations for selected treatment processes and apply generally accepted technical rules and standards to these processes. |
Personal Competence | |
Social Competence |
Working in a diverse group of specialists, students will be able to develop and document complex solutions for the management and treatment of drinking water. They will be able to take an appropriate professional position, for example representing user interests. They will be able to develop joint solutions in teams of diverse experts and present these solutions to others. |
Autonomy |
Students will be in a position to work on a subject independently and present on this subject. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min (chemistry) + presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0311: Chemistry of Drinking Water Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dr. Klaus Johannsen |
Language | DE |
Cycle | WiSe |
Content |
The topic of this course is water chemistry with respect to drinking water treatment and water distribution Major topics are solubility of gases, carbonic acid system and calcium carbonate, blending, softening, redox processes, materials and legal requirements on drinking water treatment. Focus is put on generally accepted rules of technology (DVGW- and DIN-standards). Special emphasis is put on calculations using realistic analysis data (e.g. calculation of pH or calcium carbonate dissolution potential) in exercises. Students can get a feedback and gain extra points for exam by solving problems for homework. Knowledge of drinking water treatment processes is vital for this lecture. Therefore the most important processes are explained coordinated with the course “ Water resources management“ in the beginning of the semester. |
Literature |
MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003. |
Course L0312: Chemistry of Drinking Water Treatment |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dr. Klaus Johannsen |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0402: Water Resource Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Mathias Ernst |
Language | DE |
Cycle | WiSe |
Content |
The lecture provides comprehensive knowledge on interaction of water ressource management and drinking water supply. Content overview:
- User and Stakeholder conflicts - Wasserressourcenmanagement in urbane Gebieten - Rechtliche Aspekte, Organisationsformen Trinkwasserversorgungsunternehmen. - Ökobilanzierung, Benchmarking in der Wasserversorgung |
Literature |
|
Course L0403: Water Resource Management |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Mathias Ernst |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0802: Membrane Technology |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Mathias Ernst |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of water chemistry. Knowledge of the core processes involved in water, gas and steam treatment |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students will be able to rank the technical applications of industrially important membrane processes. They will be able to explain the different driving forces behind existing membrane separation processes. Students will be able to name materials used in membrane filtration and their advantages and disadvantages. Students will be able to explain the key differences in the use of membranes in water, other liquid media, gases and in liquid/gas mixtures. |
Skills |
Students will be able to prepare mathematical equations for material transport in porous and solution-diffusion membranes and calculate key parameters in the membrane separation process. They will be able to handle technical membrane processes using available boundary data and provide recommendations for the sequence of different treatment processes. Through their own experiments, students will be able to classify the separation efficiency, filtration characteristics and application of different membrane materials. Students will be able to characterise the formation of the fouling layer in different waters and apply technical measures to control this. |
Personal Competence | |
Social Competence |
Students will be able to work in diverse teams on tasks in the field of membrane technology. They will be able to make decisions within their group on laboratory experiments to be undertaken jointly and present these to others. |
Autonomy |
Students will be in a position to solve homework on the topic of membrane technology independently. They will be capable of finding creative solutions to technical questions. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0399: Membrane Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Mathias Ernst |
Language | EN |
Cycle | WiSe |
Content |
The lecture on membrane technology supply provides students with a broad understanding of existing membrane treatment processes, encompassing pressure driven membrane processes, membrane application in electrodialyis, pervaporation as well as membrane distillation. The lectures main focus is the industrial production of drinking water like particle separation or desalination; however gas separation processes as well as specific wastewater oriented applications such as membrane bioreactor systems will be discussed as well. Initially, basics in low pressure and high pressure membrane applications are presented (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). Students learn about essential water quality parameter, transport equations and key parameter for pore membrane as well as solution diffusion membrane systems. The lecture sets a specific focus on fouling and scaling issues and provides knowledge on methods how to tackle with these phenomena in real water treatment application. A further part of the lecture deals with the character and manufacturing of different membrane materials and the characterization of membrane material by simple methods and advanced analysis. The functions, advantages and drawbacks of different membrane housings and modules are explained. Students learn how an industrial membrane application is designed in the succession of treatment steps like pre-treatment, water conditioning, membrane integration and post-treatment of water. Besides theory, the students will be provided with knowledge on membrane demo-site examples and insights in industrial practice. |
Literature |
|
Course L0400: Membrane Technology |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Mathias Ernst |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0401: Membrane Technology |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Mathias Ernst |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0822: Process Modeling in Water Technology |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Klaus Johannsen |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of the most important processes in drinking water and waste water treatment. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to explain selected processes of drinking water and waste water treatment in detail. They are able to explain basics as well as possibilities and limitations of dynamic modeling. |
Skills |
Students are able to use the most important features Modelica offers. They are able to transpose selected processes in drinking water and waste water treatment into a mathematical model in Modelica with respect to equilibrium, kinetics and mass balances. They are able to set up and apply models and assess their possibilities and limitations. |
Personal Competence | |
Social Competence |
Students are able to solve problems and document solutions in a group with members of different technical background. They are able to give appropriate feedback and can work constructively with feedback concerning their work. |
Autonomy |
Students are able to define a problem, gain the required knowledge and set up a model. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0522: Process Modelling of Wastewater Treatment |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Behrendt |
Language | DE/EN |
Cycle | WiSe |
Content |
Mass and energy balances Tracer modelling Activated Sludge Model Wastewater Treatment Plant Modelling (continously and SBR) Sludge Treatment (ADM, aerobic autothermal) Biofilm Modelling |
Literature |
Henze, Mogens (Seminar on Activated Sludge Modelling, ; Kollekolle Seminar on Activated Sludge Modelling, ;) |
Course L0314: Process Modeling in Drinking Water Treatment |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Klaus Johannsen |
Language | DE/EN |
Cycle | WiSe |
Content |
In this course selected drinking water treatment processes (e.g. aeration or activated carbon adsorption) are modeled dynamically using the programming language Modelica, that is increasingly used in industry. In this course OpenModelica is used, an free access frontend of the programming language Modelica. In the beginning of the course the use of OpenModelica is explainded by means of simple examples. Together required elements and structure of the model are developed. The implementation in OpenModelica and the application of the model is done individually or in groups respectively. Students get feedback and can gain extra points for the exam. |
Literature |
OpenModelica: https://openmodelica.org/index.php/download/download-windows OpenModelica - Modelica Tutorial: https://openmodelica.org/index.php/useresresources/userdocumentation OpenModelica - Users Guide: https://openmodelica.org/index.php/useresresources/userdocumentation Peter Fritzson: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,Wiley-IEEE Press, ISBN 0-471-471631. MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. |
Module M0894: Study Work Cities |
||||
Courses | ||||
|
Module Responsible | Dozenten des SD B |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to demonstrate their detailed knowledge in the field of Water and Environmental Engineering. They can exemplify the state of technology and application and discuss critically in the context of actual problems and general conditions of science and society. The students can develop solving strategies and approaches for fundamental and practical problems in the field of Water and Environmental Engineering. They may apply theory based procedures and integrate safety-related, ecological, ethical, and economic view points of science and society. Scientific work techniques that are used can be described and critically reviewed. |
Skills |
The students are able to independently select methods or planning approaches for the project work and to justify their choice. They can explain how these methods or approaches relate to solutions in the field of work and how the context of application has to be adjusted. General findings and further developments may essentially be outlined. |
Personal Competence | |
Social Competence |
The students are able to condense the relevance and the structure of the project work, the work steps and the sub-problems for the presentation and discussion in front of a bigger group. They can lead the discussion and give a feedback on the project to their colleagues. |
Autonomy |
The students are capable of independently planning and documenting the work steps and procedures while considering the given deadlines. This includes the ability to accurately procure the newest scientific information. Furthermore, they can obtain feedback from experts with regard to the progress of the work, and to accomplish results on the state of the art in science and technology. |
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Credit points | 6 |
Course achievement | None |
Examination | Study work |
Examination duration and scale | |
Assignment for the Following Curricula |
Water and Environmental Engineering: Specialisation Cities: Compulsory |
Module M0949: Rural Development and Resources Oriented Sanitation for different Climate Zones |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of the global situation with rising poverty, soil degradation, lack of water resources and sanitation |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can describe resources oriented wastewater systems mainly based on source control in detail. They can comment on techniques designed for reuse of water, nutrients and soil conditioners. Students are able to discuss a wide range of proven approaches in Rural Development from and for many regions of the world. |
Skills |
Students are able to design low-tech/low-cost sanitation, rural water supply, rainwater harvesting systems, measures for the rehabilitation of top soil quality combined with food and water security. Students can consult on the basics of soil building through “Holisitc Planned Grazing” as developed by Allan Savory. |
Personal Competence | |
Social Competence |
The students are able to develop a specific topic in a team and to work out milestones according to a given plan. |
Autonomy |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information will be provided at the beginning of the smester. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0942: Rural Development and Resources Oriented Sanitation for different Climate Zones |
Typ | Seminar |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0941: Rural Development and Resources Oriented Sanitation for different Climate Zones |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1716: Subsurface Processes |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic Mathematics, Hydrology |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Upon completion of this module, the students will understand the mechanisms controlling solute transport in soil and natural porous media and will be able to work with the equations that govern the fate and transport of solutes in porous media. Analytical, numerical and experimental tools and techniques will be used in this module. |
Skills | In addition to the physical insights, the students will be exposed to analytical, experimental and numerical tools and techniques in this module. This provides them with an excellent opportunity to improve their skills on multiple fronts which will be useful in their future career. |
Personal Competence | |
Social Competence | Teamwork & problem solving |
Autonomy | The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | Report and Presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L2730: Modeling of Subsurface Processes |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Sonja Götz |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Course L2731: Modeling of Subsurface Processes |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Sonja Götz |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2728: Modern Techniques for Subsurface Solute Transport |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Course L2729: Modern Techniques for Subsurface Solute Transport |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Hannes Nevermann |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1720: Emerging Trends in Environmental Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge on water, soil and environmental research. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students will be exposed to up-to-date research topics focused on soil, water and climate related challenges with a particular focus on the effects of microplastics in environment. Data analysis, data measurement, curation and presentation will be other skills that the students will develop in this module. |
Skills |
Students' research skills will be improved in this module. How to prepare and deliver an effective presentation, how to write an abstract, research paper and proposal will be discussed in this module. Moreover, through Research-Based Learning approaches, the students will be exposed to current research trends in environmental engineering. |
Personal Competence | |
Social Competence |
Developing teamwork and problem solving skills through Research-Based Teaching approaches will be at the core of this module. |
Autonomy |
The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Report and Presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory Environmental Engineering: Specialisation Biotechnology: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2752: Environmental Research Trends |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Salome Shokri-Kuehni |
Language | EN |
Cycle | WiSe |
Content |
Introduction - course objectives, expectations and format Analyzing the Audience, purpose and occasion Constructing and delivering effective technical presentations How to write an abstract How to write a scientific paper Developing competitive and persuasive research proposals Databases and resources available for water and environmental research Individual proposal on water and environmental research Individual project on water and environmental research Presentation on water and environmental research |
Literature |
|
Course L2750: Microplastics in Environment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | WiSe |
Content |
- Introduction, objectives, expectations, format, importance - Sources of microplastics in environment - Microplastics sampling; Characterization of microplastics - Distribution of microplastics in terrestrial environments - Fate of microplastics in terrestrial environments - Project discussion - Effects of microplastics on terrestrial environments - Health risks of microplastics in environments - Project presentations by all students |
Literature |
- Microplastics in Terrestrial Environments (2021), Edited by Defu He and Yongming Luo - Particulate Plastics in Terrestrial and Aquatic Environments (2020), Edited by Nanthi S. Bolan et al. - Microplastic Pollutants (2017), by Christopher B. Crawford and Brian Quinn |
Course L2751: Scientific Communication and Methods |
Typ | Lecture |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | WiSe |
Content |
Introduction - course objectives, expectations and format Analyzing the Audience, purpose and occasion Constructing and delivering effective technical presentations How to write an abstract How to create a scientific poster How to write a scientific paper Developing competitive and persuasive research proposals Individual project (report and presentation) related to soil, water and environmental research |
Literature |
|
Module M0981: Operation of Public Transportation Systems |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Carsten Gertz |
Admission Requirements | None |
Recommended Previous Knowledge |
some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineering“ |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to:
|
Skills |
Students are able to:
|
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | written assignment as groupwork with presentation during the semester |
Assignment for the Following Curricula |
Logistics, Infrastructure and Mobility: Core Qualification: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L1179: Operation of Public Transportation Systems |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Carsten Gertz |
Language | DE |
Cycle | WiSe |
Content |
The course primarily deals with the planning and operational challenges of public transport systems. A bus-system is the example for studying these problems in depth. The following topics and systemic elements are covered:
