Modulhandbuch
Bachelor
Bau- und Umweltingenieurwesen
Kohorte: Wintersemester 2016
Stand: 28. September 2018
Studiengangsbeschreibung
Inhalt
Das Bauingenieurwesen gilt als älteste Disziplin der Ingenieurwissenschaften. Planung und Ausführung von Bauwerken aller Art sind Gegenstand des Fachs. Das Bau- und Umweltingenieurwesen unterteilt sich in zwei Bereiche:
- Das Bauingenieurwesen befasst sich mit der Planung, dem Bau und der Instandhaltung von Wohn-, Büro