|
Literature |
Verband Deutscher Verkehrsunternehmen / VDV-Förderkreis (Hrsg.) (2010) Nachhaltiger Nahverkehr. Köln. (2 Bände) Wuppertal Institut (2009) Handbuch zur Planung flexibler Bedienungsformen im ÖPNV : ein Beitrag zur Sicherung der Daseinsvorsorge in nachfrageschwachen Räumen. Bundesministerium für Verkehr, Bau und Stadtentwicklung / Bundesinstitut für Bau-, Stadt- und Raumforschung. Bonn. Forschungsgesellschaft für Straßen- und Verkehrswesen (2009) HVÖ - Hinweise für den Entwurf von Verknüpfungsanlagen des öffentlichen Personennahverkehrs. FGSV Verlag. Köln. Kirchhoff, Peter (2002) Städtische Verkehrsplanung – Konzepte, Verfahren, Maßnahmen. Vieweg+Teubner Verlag. Wiesbaden. Kirchhoff, Peter & Tsakarestos, Antonius (2007) Planung des ÖPNV in ländlichen Räumen, Ziele – Entwurf- Realisierung. Vieweg+Teubner Verlag. Wiesbaden Forschungsgesellschaft für Straßen- und Verkehrswesen (2008) Richtlinien für integrierte Netzgestaltung: RIN. FGSV-Verlag. Köln. |
Module M1779: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Peter Fröhle |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Preparation of a written report on a complex task with a presentation and subsequent discussion. The work on the complex task happens in the course of the lecture. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2926: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Peter Fröhle |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1505: Adaptation to Climate Change in Hydraulic Engineering (AKWAS) |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Peter Fröhle |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Preparation of a written report and a presentation of a complex task. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2291: Adaptation to climate change in hydraulic engineering |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Peter Fröhle |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Specialization Environment
Module M0830: Environmental Protection and Management |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to describe the basics of regulations, economic instruments, voluntary initiatives, fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements. They can analyse and discuss industrial processes, substance cycles and approaches from end-of-pipe technology to eco-efficiency and eco-effectiveness, showing their sound knowledge of complex industry related problems. They are able to judge environmental issues and to widely consider, apply or carry out innovative technical solutions, remediation measures and further interventions as well as conceptual problem solving approaches in the full range of problems in different industrial sectors. |
Skills |
Students are able to assess current problems and situations in the field of environmental protection. They can consider the best available techniques and to plan and suggest concrete actions in a company- or branch-specific context. By this means they can solve problems on a technical, administrative and legislative level. |
Personal Competence | |
Social Competence |
The students can work together in international groups. |
Autonomy |
Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory Environmental Engineering: Core Qualification: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L0502: Integrated Pollution Control |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content |
The lecture focusses on:
|
Literature |
Förstner, Ulrich (1998): Integrated Pollution Control, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-80313-0 Shen, Thomas T. (1999): Industrial Pollution Prevention, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-65208-3 |
Course L0387: Health, Safety and Environmental Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Hans-Joachim Nau |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315) Exercises can be downloaded from StudIP |
Course L0388: Health, Safety and Environmental Management |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Hans-Joachim Nau |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0902: Wastewater Treatment and Air Pollution Abatement |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Swantje Pietsch-Braune |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of biology and chemistry Basic knowledge of solids process engineering and separation technology |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of the module students are able to
|
Skills |
Students are able to
|
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L0517: Biological Wastewater Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Behrendt |
Language | DE/EN |
Cycle | WiSe |
Content |
Charaterisation of Wastewater |
Literature |
Gujer, Willi |
Course L0203: Air Pollution Abatement |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Swantje Pietsch-Braune, Christian Eichler |
Language | EN |
Cycle | WiSe |
Content |
In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators. |
Literature |
Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002 |
Module M1403: Construction and Simulation of Sewerage Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students can describe urban wastewater systems by means of software-based modeling. In case studies they can perform system and weak point analyzes. In addition, they can analyze the hydraulic effects quantitatively. Furthermore, they have the knowledge to comprehend flow events in gravity-sewers based on the St. Venant equations. Students have knowledge of static and structural requirements of the sewer system. Cases of damage are investigated and the knowledge regarding different renovation technologies for sewer systems is acquired. |
||||||||
Skills |
The students can simulate different run-off events in sewer systems and are able to dimension the sewer systems accordingly. Moreover, they can determine suitable construction materials and static requirements for different cases of application. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to apply the acquired skills in a team and can impart this knowledge. |
||||||||
Autonomy |
Students can solve problems in the field of wastewater systems independently, concerning in particular dimensioning and simulation of sewer systems. Furthermore, they are able to present and justify their solutions. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written elaboration | ||||||||
Examination duration and scale | nach Absprache | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory |
Course L1998: Construction and renovation of urban sewer systems |
Typ | Seminar | ||||||||||||||||||||||||||
Hrs/wk | 3 | ||||||||||||||||||||||||||
CP | 3 | ||||||||||||||||||||||||||
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 | ||||||||||||||||||||||||||
Lecturer | Prof. Ingo Weidlich | ||||||||||||||||||||||||||
Language | EN | ||||||||||||||||||||||||||
Cycle | WiSe | ||||||||||||||||||||||||||
Content |
The lecture focusses on construction and renovation of urban sewer pipelines. Construction:
Pipe Statics:
Renovation:
|
||||||||||||||||||||||||||
Literature |
|
Course L2006: Simulation of sewerage systems |
Typ | Seminar |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content |
Modeling of sewer systems:
|
Literature |
Module M0581: Water Protection |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can describe the basic principles of the regulatory framework related to the international and European water sector. They can explain limnological processes, substance cycles and water morphology in detail. They are able to assess complex problems related to water protection, such as ecosystem service and wastewater treatment with a special focus on innovative solutions, remediation measures as well as conceptual approaches. |
Skills |
Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems. |
Personal Competence | |
Social Competence |
The students can work together in international groups. |
Autonomy |
Students are able to organize their work flow to prepare presentations and discussions. They can acquire appropriate knowledge by making enquiries independently. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Presentation |
Examination duration and scale | Term paper plus presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory |
Course L0226: Water Protection and Wastewater Management |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content |
The lecture focusses on:
|
Literature |
The literature listed below is available in the library of the TUHH.
|
Course L2008: Water Protection and Wastewater Management |
Typ | Project Seminar |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Module M0511: Electrical Energy from Solar Radiation and Wind Power |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Dr. Isabel Höfer |
Admission Requirements | None |
Recommended Previous Knowledge |
Module: Technical Thermodynamics I, Module: Technical Thermodynamics II, Module: Fundamentals of Fluid Mechanics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
By ending this module students can explain in detail knowledge of wind turbines with a particular focus of wind energy use in offshore conditions and can critical comment these aspects in consideration of current developments. Furthermore, they are able to describe fundamentally the use of water power to generate electricity. The students reproduce and explain the basic procedure in the implementation of renewable energy projects in countries outside Europe. Through active discussions of various topics within the seminar of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice. |
Skills |
Students are able to apply the acquired theoretical foundations on exemplary water or wind power systems and evaluate and assess technically the resulting relationships in the context of dimensioning and operation of these energy systems. They can in compare critically the special procedure for the implementation of renewable energy projects in countries outside Europe with the in principle applied approach in Europe and can apply this procedure on exemplary theoretical projects. |
Personal Competence | |
Social Competence |
Students can discuss scientific tasks subjet-specificly and multidisciplinary within a seminar. |
Autonomy |
Students can independently exploit sources in the context of the emphasis of the lecture material to clear the contents of the lecture and to acquire the particular knowledge about the subject area. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2.5 hours written exam + written elaboration (incl. presentation) in sustainability management |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0007: Sustainability Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dr. Anne Rödl |
Language | DE |
Cycle | SoSe |
Content |
The lecture "Sustainability Management" gives an insight into the different aspects and dimensions of sustainability. First, essential terms and definitions, significant developments of the last years, and legal framework conditions are explained. The various aspects of sustainability are then presented and discussed in detail. The lecture mainly focuses on concepts for the implementation of the topic sustainability in companies:
Furthermore, the lecture is intended to provide insights into the concrete implementation of sustainability aspects into business practice. External lecturers from companies will be invited to report on how sustainability is integrated into their daily processes. In the course of an independently carried out group work, the students will analyze and discuss the implementation of sustainability aspects based on short case studies. By studying and comparing best practice examples, the students will learn about corporate decisions' effects and implications. It should become clear which risks or opportunities are associated if sustainability aspects are taken into account in management decisions. |
Literature |
Die folgenden Bücher bieten einen Überblick: Engelfried, J. (2011) Nachhaltiges Umweltmanagement. München: Oldenbourg Verlag. 2. Auflage Corsten H., Roth S. (Hrsg.) (2011) Nachhaltigkeit - Unternehmerisches Handeln in globaler Verantwortung. Wiesbaden: Gabler Verlag. |
Course L0013: Hydro Power Use |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Stefan Achleitner |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0011: Wind Turbine Plants |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Rudolf Zellermann |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Course L0012: Wind Energy Use - Focus Offshore |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Martin Skiba |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0827: Modeling in Water Management |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Dr. Klaus Johannsen |
Admission Requirements | None |
Recommended Previous Knowledge |
Groundwater
Pipe Systems
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to describe the modelling of groundwater flow and transport as well as urban water infrastructures. They can carry out systems analyses and can detect technical and conceptual weak points within the systems in case studies. Besides they are able to analyse interdependencies of hydraulic and toxic phenomena in soil and water. |
Skills |
The students are able to construct and apply scientific groundwater models indipendently. They can work on different scenarios and can compare or assess different solutions for existing problems by application of selected software products. The students are able to use different software solutions (e.g. EPANET, EPA-SWMM). |
Personal Competence | |
Social Competence |
Wird nicht vermittelt. |
Autonomy |
Wird nicht vermittelt. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 20 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0543: Groundwater Modeling using Modflow |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Sonja Götz |
Language | DE/EN |
Cycle | SoSe |
Content | Introduction and application of the groundwater model MODFLOW (PMWIN); theoretical backround of the modell, students do work with the model PMWIN for practical case studies. |
Literature |
MODFLOW-Handbuch Chiang, Wen Hsien: PMWIN |
Course L0544: Groundwater Modeling using Modflow |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Sonja Götz |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0875: Modeling of Water Supply and Sewer Network |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Klaus Johannsen, Weitere Mitarbeiter |
Language | DE |
Cycle | SoSe |
Content | |
Literature | Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014. |
Module M1717: Advanced Vadose Zone Hydrology |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2734: Modeling Processes in Vadose Zone |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Hannes Nevermann, Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2735: Modeling Processes in Vadose Zone |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Hannes Nevermann |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2732: Vadose Zone Hydrology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2733: Vadose Zone Hydrology |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1718: Multiphase Flow in Porous Media |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2738: Advanced Modeling Techniques for Multiphase Flow in Porous Media |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2736: Fundamentals of Multiphase Flow in Porous Media |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2737: Fundamentals of Multiphase Flow in Porous Media |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Hannes Nevermann |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1721: Water and Environment: Theory and Application |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Report (about 5-10 pages) and Presentation (about 15 min) |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2754: Water and Environment: Application and Field Work |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Anna Luisa Hemshorn de Sánchez, Dr. Salome Shokri-Kuehni |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2753: Water and Environment: Theory |
Typ | Lecture |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Module M0513: System Aspects of Renewable Energies |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
Module: Technical Thermodynamics I Module: Technical Thermodynamics II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to describe the processes in energy trading and the design of energy markets and can critically evaluate them in relation to current subject specific problems. Furthermore, they are able to explain the basics of thermodynamics of electrochemical energy conversion in fuel cells and can establish and explain the relationship to different types of fuel cells and their respective structure. Students can compare this technology with other energy storage options. In addition, students can give an overview of the procedure and the energetic involvement of deep geothermal energy. |
Skills |
Students can apply the learned knowledge of storage systems for excessive energy to explain for various energy systems different approaches to ensure a secure energy supply. In particular, they can plan and calculate domestic, commercial and industrial heating equipment using energy storage systems in an energy-efficient way and can assess them in relation to complex power systems. In this context, students can assess the potential and limits of geothermal power plants and explain their operating mode. Furthermore, the students are able to explain the procedures and strategies for marketing of energy and apply it in the context of other modules on renewable energy projects. In this context they can unassistedly carry out analysis and evaluations of energie markets and energy trades. |
Personal Competence | |
Social Competence |
Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module. |
Autonomy |
Students can independently exploit sources , acquire the particular knowledge about the subject area and transform it to new questions. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 3 hours written exam |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory |
Course L0021: Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Fröba |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0019: Energy Trading |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Michael Sagorje, Dr. Sven Orlowski |
Language | DE |
Cycle | SoSe |
Content |
Within the exercise the various tasks are actively discussed and applied to various cases of application. |
Literature |
Course L0020: Energy Trading |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Michael Sagorje, Dr. Sven Orlowski |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0025: Deep Geothermal Energy |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Ben Norden |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0828: Urban Environmental Management |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Dorothea Rechtenbach |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can
describe urban development corridors as well as current and future urban environmental
problems. They are able to explain the causes of environmental problems (like
noise).
Students can specify applications for various technical innovations and explain why these contribute to the improvement of urban life. They can, for example, derive and discuss measures for effective noise abatement. |
Skills | Students are able to develop specific solutions for correcting existing or future environment-related problems of urban development. They can define a range of conceptual and technical solutions for environmental problems for different development paths. To solve specific urban environmental problems they can select technical innovations and integrate them into the urban context. |
Personal Competence | |
Social Competence |
The students can work together in international groups. |
Autonomy |
Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Written Report plus oral Presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L1109: Noise Protection |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Martin Jäschke |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
1) Müller & Möser (2013): Handbook of Engineering Acoustics (also
available in German)
|
Course L0874: Urban Infrastructures |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Dr. Dorothea Rechtenbach |
Language | EN |
Cycle | SoSe |
Content |
Problem Based Learning Main topics are:
|
Literature | Depends on chosen topic. |
Module M1702: Process Imaging |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Alexander Penn |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2723: Process Imaging |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Penn |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2724: Process Imaging |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Penn, Dr. Stefan Benders |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Module M0749: Waste Treatment and Solid Matter Process Technology |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Kerstin Kuchta |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics of
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can name, describe current issue and problems in the field of thermal waste treatment and particle process engineering and contemplate them in the context of their field. The industrial application of unit operations as part of process engineering is explained by actual examples of waste incineration technologies and solid biomass processes. Compostion, particle sizes, transportation and dosing, drying and agglomeration of renewable resources and wastes are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, electricity , heat and mineral recyclables. |
Skills |
The students are able to select suitable processes for the treatment of wastes or raw material with respect to their characteristics and the process aims. They can evaluate the efforts and costs for processes and select economically feasible treatment concepts. |
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0052: Solid Matter Process Technology for Biomass |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Werner Sitzmann |
Language | DE |
Cycle | SoSe |
Content | The industrial application of unit operations as part of process engineering is explained by actual examples of solid biomass processes. Size reduction, transportation and dosing, drying and agglomeration of renewable resources are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, when making Btl - and WPC - products. Aspects of explosion protection and plant design complete the lecture. |
Literature |
Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe, Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175 |
Course L0320: Thermal Waste Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013. |
Course L1177: Thermal Waste Treatment |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0857: Geochemical Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Dr. Marco Ritzkowski |
Admission Requirements | None |
Recommended Previous Knowledge |
Module: General and Inorganic Chemistry, Module:Organic Chemistry, Biology (Basic Knowledge) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
With the completion of this module students acquire profound knowledge of biogeochemical processes, the fate of pollutants in soil and groundwater, and techniques to deposit contaminated waste material. They are able to describe in principle the behaviour of chemicals in the environment. Students can explain and report the approach to remediate contaminated sites. |
Skills |
With the completion of this module students can apply the acquired theoretical knowledge to model cases of site pollution and critically assess the situation technically and conceptually. They are able to draw comparisons on different remediation strategies and techniques. Model projects can be devised and treated. |
Personal Competence | |
Social Competence |
Students can discuss technical and scientific tasks within a seminar subject specific and interdisciplinary . |
Autonomy |
Students can independently exploit sources , acquire the particular knowledge of the subject and apply it to new problems. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 hours |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0906: Contaminated Sites and Landfilling |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Marco Ritzkowski, Dr. Joachim Gerth |
Language | EN |
Cycle | SoSe |
Content |
The part Contaminated Sites gives an introduction into different scales of pollution and identifies key pollutants. Geochemical attenuation mechanisms and the role of organisms are highlighted affecting the fate of pollutants in leachate and groundwater. Techniques for site characterization and remediation are discussed including economical aspects. The part Landfilling is introduced by discussing fundamental aspects and the worldwide situation of waste management. The lecture highlights transformation processes in landfill bodies, emissions of gases and leachate, and the long-term behaviour of landfill sites with measures of aftercare. |
Literature |
1) Waste Management. Bernd Bilitewski; Georg Härdtle; Klaus Marek (Eds.), ISBN: 9783540592105 , Springer Verlag 3) Natural attenuation of fuels and chlorinated solvents in the subsurface. Todd H. Wiedemeier(Ed.), ISBN: 0471197491 Lesesaal 2: US - Umweltschutz, Signatur USH-844 |
Course L0907: Contaminated Sites and Landfilling |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dr. Marco Ritzkowski, Dr. Joachim Gerth |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0904: Geochemical Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Gerth |
Language | EN |
Cycle | SoSe |
Content |
As an introduction cases are presented in which geochemical engineering was used to solve environmental problems. Environmentally important minerals are discussed and methods for their detection. It is demonstrated how solution equilibria can be modified to eliminate elevated concentrations of unwanted species in solution and how carbon dioxide concentration affects pH and the dissolution of carbonate minerals. Modifications of redox conditions, pH, and electrolyte concentration are shown to be effective tools for controlling the mobility and fate of hazardous species in the environment. |
Literature |
Geochemistry, groundwater and pollution. C. A. J. Appelo; D. Postma Leiden [u.a.] Balkema 2005 Lehrbuchsammlung der TUB, Signatur GWC-515 |
Module M0870: Management of Surface Water |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Peter Fröhle |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals of Hydromechanics, Hydraulics, Hydrology and Hydraulic Engineering; Hydraulic Engineering I and Hydraulic Engineering II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to define in detail the basic processes that are related to the modelling of flows in hydraulic engineering. Besides, they can describe the basic aspects of numerical modelling and actual numerical models for the simulation of flows and waves. They can also depict the concepts of nature oriented hydraulic engineering. |
Skills |
Students are able to apply hydrodynamic-numerical models to practical hydraulic engineering tasks. Furthermore, the students are able to set up flood-risk management concepts and are able to apply basic concepts of renaturation to practical problems. |
Personal Competence | |
Social Competence | The students are able to deploy their gained knowledge in applied problems of the practical nature-based hydraulic engineering. Additionaly, they will be able to work in team with engineers of other disciplines. |
Autonomy |
The students will be able to independently extend their knowledge and apply it to new problems. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | The duration of the examination is 150 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0810: Modelling of Flow in Rivers and Estuaries |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Edgar Nehlsen, Prof. Peter Fröhle |
Language | EN |
Cycle | SoSe |
Content |
Introduction to numerical flow modelling
|
Literature |
Vorlesungsskript Literaturempfehlungen Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (1997): Hydraulische Berechnung von naturnahen Fließgewässern. Düsseldorf: BWK (BWK-Merkblatt). Chow, Ven-te (1959): Open-channel Hydraulics. New York usw.: McGraw-Hill (McGraw-Hill Civil Engineering Series). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019a): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 1: Geodaten in der Fließgewässermodellierung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-1). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019b): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 2: Bedarfsgerechte Datenerfassung und -aufbereitung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-2). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019c): Merkblatt DWA-M 543-3 Geodaten in der Fließgewässermodellierung - Teil 3: Aspekte der Strömungsmodellierung und Fallbeispiele. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-3). Hervouet, Jean-Michel (2007): Hydrodynamics of free surface flows. Modelling with the finite element method. Chichester: Wiley. Online verfügbar unter http://www.loc.gov/catdir/enhancements/fy0741/2007296953-b.html. IAHR (2015): Professional Specifications for Physical and Numerical Studies in Environmental Hydraulics. In: Hydrolink (3/2015), S. 90-92. Olsen, Nils Reidar B. (2012): Numerical Modelling and Hydraulics. 3. Aufl. Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology. Szymkiewicz, Romuald (2010): Numerical modeling in open channel hydraulics. Dordrecht: Springer (Water science and technology library, 83). van Waveren, Harold (1999-): Good modelling practice handbook. [Utrecht], Lelystad, Den Haag: STOWA; Rijkswaterstaat-RIZA; SDU, afd. SEO/RIZA [etc. distr.] (Nota, nr. 99.036). Zielke, Werner (Hg.) (1999): Numerische Modelle von Flüssen, Seen und Küstengewässern. Deutscher Verband für Wasserwirtschaft und Kulturbau. Bonn: Wirtschafts- und Verl.-Ges. Gas und Wasser (Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau, 127). |
Course L0961: Nature-Oriented Hydraulic Engineering / Integrated Flood Protection |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Natasa Manojlovic, Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
Vorlesungsumdruck |
Module M0871: Hydrological Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Peter Fröhle |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals of Hydromechanics and Hydraulic Engineering: Hydraulic Engineering I and Hydraulic Engineering II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to define the basic concepts of hydrology and water management. They are able to describe and quantify the relevant processes of the hydrological water cycle. Besides, the students know the main aspects of rainfall-run-off-models and are able to theoretically derive established reservoir / storage models and a unit-hydrograph. |
Skills |
The students are able to use the basic hydrological concepts and approaches and are able to theoretically derive established reservoir / storage models or a unit-hydrograph as the basis for rainfall-run-off-models. The student are able to explain the basic concepts of measurements of hydrological and hydrodynamic values in nature and are able to perform, analyze and statistically assess these measurements. Furthermore, they are able to apply a hydrological model to basic hydrological problems. |
Personal Competence | |
Social Competence | The students are able to deploy their gained knowledge in applied problems of the hydrology and water management. Additionaly, they will be able to work in team with engineers of other disciplines. |
Autonomy |
The students will be able to independently extend their knowledge and apply it to new problems |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | The duration of the examination is 90 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0289: Applied Surface Hydrology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content |
Basics of hydrology:
|
Literature |
http://de.wikipedia.org/wiki/Kalypso_(Software) http://kalypso.bjoernsen.de/ http://sourceforge.net/projects/kalypso/ |
Course L1412: Applied Surface Hydrology |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0295: Interaction Water - Environment in Fluvial Areas |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content |
A problem based learning course. The problem will be solved by the students more or less self-contained. The topics will be introduced and elaborated over the semester. |
Literature | - |
Module M0874: Wastewater Systems |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of wastewater management and the key processes involved in wastewater treatment. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to outline key areas of the full range of treatment systems in waste water management, as well as their mutual dependence for sustainable water protection. They can describe relevant economic, environmental and social factors. |
Skills |
Students are able to pre-design and explain the available wastewater treatment processes and the scope of their application in municipal and for some industrial treatment plants. |
Personal Competence | |
Social Competence |
Social skills are not targeted in this module. |
Autonomy |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L0934: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content |
•Understanding the global situation with water and wastewater •Regional planning and decentralised systems •Overview on innovative approaches •In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse •Mathematical Modelling of Nitrogen Removal •Exercises with calculations and design |
Literature |
Henze, Mogens: George Tchobanoglous, Franklin L. Burton, H. David Stensel: |
Course L0943: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0357: Advanced Wastewater Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Behrendt |
Language | EN |
Cycle | SoSe |
Content |
Survey on advanced wastewater treatment reuse of reclaimed municipal wastewater Precipitation Flocculation Depth filtration Membrane Processes Activated carbon adsorption Ozonation "Advanced Oxidation Processes" Disinfection |
Literature |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Course L0358: Advanced Wastewater Treatment |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Joachim Behrendt |
Language | EN |
Cycle | SoSe |
Content |
Aggregate organic compounds (sum parameters) Industrial wastewater Processes for industrial wastewater treatment Precipitation Flocculation Activated carbon adsorption Recalcitrant organic compounds |
Literature |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Module M0875: Nexus Engineering - Water, Soil, Food and Energy |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of the global situation with rising poverty, soil degradation, migration to cities, lack of water resources and sanitation |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can describe the facets of the global water situation. Students can judge the enormous potential of the implementation of synergistic systems in Water, Soil, Food and Energy supply. |
Skills |
Students are able to design ecological settlements for different geographic and socio-economic conditions for the main climates around the world. |
Personal Competence | |
Social Competence |
The students are able to develop a specific topic in a team and to work out milestones according to a given plan. |
Autonomy |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information can be found at the beginning of the smester in the StudIP course module handbook. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L1229: Ecological Town Design - Water, Energy, Soil and Food Nexus |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0939: Water & Wastewater Systems in a Global Context |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0922: City Planning |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Carsten Gertz |
Admission Requirements | None |
Recommended Previous Knowledge |
for "Principles of Urban Planning": none for "Designing Urban Streetscapes": some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineering“ |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to:
|
Skills |
Students are able to:
|
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
Students are able to:
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | written assignment, designwork during the semester |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L1066: City Planning |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Carsten Gertz |
Language | DE |
Cycle | SoSe |
Content |
„Principles of Urban Planning“ deals with the determinants of urban development and their interactions. Topics include:
The project work deals with a real life scenario and includes drawing up a development plan, an urban design concept, a building masterplan and a street redesign. |
Literature |
Albers, Gerd; Wekel, Julian (2009) Stadtplanung: Eine illustrierte Einführung. Primus Verlag. Darmstadt. Frick, Dieter (2008) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. Wasmuth-Verlag. Tübingen Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York. |
Module M0663: Marine Geotechnics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Jürgen Grabe |
Admission Requirements | None |
Recommended Previous Knowledge |
complete modules: Geotechnics I-III, Mathematics I-III courses: Soil laboratory course |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L0548: Marine Geotechnics |
Typ | Lecture |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Jürgen Grabe |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0549: Marine Geotechnics |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Jürgen Grabe |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1146: Steel Structures in Foundation and Hydraulic Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Frank Feindt |
Language | DE |
Cycle | SoSe |
Content | Design of a sheet pile wall, design of a combined sheet pile wall, piles, walings, connections, fatigue |
Literature | EAU 2012, EA-Pfähle, EAB |
Module M1724: Smart Monitoring |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Kay Smarsly |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge or interest in object-oriented modeling, programming, and sensor technologies are helpful. Interest in modern research and teaching areas, such as Internet of Things, Industry 4.0 and cyber-physical systems, as well as the will to deepen skills of scientific working, are required. Basic knowledge in scientific writing and good English skills. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students will become familiar with the principles and practices of smart monitoring. The students will be able to design decentralized smart systems to be applied for continuous (remote) monitoring of systems in the built and in the natural environment. In addition, the students will learn to design and to implement intelligent sensor systems using state-of-the-art data analysis techniques, modern software design concepts, and embedded computing methodologies. Besides lectures, project work is also part of this module. In small groups, the students will design smart monitoring systems that integrate a number of “intelligent” sensors to be implemented by the students. Specific focus will be put on the application of machine learning techniques. The smart monitoring systems will be mounted on real-world (built or natural) systems, such as bridges or slopes, or on scaled lab structures for validation purposes. The outcome of every group will be documented in a paper. All students of this module will “automatically” participate with their smart monitoring system in the annual "Smart Monitoring" competition. The written papers and oral examinations form the final grades. The module will be taught in English. Limited enrollment. |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | 10 pages of work with 15-minute oral presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory Environmental Engineering: Specialisation Biotechnology: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory Environmental Engineering: Specialisation Biotechnology: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2762: Smart Monitoring |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Kay Smarsly |
Language | EN |
Cycle |
WiSe/ |
Content |
In this course, principles of smart monitoring will be taught, focusing on modern concepts of data acquisition, data storage, and data analysis. Also, fundamentals of intelligent sensors and embedded computing will be illuminated. Autonomous software and decentralized data processing are further crucial parts of the course, including concepts of the Internet of Things, Industry 4.0 and cyber-physical systems. Furthermore, measuring principles, data acquisition systems, data management and data analysis algorithms will be discussed. Besides the theoretical background, numerous practical examples will be shown to demonstrate how smart monitoring may advantageously be used for assessing the condition of systems in the built or natural environment. |
Literature |
Course L2763: Smart Monitoring |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Kay Smarsly |
Language | EN |
Cycle |
WiSe/ |
Content |
The contents of the exercises are based on the lecture contents. In addition to the exercises, project work will be conducted, which will consume the majority of the workload. As part of the project work, students will design smart monitoring systems that will be tested in the laboratory or in the field. As mentioned in the module description, the students will participate in the “Smart Monitoring” competition, hosted annually by the Institute of Digital and Autonomous Construction. Students are encouraged to contribute their own ideas. The tools required to implement the smart monitoring systems will be taught in the group exercises as well as through external sources, such as video tutorials and literature. |
Literature |
Module M1123: Selected Topics in Environmental Engineering |
||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||
|
Module Responsible | Prof. Mathias Ernst |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Environmental Engineering: Core Qualification: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L1444: Environmental Aquatic Chemistry |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dr. Klaus Johannsen |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Worch, E.: Hydrochemistry. Basic Concepts and Exercises. De Gruyter, Berlin, 2015 |
Course L2387: Excellence in International Project Delivery |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 2 h |
Lecturer | Dr. Jens Huckfeldt |
Language | EN |
Cycle | SoSe |
Content | Simply and easy to avoid mistake in project delivery can deliver projects within budget and as per schedule.You have to attend if you see yourself in project execution and potentially even abroad. |
Literature |
Course L0520: Sludge Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dr. Joachim Behrendt |
Language | EN |
Cycle | SoSe |
Content |
Sedimentation characteristic and thickening, |
Literature |
Tchobanoglous, George (Metcalf & Eddy, Inc., ;) |
Course L1767: Thermal Biomass Utilization |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE |
Cycle | WiSe |
Content |
Goal of this course is it to discuss the physical, chemical, and biological as well as the technical, economic, and environmental basics of all options to provide energy from biomass from a German and international point of view. Additionally different system approaches to use biomass for energy, aspects to integrate bioenergy within the energy system, technical and economic development potentials, and the current and expected future use within the energy system are presented. The course is structured as follows:
|
Literature |
Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage |
Course L2386: Thermal Biomass Utilization |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | Protokolle |
Lecturer | Prof. Martin Kaltschmitt, Dr. Marvin Scherzinger |
Language | DE |
Cycle | WiSe |
Content |
The experiments of the practical lab course illustrate the different
aspects of heat generation from biogenic solid fuels. First,
different biomasses (e.g. wood, straw or agricultural residues) will
be investigated; the focus will be on the calorific value of the
biomass. Furthermore, the used biomass will be pelletized, the
pellet properties analysed and a combustion test carried out on a
pellet combustion system. The gaseous and solid pollutant emissions,
especially the particulate matter emissions, are measured and the
composition of the particulate matter is investigated in a further
experiment. Another focus of the practical course is the
consideration of options for the reduction of particulate matter
emissions from biomass combustion. In the practical course, a method
for particulate matter reduction will be developed and tested. All
experiments will be evaluated and the results presented. |
Literature |
- Kaltschmitt, Martin; Hartmann, Hans; Hofbauer, Hermann: Energie
aus Biomasse: Grundlagen, Techniken und Verfahren. 3. Auflage.
Berlin Heidelberg: Springer Science & Business Media, 2016.
-ISBN 978-3-662-47437-2 |
Module M0620: Special Aspects of Waste Resource Management |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Kerstin Kuchta | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | basics in waste treatment technologies | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students are able to describe waste as a resource as well as advanced technologies for recycling and recovery of resources from waste in detail. This covers collection, transport, treatment and disposal in national and international contexts. |
||||||||
Skills |
Students are able to select suitable processes for the treatment with respect to the national or cultural and developmental context. They can evaluate the ecological impact and the technical effort of different technologies and management systems. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can work together as a team of 2-5 persons, participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of colleagues. Furthermore, they can give and accept professional constructive criticisms. |
||||||||
Autonomy |
Students can independently gain additional knowledge of the subject area and apply it in solving the given course tasks and projects. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Presentation | ||||||||
Examination duration and scale | PowerPoint presentation (10-15 minutes) | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L1055: Advanced Topics in Waste Resource Management |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Rüdiger Siechau |
Language | EN |
Cycle | WiSe |
Content |
Focus of the course "Advanced topics of waste resource management" lies on the organisational structures in waste management - such as planning, financing and logistics. One excursion will be offered to take part in (incineration plant, vehicle fleet and waste collection systems). The course is split into two parts: 2. part: Project base learning: You will get a project to work out in groups of 4 to 6 students; all tools and data you need to work out the project were given before during the conventional lecture. Course documents are published in StudIP and communication during project work takes place via StudIP. The results of the project work are presented at the end of the semester. The final mark for the course consists of the grade for the presentation. |
Literature |
Einführung in die Abfallwirtschaft; Martin Kranert, Klaus Cord-Landwehr (Hrsg.); Vieweg + Teubner Verlag; 2010 PowerPoint slides in Stud IP |
Course L0317: International Waste Management |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | WiSe |
Content |
Waste avoidance and recycling are the focus of this lecture. Additionally, waste logistics ( Collection, transport, export, fees and taxes) as well as international waste shipment solutions are presented. Other specific wastes, e.g. industrial waste, treatment concepts will be presented and developed by students themselves Waste composition and production on international level, wast eulogistic, collection and treatment in emerging and developing countries. Single national projects and studies will be prepared and presented by students |
Literature |
Basel convention |
Module M0801: Water Resources and -Supply |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Mathias Ernst |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of water management and the key processes involved in water treatment. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students will be able to outline key areas of conflict in water management, as well as their mutual dependence for sustainable water supply. They will understand relevant economic, environmental and social factors. Students will be able to explain and outline the organisational structures of water companies. They will be able to explain the available water treatment processes and the scope of their application. |
Skills |
Students will be able to assess complex problems in drinking water production and establish solutions involving water management and technical measures. They will be able to assess the evaluation methods that can be used for this. Students will be able to carry out chemical calculations for selected treatment processes and apply generally accepted technical rules and standards to these processes. |
Personal Competence | |
Social Competence |
Working in a diverse group of specialists, students will be able to develop and document complex solutions for the management and treatment of drinking water. They will be able to take an appropriate professional position, for example representing user interests. They will be able to develop joint solutions in teams of diverse experts and present these solutions to others. |
Autonomy |
Students will be in a position to work on a subject independently and present on this subject. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min (chemistry) + presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0311: Chemistry of Drinking Water Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dr. Klaus Johannsen |
Language | DE |
Cycle | WiSe |
Content |
The topic of this course is water chemistry with respect to drinking water treatment and water distribution Major topics are solubility of gases, carbonic acid system and calcium carbonate, blending, softening, redox processes, materials and legal requirements on drinking water treatment. Focus is put on generally accepted rules of technology (DVGW- and DIN-standards). Special emphasis is put on calculations using realistic analysis data (e.g. calculation of pH or calcium carbonate dissolution potential) in exercises. Students can get a feedback and gain extra points for exam by solving problems for homework. Knowledge of drinking water treatment processes is vital for this lecture. Therefore the most important processes are explained coordinated with the course “ Water resources management“ in the beginning of the semester. |
Literature |
MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003. |
Course L0312: Chemistry of Drinking Water Treatment |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dr. Klaus Johannsen |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0402: Water Resource Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Mathias Ernst |
Language | DE |
Cycle | WiSe |
Content |
The lecture provides comprehensive knowledge on interaction of water ressource management and drinking water supply. Content overview:
- User and Stakeholder conflicts - Wasserressourcenmanagement in urbane Gebieten - Rechtliche Aspekte, Organisationsformen Trinkwasserversorgungsunternehmen. - Ökobilanzierung, Benchmarking in der Wasserversorgung |
Literature |
|
Course L0403: Water Resource Management |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Mathias Ernst |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0802: Membrane Technology |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Mathias Ernst |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of water chemistry. Knowledge of the core processes involved in water, gas and steam treatment |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students will be able to rank the technical applications of industrially important membrane processes. They will be able to explain the different driving forces behind existing membrane separation processes. Students will be able to name materials used in membrane filtration and their advantages and disadvantages. Students will be able to explain the key differences in the use of membranes in water, other liquid media, gases and in liquid/gas mixtures. |
Skills |
Students will be able to prepare mathematical equations for material transport in porous and solution-diffusion membranes and calculate key parameters in the membrane separation process. They will be able to handle technical membrane processes using available boundary data and provide recommendations for the sequence of different treatment processes. Through their own experiments, students will be able to classify the separation efficiency, filtration characteristics and application of different membrane materials. Students will be able to characterise the formation of the fouling layer in different waters and apply technical measures to control this. |
Personal Competence | |
Social Competence |
Students will be able to work in diverse teams on tasks in the field of membrane technology. They will be able to make decisions within their group on laboratory experiments to be undertaken jointly and present these to others. |
Autonomy |
Students will be in a position to solve homework on the topic of membrane technology independently. They will be capable of finding creative solutions to technical questions. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0399: Membrane Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Mathias Ernst |
Language | EN |
Cycle | WiSe |
Content |
The lecture on membrane technology supply provides students with a broad understanding of existing membrane treatment processes, encompassing pressure driven membrane processes, membrane application in electrodialyis, pervaporation as well as membrane distillation. The lectures main focus is the industrial production of drinking water like particle separation or desalination; however gas separation processes as well as specific wastewater oriented applications such as membrane bioreactor systems will be discussed as well. Initially, basics in low pressure and high pressure membrane applications are presented (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). Students learn about essential water quality parameter, transport equations and key parameter for pore membrane as well as solution diffusion membrane systems. The lecture sets a specific focus on fouling and scaling issues and provides knowledge on methods how to tackle with these phenomena in real water treatment application. A further part of the lecture deals with the character and manufacturing of different membrane materials and the characterization of membrane material by simple methods and advanced analysis. The functions, advantages and drawbacks of different membrane housings and modules are explained. Students learn how an industrial membrane application is designed in the succession of treatment steps like pre-treatment, water conditioning, membrane integration and post-treatment of water. Besides theory, the students will be provided with knowledge on membrane demo-site examples and insights in industrial practice. |
Literature |
|
Course L0400: Membrane Technology |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Mathias Ernst |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0401: Membrane Technology |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Mathias Ernst |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0822: Process Modeling in Water Technology |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Klaus Johannsen |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of the most important processes in drinking water and waste water treatment. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to explain selected processes of drinking water and waste water treatment in detail. They are able to explain basics as well as possibilities and limitations of dynamic modeling. |
Skills |
Students are able to use the most important features Modelica offers. They are able to transpose selected processes in drinking water and waste water treatment into a mathematical model in Modelica with respect to equilibrium, kinetics and mass balances. They are able to set up and apply models and assess their possibilities and limitations. |
Personal Competence | |
Social Competence |
Students are able to solve problems and document solutions in a group with members of different technical background. They are able to give appropriate feedback and can work constructively with feedback concerning their work. |
Autonomy |
Students are able to define a problem, gain the required knowledge and set up a model. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0522: Process Modelling of Wastewater Treatment |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Behrendt |
Language | DE/EN |
Cycle | WiSe |
Content |
Mass and energy balances Tracer modelling Activated Sludge Model Wastewater Treatment Plant Modelling (continously and SBR) Sludge Treatment (ADM, aerobic autothermal) Biofilm Modelling |
Literature |
Henze, Mogens (Seminar on Activated Sludge Modelling, ; Kollekolle Seminar on Activated Sludge Modelling, ;) |
Course L0314: Process Modeling in Drinking Water Treatment |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Klaus Johannsen |
Language | DE/EN |
Cycle | WiSe |
Content |
In this course selected drinking water treatment processes (e.g. aeration or activated carbon adsorption) are modeled dynamically using the programming language Modelica, that is increasingly used in industry. In this course OpenModelica is used, an free access frontend of the programming language Modelica. In the beginning of the course the use of OpenModelica is explainded by means of simple examples. Together required elements and structure of the model are developed. The implementation in OpenModelica and the application of the model is done individually or in groups respectively. Students get feedback and can gain extra points for the exam. |
Literature |
OpenModelica: https://openmodelica.org/index.php/download/download-windows OpenModelica - Modelica Tutorial: https://openmodelica.org/index.php/useresresources/userdocumentation OpenModelica - Users Guide: https://openmodelica.org/index.php/useresresources/userdocumentation Peter Fritzson: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,Wiley-IEEE Press, ISBN 0-471-471631. MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. |
Module M0923: Integrated Transportation Planning |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Carsten Gertz |
Admission Requirements | None |
Recommended Previous Knowledge |
some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineerin |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to:
|
Skills |
Students are able to:
|
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
Students are able to:
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | written assignment with presentation during the semester |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L1068: Integrated Transportation Planning |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Carsten Gertz, Dr. Philine Gaffron, Jacqueline Bianca Maaß |
Language | DE |
Cycle | WiSe |
Content |
The course will provide students with an understanding of interdependencies between land-use and transportation. Specific topics include a.o.:
|
Literature |
Kutter, Eckhard (2005) Entwicklung innovativer Verkehrsstrategien für die mobile Gesellschaft. Erich Schmidt Verlag. Berlin. Bracher, Tilman u. a. (Hrsg.) (68. Ergänzung 2013) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen) |
Module M0949: Rural Development and Resources Oriented Sanitation for different Climate Zones |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of the global situation with rising poverty, soil degradation, lack of water resources and sanitation |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can describe resources oriented wastewater systems mainly based on source control in detail. They can comment on techniques designed for reuse of water, nutrients and soil conditioners. Students are able to discuss a wide range of proven approaches in Rural Development from and for many regions of the world. |
Skills |
Students are able to design low-tech/low-cost sanitation, rural water supply, rainwater harvesting systems, measures for the rehabilitation of top soil quality combined with food and water security. Students can consult on the basics of soil building through “Holisitc Planned Grazing” as developed by Allan Savory. |
Personal Competence | |
Social Competence |
The students are able to develop a specific topic in a team and to work out milestones according to a given plan. |
Autonomy |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information will be provided at the beginning of the smester. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0942: Rural Development and Resources Oriented Sanitation for different Climate Zones |
Typ | Seminar |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0941: Rural Development and Resources Oriented Sanitation for different Climate Zones |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Module M0950: Study Work Environment |
||||
Courses | ||||
|
Module Responsible | Dozenten des SD B |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to demonstrate their detailed knowledge in the field of Water and Environmental Engineering. They can exemplify the state of technology and application and discuss critically in the context of actual problems and general conditions of science and society. The students can develop solving strategies and approaches for fundamental and practical problems in the field of Water and Environmental Engineering. They may apply theory based procedures and integrate safety-related, ecological, ethical, and economic view points of science and society. Scientific work techniques that are used can be described and critically reviewed. |
Skills |
The students are able to independently select methods or planning approaches for the project work and to justify their choice. They can explain how these methods or approaches relate to solutions in the field of work and how the context of application has to be adjusted. General findings and further developments may essentially be outlined. |
Personal Competence | |
Social Competence |
The students are able to condense the relevance and the structure of the project work, the work steps and the sub-problems for the presentation and discussion in front of a bigger group. They can lead the discussion and give a feedback on the project to their colleagues. |
Autonomy |
The students are capable of independently planning and documenting the work steps and procedures while considering the given deadlines. This includes the ability to accurately procure the newest scientific information. Furthermore, they can obtain feedback from experts with regard to the progress of the work, and to accomplish results on the state of the art in science and technology. |
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Credit points | 6 |
Course achievement | None |
Examination | Study work |
Examination duration and scale | |
Assignment for the Following Curricula |
Water and Environmental Engineering: Specialisation Environment: Compulsory |
Module M1716: Subsurface Processes |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic Mathematics, Hydrology |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Upon completion of this module, the students will understand the mechanisms controlling solute transport in soil and natural porous media and will be able to work with the equations that govern the fate and transport of solutes in porous media. Analytical, numerical and experimental tools and techniques will be used in this module. |
Skills | In addition to the physical insights, the students will be exposed to analytical, experimental and numerical tools and techniques in this module. This provides them with an excellent opportunity to improve their skills on multiple fronts which will be useful in their future career. |
Personal Competence | |
Social Competence | Teamwork & problem solving |
Autonomy | The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | Report and Presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L2730: Modeling of Subsurface Processes |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Sonja Götz |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Course L2731: Modeling of Subsurface Processes |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Sonja Götz |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2728: Modern Techniques for Subsurface Solute Transport |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Course L2729: Modern Techniques for Subsurface Solute Transport |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Hannes Nevermann |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0619: Waste Treatment Technologies |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Kerstin Kuchta | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | chemical and biological basics | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The module aims possess knowledge concerning the planning of biological waste treatment plants. Students are able to explain the design and layout of anaerobic and aerobic waste treatment plants in detail, describe different techniques for waste gas treatment plants for biological waste treatment plants and explain different methods for waste analytics. |
||||||||
Skills |
The students are able to discuss the compilation of design and layout of plants. They can critically evaluate techniques and quality control measurements. The students can recherché and evaluate literature and date connected to the tasks given in der module and plan additional tests. They are capable of reflecting and evaluating findings in the group. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development in front of colleagues. Furthermore, they can give and accept professional constructive criticism. |
||||||||
Autonomy |
Students can independently tap knowledge from literature, business or test reports and transform it to the course projects. They are capable, in consultation with supervisors as well as in the interim presentation, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Presentation | ||||||||
Examination duration and scale | Elaboration and Presentation (15-25 minutes in groups) | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory |
Course L0328: Waste and Environmental Chemistry |
Typ | Practical Course |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Kerstin Kuchta |
Language | DE/EN |
Cycle | WiSe |
Content |
The participants are divided into groups. Each group prepares a transcript on the experiment performed, which is then used as basis for discussing the results and to evaluate the performance of the group and the individual student. In some experiments the test procedure and the results are presented in seminar form, accompanied by discussion and results evaluation. Experiments ar e.g. Screening and particle size determination Fos/Tac AAS Chalorific value |
Literature | Scripte |
Course L0318: Biological Waste Treatment |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
Module M1720: Emerging Trends in Environmental Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge on water, soil and environmental research. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students will be exposed to up-to-date research topics focused on soil, water and climate related challenges with a particular focus on the effects of microplastics in environment. Data analysis, data measurement, curation and presentation will be other skills that the students will develop in this module. |
Skills |
Students' research skills will be improved in this module. How to prepare and deliver an effective presentation, how to write an abstract, research paper and proposal will be discussed in this module. Moreover, through Research-Based Learning approaches, the students will be exposed to current research trends in environmental engineering. |
Personal Competence | |
Social Competence |
Developing teamwork and problem solving skills through Research-Based Teaching approaches will be at the core of this module. |
Autonomy |
The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Report and Presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory Environmental Engineering: Specialisation Biotechnology: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2752: Environmental Research Trends |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Salome Shokri-Kuehni |
Language | EN |
Cycle | WiSe |
Content |
Introduction - course objectives, expectations and format Analyzing the Audience, purpose and occasion Constructing and delivering effective technical presentations How to write an abstract How to write a scientific paper Developing competitive and persuasive research proposals Databases and resources available for water and environmental research Individual proposal on water and environmental research Individual project on water and environmental research Presentation on water and environmental research |
Literature |
|
Course L2750: Microplastics in Environment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | WiSe |
Content |
- Introduction, objectives, expectations, format, importance - Sources of microplastics in environment - Microplastics sampling; Characterization of microplastics - Distribution of microplastics in terrestrial environments - Fate of microplastics in terrestrial environments - Project discussion - Effects of microplastics on terrestrial environments - Health risks of microplastics in environments - Project presentations by all students |
Literature |
- Microplastics in Terrestrial Environments (2021), Edited by Defu He and Yongming Luo - Particulate Plastics in Terrestrial and Aquatic Environments (2020), Edited by Nanthi S. Bolan et al. - Microplastic Pollutants (2017), by Christopher B. Crawford and Brian Quinn |
Course L2751: Scientific Communication and Methods |
Typ | Lecture |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | WiSe |
Content |
Introduction - course objectives, expectations and format Analyzing the Audience, purpose and occasion Constructing and delivering effective technical presentations How to write an abstract How to create a scientific poster How to write a scientific paper Developing competitive and persuasive research proposals Individual project (report and presentation) related to soil, water and environmental research |
Literature |
|
Module M1505: Adaptation to Climate Change in Hydraulic Engineering (AKWAS) |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Peter Fröhle |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Preparation of a written report and a presentation of a complex task. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2291: Adaptation to climate change in hydraulic engineering |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Peter Fröhle |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1779: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Peter Fröhle |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Preparation of a written report on a complex task with a presentation and subsequent discussion. The work on the complex task happens in the course of the lecture. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2926: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Peter Fröhle |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Specialization Water
Module M0801: Water Resources and -Supply |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Mathias Ernst |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of water management and the key processes involved in water treatment. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students will be able to outline key areas of conflict in water management, as well as their mutual dependence for sustainable water supply. They will understand relevant economic, environmental and social factors. Students will be able to explain and outline the organisational structures of water companies. They will be able to explain the available water treatment processes and the scope of their application. |
Skills |
Students will be able to assess complex problems in drinking water production and establish solutions involving water management and technical measures. They will be able to assess the evaluation methods that can be used for this. Students will be able to carry out chemical calculations for selected treatment processes and apply generally accepted technical rules and standards to these processes. |
Personal Competence | |
Social Competence |
Working in a diverse group of specialists, students will be able to develop and document complex solutions for the management and treatment of drinking water. They will be able to take an appropriate professional position, for example representing user interests. They will be able to develop joint solutions in teams of diverse experts and present these solutions to others. |
Autonomy |
Students will be in a position to work on a subject independently and present on this subject. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min (chemistry) + presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0311: Chemistry of Drinking Water Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dr. Klaus Johannsen |
Language | DE |
Cycle | WiSe |
Content |
The topic of this course is water chemistry with respect to drinking water treatment and water distribution Major topics are solubility of gases, carbonic acid system and calcium carbonate, blending, softening, redox processes, materials and legal requirements on drinking water treatment. Focus is put on generally accepted rules of technology (DVGW- and DIN-standards). Special emphasis is put on calculations using realistic analysis data (e.g. calculation of pH or calcium carbonate dissolution potential) in exercises. Students can get a feedback and gain extra points for exam by solving problems for homework. Knowledge of drinking water treatment processes is vital for this lecture. Therefore the most important processes are explained coordinated with the course “ Water resources management“ in the beginning of the semester. |
Literature |
MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003. |
Course L0312: Chemistry of Drinking Water Treatment |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dr. Klaus Johannsen |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0402: Water Resource Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Mathias Ernst |
Language | DE |
Cycle | WiSe |
Content |
The lecture provides comprehensive knowledge on interaction of water ressource management and drinking water supply. Content overview:
- User and Stakeholder conflicts - Wasserressourcenmanagement in urbane Gebieten - Rechtliche Aspekte, Organisationsformen Trinkwasserversorgungsunternehmen. - Ökobilanzierung, Benchmarking in der Wasserversorgung |
Literature |
|
Course L0403: Water Resource Management |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Mathias Ernst |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1716: Subsurface Processes |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L2730: Modeling of Subsurface Processes |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Sonja Götz |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Course L2731: Modeling of Subsurface Processes |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Sonja Götz |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2728: Modern Techniques for Subsurface Solute Transport |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Course L2729: Modern Techniques for Subsurface Solute Transport |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Hannes Nevermann |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1403: Construction and Simulation of Sewerage Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students can describe urban wastewater systems by means of software-based modeling. In case studies they can perform system and weak point analyzes. In addition, they can analyze the hydraulic effects quantitatively. Furthermore, they have the knowledge to comprehend flow events in gravity-sewers based on the St. Venant equations. Students have knowledge of static and structural requirements of the sewer system. Cases of damage are investigated and the knowledge regarding different renovation technologies for sewer systems is acquired. |
||||||||
Skills |
The students can simulate different run-off events in sewer systems and are able to dimension the sewer systems accordingly. Moreover, they can determine suitable construction materials and static requirements for different cases of application. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to apply the acquired skills in a team and can impart this knowledge. |
||||||||
Autonomy |
Students can solve problems in the field of wastewater systems independently, concerning in particular dimensioning and simulation of sewer systems. Furthermore, they are able to present and justify their solutions. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written elaboration | ||||||||
Examination duration and scale | nach Absprache | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory |
Course L1998: Construction and renovation of urban sewer systems |
Typ | Seminar | ||||||||||||||||||||||||||
Hrs/wk | 3 | ||||||||||||||||||||||||||
CP | 3 | ||||||||||||||||||||||||||
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 | ||||||||||||||||||||||||||
Lecturer | Prof. Ingo Weidlich | ||||||||||||||||||||||||||
Language | EN | ||||||||||||||||||||||||||
Cycle | WiSe | ||||||||||||||||||||||||||
Content |
The lecture focusses on construction and renovation of urban sewer pipelines. Construction:
Pipe Statics:
Renovation:
|
||||||||||||||||||||||||||
Literature |
|
Course L2006: Simulation of sewerage systems |
Typ | Seminar |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | WiSe |
Content |
Modeling of sewer systems:
|
Literature |
Module M0513: System Aspects of Renewable Energies |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
Module: Technical Thermodynamics I Module: Technical Thermodynamics II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to describe the processes in energy trading and the design of energy markets and can critically evaluate them in relation to current subject specific problems. Furthermore, they are able to explain the basics of thermodynamics of electrochemical energy conversion in fuel cells and can establish and explain the relationship to different types of fuel cells and their respective structure. Students can compare this technology with other energy storage options. In addition, students can give an overview of the procedure and the energetic involvement of deep geothermal energy. |
Skills |
Students can apply the learned knowledge of storage systems for excessive energy to explain for various energy systems different approaches to ensure a secure energy supply. In particular, they can plan and calculate domestic, commercial and industrial heating equipment using energy storage systems in an energy-efficient way and can assess them in relation to complex power systems. In this context, students can assess the potential and limits of geothermal power plants and explain their operating mode. Furthermore, the students are able to explain the procedures and strategies for marketing of energy and apply it in the context of other modules on renewable energy projects. In this context they can unassistedly carry out analysis and evaluations of energie markets and energy trades. |
Personal Competence | |
Social Competence |
Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module. |
Autonomy |
Students can independently exploit sources , acquire the particular knowledge about the subject area and transform it to new questions. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 3 hours written exam |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory |
Course L0021: Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Fröba |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0019: Energy Trading |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Michael Sagorje, Dr. Sven Orlowski |
Language | DE |
Cycle | SoSe |
Content |
Within the exercise the various tasks are actively discussed and applied to various cases of application. |
Literature |
Course L0020: Energy Trading |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Michael Sagorje, Dr. Sven Orlowski |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0025: Deep Geothermal Energy |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Ben Norden |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0827: Modeling in Water Management |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Dr. Klaus Johannsen |
Admission Requirements | None |
Recommended Previous Knowledge |
Groundwater
Pipe Systems
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to describe the modelling of groundwater flow and transport as well as urban water infrastructures. They can carry out systems analyses and can detect technical and conceptual weak points within the systems in case studies. Besides they are able to analyse interdependencies of hydraulic and toxic phenomena in soil and water. |
Skills |
The students are able to construct and apply scientific groundwater models indipendently. They can work on different scenarios and can compare or assess different solutions for existing problems by application of selected software products. The students are able to use different software solutions (e.g. EPANET, EPA-SWMM). |
Personal Competence | |
Social Competence |
Wird nicht vermittelt. |
Autonomy |
Wird nicht vermittelt. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 20 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0543: Groundwater Modeling using Modflow |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Sonja Götz |
Language | DE/EN |
Cycle | SoSe |
Content | Introduction and application of the groundwater model MODFLOW (PMWIN); theoretical backround of the modell, students do work with the model PMWIN for practical case studies. |
Literature |
MODFLOW-Handbuch Chiang, Wen Hsien: PMWIN |
Course L0544: Groundwater Modeling using Modflow |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Sonja Götz |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0875: Modeling of Water Supply and Sewer Network |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Klaus Johannsen, Weitere Mitarbeiter |
Language | DE |
Cycle | SoSe |
Content | |
Literature | Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014. |
Module M0857: Geochemical Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Dr. Marco Ritzkowski |
Admission Requirements | None |
Recommended Previous Knowledge |
Module: General and Inorganic Chemistry, Module:Organic Chemistry, Biology (Basic Knowledge) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
With the completion of this module students acquire profound knowledge of biogeochemical processes, the fate of pollutants in soil and groundwater, and techniques to deposit contaminated waste material. They are able to describe in principle the behaviour of chemicals in the environment. Students can explain and report the approach to remediate contaminated sites. |
Skills |
With the completion of this module students can apply the acquired theoretical knowledge to model cases of site pollution and critically assess the situation technically and conceptually. They are able to draw comparisons on different remediation strategies and techniques. Model projects can be devised and treated. |
Personal Competence | |
Social Competence |
Students can discuss technical and scientific tasks within a seminar subject specific and interdisciplinary . |
Autonomy |
Students can independently exploit sources , acquire the particular knowledge of the subject and apply it to new problems. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 hours |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0906: Contaminated Sites and Landfilling |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Marco Ritzkowski, Dr. Joachim Gerth |
Language | EN |
Cycle | SoSe |
Content |
The part Contaminated Sites gives an introduction into different scales of pollution and identifies key pollutants. Geochemical attenuation mechanisms and the role of organisms are highlighted affecting the fate of pollutants in leachate and groundwater. Techniques for site characterization and remediation are discussed including economical aspects. The part Landfilling is introduced by discussing fundamental aspects and the worldwide situation of waste management. The lecture highlights transformation processes in landfill bodies, emissions of gases and leachate, and the long-term behaviour of landfill sites with measures of aftercare. |
Literature |
1) Waste Management. Bernd Bilitewski; Georg Härdtle; Klaus Marek (Eds.), ISBN: 9783540592105 , Springer Verlag 3) Natural attenuation of fuels and chlorinated solvents in the subsurface. Todd H. Wiedemeier(Ed.), ISBN: 0471197491 Lesesaal 2: US - Umweltschutz, Signatur USH-844 |
Course L0907: Contaminated Sites and Landfilling |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dr. Marco Ritzkowski, Dr. Joachim Gerth |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0904: Geochemical Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Gerth |
Language | EN |
Cycle | SoSe |
Content |
As an introduction cases are presented in which geochemical engineering was used to solve environmental problems. Environmentally important minerals are discussed and methods for their detection. It is demonstrated how solution equilibria can be modified to eliminate elevated concentrations of unwanted species in solution and how carbon dioxide concentration affects pH and the dissolution of carbonate minerals. Modifications of redox conditions, pH, and electrolyte concentration are shown to be effective tools for controlling the mobility and fate of hazardous species in the environment. |
Literature |
Geochemistry, groundwater and pollution. C. A. J. Appelo; D. Postma Leiden [u.a.] Balkema 2005 Lehrbuchsammlung der TUB, Signatur GWC-515 |
Module M1717: Advanced Vadose Zone Hydrology |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2734: Modeling Processes in Vadose Zone |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Hannes Nevermann, Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2735: Modeling Processes in Vadose Zone |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Hannes Nevermann |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2732: Vadose Zone Hydrology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2733: Vadose Zone Hydrology |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1718: Multiphase Flow in Porous Media |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2738: Advanced Modeling Techniques for Multiphase Flow in Porous Media |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2736: Fundamentals of Multiphase Flow in Porous Media |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2737: Fundamentals of Multiphase Flow in Porous Media |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Hannes Nevermann |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1721: Water and Environment: Theory and Application |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Nima Shokri |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Report (about 5-10 pages) and Presentation (about 15 min) |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2754: Water and Environment: Application and Field Work |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Anna Luisa Hemshorn de Sánchez, Dr. Salome Shokri-Kuehni |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2753: Water and Environment: Theory |
Typ | Lecture |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Nima Shokri |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Module M1702: Process Imaging |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Alexander Penn |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2723: Process Imaging |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Penn |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2724: Process Imaging |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Penn, Dr. Stefan Benders |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Module M0870: Management of Surface Water |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Peter Fröhle |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals of Hydromechanics, Hydraulics, Hydrology and Hydraulic Engineering; Hydraulic Engineering I and Hydraulic Engineering II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to define in detail the basic processes that are related to the modelling of flows in hydraulic engineering. Besides, they can describe the basic aspects of numerical modelling and actual numerical models for the simulation of flows and waves. They can also depict the concepts of nature oriented hydraulic engineering. |
Skills |
Students are able to apply hydrodynamic-numerical models to practical hydraulic engineering tasks. Furthermore, the students are able to set up flood-risk management concepts and are able to apply basic concepts of renaturation to practical problems. |
Personal Competence | |
Social Competence | The students are able to deploy their gained knowledge in applied problems of the practical nature-based hydraulic engineering. Additionaly, they will be able to work in team with engineers of other disciplines. |
Autonomy |
The students will be able to independently extend their knowledge and apply it to new problems. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | The duration of the examination is 150 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0810: Modelling of Flow in Rivers and Estuaries |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Edgar Nehlsen, Prof. Peter Fröhle |
Language | EN |
Cycle | SoSe |
Content |
Introduction to numerical flow modelling
|
Literature |
Vorlesungsskript Literaturempfehlungen Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (1997): Hydraulische Berechnung von naturnahen Fließgewässern. Düsseldorf: BWK (BWK-Merkblatt). Chow, Ven-te (1959): Open-channel Hydraulics. New York usw.: McGraw-Hill (McGraw-Hill Civil Engineering Series). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019a): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 1: Geodaten in der Fließgewässermodellierung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-1). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019b): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 2: Bedarfsgerechte Datenerfassung und -aufbereitung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-2). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019c): Merkblatt DWA-M 543-3 Geodaten in der Fließgewässermodellierung - Teil 3: Aspekte der Strömungsmodellierung und Fallbeispiele. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-3). Hervouet, Jean-Michel (2007): Hydrodynamics of free surface flows. Modelling with the finite element method. Chichester: Wiley. Online verfügbar unter http://www.loc.gov/catdir/enhancements/fy0741/2007296953-b.html. IAHR (2015): Professional Specifications for Physical and Numerical Studies in Environmental Hydraulics. In: Hydrolink (3/2015), S. 90-92. Olsen, Nils Reidar B. (2012): Numerical Modelling and Hydraulics. 3. Aufl. Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology. Szymkiewicz, Romuald (2010): Numerical modeling in open channel hydraulics. Dordrecht: Springer (Water science and technology library, 83). van Waveren, Harold (1999-): Good modelling practice handbook. [Utrecht], Lelystad, Den Haag: STOWA; Rijkswaterstaat-RIZA; SDU, afd. SEO/RIZA [etc. distr.] (Nota, nr. 99.036). Zielke, Werner (Hg.) (1999): Numerische Modelle von Flüssen, Seen und Küstengewässern. Deutscher Verband für Wasserwirtschaft und Kulturbau. Bonn: Wirtschafts- und Verl.-Ges. Gas und Wasser (Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau, 127). |
Course L0961: Nature-Oriented Hydraulic Engineering / Integrated Flood Protection |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Natasa Manojlovic, Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
Vorlesungsumdruck |
Module M0871: Hydrological Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Peter Fröhle |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals of Hydromechanics and Hydraulic Engineering: Hydraulic Engineering I and Hydraulic Engineering II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to define the basic concepts of hydrology and water management. They are able to describe and quantify the relevant processes of the hydrological water cycle. Besides, the students know the main aspects of rainfall-run-off-models and are able to theoretically derive established reservoir / storage models and a unit-hydrograph. |
Skills |
The students are able to use the basic hydrological concepts and approaches and are able to theoretically derive established reservoir / storage models or a unit-hydrograph as the basis for rainfall-run-off-models. The student are able to explain the basic concepts of measurements of hydrological and hydrodynamic values in nature and are able to perform, analyze and statistically assess these measurements. Furthermore, they are able to apply a hydrological model to basic hydrological problems. |
Personal Competence | |
Social Competence | The students are able to deploy their gained knowledge in applied problems of the hydrology and water management. Additionaly, they will be able to work in team with engineers of other disciplines. |
Autonomy |
The students will be able to independently extend their knowledge and apply it to new problems |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | The duration of the examination is 90 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0289: Applied Surface Hydrology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content |
Basics of hydrology:
|
Literature |
http://de.wikipedia.org/wiki/Kalypso_(Software) http://kalypso.bjoernsen.de/ http://sourceforge.net/projects/kalypso/ |
Course L1412: Applied Surface Hydrology |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0295: Interaction Water - Environment in Fluvial Areas |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Peter Fröhle |
Language | DE/EN |
Cycle | SoSe |
Content |
A problem based learning course. The problem will be solved by the students more or less self-contained. The topics will be introduced and elaborated over the semester. |
Literature | - |
Module M0874: Wastewater Systems |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of wastewater management and the key processes involved in wastewater treatment. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to outline key areas of the full range of treatment systems in waste water management, as well as their mutual dependence for sustainable water protection. They can describe relevant economic, environmental and social factors. |
Skills |
Students are able to pre-design and explain the available wastewater treatment processes and the scope of their application in municipal and for some industrial treatment plants. |
Personal Competence | |
Social Competence |
Social skills are not targeted in this module. |
Autonomy |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L0934: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content |
•Understanding the global situation with water and wastewater •Regional planning and decentralised systems •Overview on innovative approaches •In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse •Mathematical Modelling of Nitrogen Removal •Exercises with calculations and design |
Literature |
Henze, Mogens: George Tchobanoglous, Franklin L. Burton, H. David Stensel: |
Course L0943: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0357: Advanced Wastewater Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Behrendt |
Language | EN |
Cycle | SoSe |
Content |
Survey on advanced wastewater treatment reuse of reclaimed municipal wastewater Precipitation Flocculation Depth filtration Membrane Processes Activated carbon adsorption Ozonation "Advanced Oxidation Processes" Disinfection |
Literature |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Course L0358: Advanced Wastewater Treatment |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Joachim Behrendt |
Language | EN |
Cycle | SoSe |
Content |
Aggregate organic compounds (sum parameters) Industrial wastewater Processes for industrial wastewater treatment Precipitation Flocculation Activated carbon adsorption Recalcitrant organic compounds |
Literature |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Module M0875: Nexus Engineering - Water, Soil, Food and Energy |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf Otterpohl |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of the global situation with rising poverty, soil degradation, migration to cities, lack of water resources and sanitation |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can describe the facets of the global water situation. Students can judge the enormous potential of the implementation of synergistic systems in Water, Soil, Food and Energy supply. |
Skills |
Students are able to design ecological settlements for different geographic and socio-economic conditions for the main climates around the world. |
Personal Competence | |
Social Competence |
The students are able to develop a specific topic in a team and to work out milestones according to a given plan. |
Autonomy |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information can be found at the beginning of the smester in the StudIP course module handbook. |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Environmental Engineering: Core Qualification: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L1229: Ecological Town Design - Water, Energy, Soil and Food Nexus |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0939: Water & Wastewater Systems in a Global Context |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Otterpohl |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0922: City Planning |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Carsten Gertz |
Admission Requirements | None |
Recommended Previous Knowledge |
for "Principles of Urban Planning": none for "Designing Urban Streetscapes": some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineering“ |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to:
|
Skills |
Students are able to:
|
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
Students are able to:
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | written assignment, designwork during the semester |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L1066: City Planning |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Carsten Gertz |
Language | DE |
Cycle | SoSe |
Content |
„Principles of Urban Planning“ deals with the determinants of urban development and their interactions. Topics include:
The project work deals with a real life scenario and includes drawing up a development plan, an urban design concept, a building masterplan and a street redesign. |
Literature |
Albers, Gerd; Wekel, Julian (2009) Stadtplanung: Eine illustrierte Einführung. Primus Verlag. Darmstadt. Frick, Dieter (2008) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. Wasmuth-Verlag. Tübingen Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York. |
Module M0663: Marine Geotechnics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Jürgen Grabe |
Admission Requirements | None |
Recommended Previous Knowledge |
complete modules: Geotechnics I-III, Mathematics I-III courses: Soil laboratory course |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L0548: Marine Geotechnics |
Typ | Lecture |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Jürgen Grabe |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0549: Marine Geotechnics |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Jürgen Grabe |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1146: Steel Structures in Foundation and Hydraulic Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Frank Feindt |
Language | DE |
Cycle | SoSe |
Content | Design of a sheet pile wall, design of a combined sheet pile wall, piles, walings, connections, fatigue |
Literature | EAU 2012, EA-Pfähle, EAB |
Module M1724: Smart Monitoring |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Kay Smarsly |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge or interest in object-oriented modeling, programming, and sensor technologies are helpful. Interest in modern research and teaching areas, such as Internet of Things, Industry 4.0 and cyber-physical systems, as well as the will to deepen skills of scientific working, are required. Basic knowledge in scientific writing and good English skills. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students will become familiar with the principles and practices of smart monitoring. The students will be able to design decentralized smart systems to be applied for continuous (remote) monitoring of systems in the built and in the natural environment. In addition, the students will learn to design and to implement intelligent sensor systems using state-of-the-art data analysis techniques, modern software design concepts, and embedded computing methodologies. Besides lectures, project work is also part of this module. In small groups, the students will design smart monitoring systems that integrate a number of “intelligent” sensors to be implemented by the students. Specific focus will be put on the application of machine learning techniques. The smart monitoring systems will be mounted on real-world (built or natural) systems, such as bridges or slopes, or on scaled lab structures for validation purposes. The outcome of every group will be documented in a paper. All students of this module will “automatically” participate with their smart monitoring system in the annual "Smart Monitoring" competition. The written papers and oral examinations form the final grades. The module will be taught in English. Limited enrollment. |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | 10 pages of work with 15-minute oral presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory Environmental Engineering: Specialisation Biotechnology: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory Environmental Engineering: Specialisation Biotechnology: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2762: Smart Monitoring |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Kay Smarsly |
Language | EN |
Cycle |
WiSe/ |
Content |
In this course, principles of smart monitoring will be taught, focusing on modern concepts of data acquisition, data storage, and data analysis. Also, fundamentals of intelligent sensors and embedded computing will be illuminated. Autonomous software and decentralized data processing are further crucial parts of the course, including concepts of the Internet of Things, Industry 4.0 and cyber-physical systems. Furthermore, measuring principles, data acquisition systems, data management and data analysis algorithms will be discussed. Besides the theoretical background, numerous practical examples will be shown to demonstrate how smart monitoring may advantageously be used for assessing the condition of systems in the built or natural environment. |
Literature |
Course L2763: Smart Monitoring |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Kay Smarsly |
Language | EN |
Cycle |
WiSe/ |
Content |
The contents of the exercises are based on the lecture contents. In addition to the exercises, project work will be conducted, which will consume the majority of the workload. As part of the project work, students will design smart monitoring systems that will be tested in the laboratory or in the field. As mentioned in the module description, the students will participate in the “Smart Monitoring” competition, hosted annually by the Institute of Digital and Autonomous Construction. Students are encouraged to contribute their own ideas. The tools required to implement the smart monitoring systems will be taught in the group exercises as well as through external sources, such as video tutorials and literature. |
Literature |
Module M1123: Selected Topics in Environmental Engineering |
||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||
|
Module Responsible | Prof. Mathias Ernst |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Environmental Engineering: Core Qualification: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L1444: Environmental Aquatic Chemistry |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dr. Klaus Johannsen |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Worch, E.: Hydrochemistry. Basic Concepts and Exercises. De Gruyter, Berlin, 2015 |
Course L2387: Excellence in International Project Delivery |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 2 h |
Lecturer | Dr. Jens Huckfeldt |
Language | EN |
Cycle | SoSe |
Content | Simply and easy to avoid mistake in project delivery can deliver projects within budget and as per schedule.You have to attend if you see yourself in project execution and potentially even abroad. |
Literature |
Course L0520: Sludge Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dr. Joachim Behrendt |
Language | EN |
Cycle | SoSe |
Content |
Sedimentation characteristic and thickening, |
Literature |
Tchobanoglous, George (Metcalf & Eddy, Inc., ;) |
Course L1767: Thermal Biomass Utilization |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE |
Cycle | WiSe |
Content |
Goal of this course is it to discuss the physical, chemical, and biological as well as the technical, economic, and environmental basics of all options to provide energy from biomass from a German and international point of view. Additionally different system approaches to use biomass for energy, aspects to integrate bioenergy within the energy system, technical and economic development potentials, and the current and expected future use within the energy system are presented. The course is structured as follows:
|
Literature |
Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage |
Course L2386: Thermal Biomass Utilization |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | Protokolle |
Lecturer | Prof. Martin Kaltschmitt, Dr. Marvin Scherzinger |
Language | DE |
Cycle | WiSe |
Content |
The experiments of the practical lab course illustrate the different
aspects of heat generation from biogenic solid fuels. First,
different biomasses (e.g. wood, straw or agricultural residues) will
be investigated; the focus will be on the calorific value of the
biomass. Furthermore, the used biomass will be pelletized, the
pellet properties analysed and a combustion test carried out on a
pellet combustion system. The gaseous and solid pollutant emissions,
especially the particulate matter emissions, are measured and the
composition of the particulate matter is investigated in a further
experiment. Another focus of the practical course is the
consideration of options for the reduction of particulate matter
emissions from biomass combustion. In the practical course, a method
for particulate matter reduction will be developed and tested. All
experiments will be evaluated and the results presented. |
Literature |
- Kaltschmitt, Martin; Hartmann, Hans; Hofbauer, Hermann: Energie
aus Biomasse: Grundlagen, Techniken und Verfahren. 3. Auflage.
Berlin Heidelberg: Springer Science & Business Media, 2016.
-ISBN 978-3-662-47437-2 |
Module M0620: Special Aspects of Waste Resource Management |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Kerstin Kuchta | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | basics in waste treatment technologies | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students are able to describe waste as a resource as well as advanced technologies for recycling and recovery of resources from waste in detail. This covers collection, transport, treatment and disposal in national and international contexts. |
||||||||
Skills |
Students are able to select suitable processes for the treatment with respect to the national or cultural and developmental context. They can evaluate the ecological impact and the technical effort of different technologies and management systems. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can work together as a team of 2-5 persons, participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of colleagues. Furthermore, they can give and accept professional constructive criticisms. |
||||||||
Autonomy |
Students can independently gain additional knowledge of the subject area and apply it in solving the given course tasks and projects. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Presentation | ||||||||
Examination duration and scale | PowerPoint presentation (10-15 minutes) | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L1055: Advanced Topics in Waste Resource Management |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Rüdiger Siechau |
Language | EN |
Cycle | WiSe |
Content |
Focus of the course "Advanced topics of waste resource management" lies on the organisational structures in waste management - such as planning, financing and logistics. One excursion will be offered to take part in (incineration plant, vehicle fleet and waste collection systems). The course is split into two parts: 2. part: Project base learning: You will get a project to work out in groups of 4 to 6 students; all tools and data you need to work out the project were given before during the conventional lecture. Course documents are published in StudIP and communication during project work takes place via StudIP. The results of the project work are presented at the end of the semester. The final mark for the course consists of the grade for the presentation. |
Literature |
Einführung in die Abfallwirtschaft; Martin Kranert, Klaus Cord-Landwehr (Hrsg.); Vieweg + Teubner Verlag; 2010 PowerPoint slides in Stud IP |
Course L0317: International Waste Management |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | WiSe |
Content |
Waste avoidance and recycling are the focus of this lecture. Additionally, waste logistics ( Collection, transport, export, fees and taxes) as well as international waste shipment solutions are presented. Other specific wastes, e.g. industrial waste, treatment concepts will be presented and developed by students themselves Waste composition and production on international level, wast eulogistic, collection and treatment in emerging and developing countries. Single national projects and studies will be prepared and presented by students |
Literature |
Basel convention |
Module M0802: Membrane Technology |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Mathias Ernst |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of water chemistry. Knowledge of the core processes involved in water, gas and steam treatment |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students will be able to rank the technical applications of industrially important membrane processes. They will be able to explain the different driving forces behind existing membrane separation processes. Students will be able to name materials used in membrane filtration and their advantages and disadvantages. Students will be able to explain the key differences in the use of membranes in water, other liquid media, gases and in liquid/gas mixtures. |
Skills |
Students will be able to prepare mathematical equations for material transport in porous and solution-diffusion membranes and calculate key parameters in the membrane separation process. They will be able to handle technical membrane processes using available boundary data and provide recommendations for the sequence of different treatment processes. Through their own experiments, students will be able to classify the separation efficiency, filtration characteristics and application of different membrane materials. Students will be able to characterise the formation of the fouling layer in different waters and apply technical measures to control this. |
Personal Competence | |
Social Competence |
Students will be able to work in diverse teams on tasks in the field of membrane technology. They will be able to make decisions within their group on laboratory experiments to be undertaken jointly and present these to others. |
Autonomy |
Students will be in a position to solve homework on the topic of membrane technology independently. They will be capable of finding creative solutions to technical questions. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0399: Membrane Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Mathias Ernst |
Language | EN |
Cycle | WiSe |
Content |
The lecture on membrane technology supply provides students with a broad understanding of existing membrane treatment processes, encompassing pressure driven membrane processes, membrane application in electrodialyis, pervaporation as well as membrane distillation. The lectures main focus is the industrial production of drinking water like particle separation or desalination; however gas separation processes as well as specific wastewater oriented applications such as membrane bioreactor systems will be discussed as well. Initially, basics in low pressure and high pressure membrane applications are presented (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). Students learn about essential water quality parameter, transport equations and key parameter for pore membrane as well as solution diffusion membrane systems. The lecture sets a specific focus on fouling and scaling issues and provides knowledge on methods how to tackle with these phenomena in real water treatment application. A further part of the lecture deals with the character and manufacturing of different membrane materials and the characterization of membrane material by simple methods and advanced analysis. The functions, advantages and drawbacks of different membrane housings and modules are explained. Students learn how an industrial membrane application is designed in the succession of treatment steps like pre-treatment, water conditioning, membrane integration and post-treatment of water. Besides theory, the students will be provided with knowledge on membrane demo-site examples and insights in industrial practice. |
Literature |
|
Course L0400: Membrane Technology |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Mathias Ernst |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0401: Membrane Technology |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Mathias Ernst |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0822: Process Modeling in Water Technology |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Klaus Johannsen |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of the most important processes in drinking water and waste water treatment. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to explain selected processes of drinking water and waste water treatment in detail. They are able to explain basics as well as possibilities and limitations of dynamic modeling. |
Skills |
Students are able to use the most important features Modelica offers. They are able to transpose selected processes in drinking water and waste water treatment into a mathematical model in Modelica with respect to equilibrium, kinetics and mass balances. They are able to set up and apply models and assess their possibilities and limitations. |
Personal Competence | |
Social Competence |
Students are able to solve problems and document solutions in a group with members of different technical background. They are able to give appropriate feedback and can work constructively with feedback concerning their work. |
Autonomy |
Students are able to define a problem, gain the required knowledge and set up a model. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Environmental Engineering: Specialisation Water: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0522: Process Modelling of Wastewater Treatment |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Behrendt |
Language | DE/EN |
Cycle | WiSe |
Content |
Mass and energy balances Tracer modelling Activated Sludge Model Wastewater Treatment Plant Modelling (continously and SBR) Sludge Treatment (ADM, aerobic autothermal) Biofilm Modelling |
Literature |
Henze, Mogens (Seminar on Activated Sludge Modelling, ; Kollekolle Seminar on Activated Sludge Modelling, ;) |
Course L0314: Process Modeling in Drinking Water Treatment |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Klaus Johannsen |
Language | DE/EN |
Cycle | WiSe |
Content |
In this course selected drinking water treatment processes (e.g. aeration or activated carbon adsorption) are modeled dynamically using the programming language Modelica, that is increasingly used in industry. In this course OpenModelica is used, an free access frontend of the programming language Modelica. In the beginning of the course the use of OpenModelica is explainded by means of simple examples. Together required elements and structure of the model are developed. The implementation in OpenModelica and the application of the model is done individually or in groups respectively. Students get feedback and can gain extra points for the exam. |
Literature |
OpenModelica: https://openmodelica.org/index.php/download/download-windows OpenModelica - Modelica Tutorial: https://openmodelica.org/index.php/useresresources/userdocumentation OpenModelica - Users Guide: https://openmodelica.org/index.php/useresresources/userdocumentation Peter Fritzson: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,Wiley-IEEE Press, ISBN 0-471-471631. MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. |
Module M0902: Wastewater Treatment and Air Pollution Abatement |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Swantje Pietsch-Braune |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of biology and chemistry Basic knowledge of solids process engineering and separation technology |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of the module students are able to
|
Skills |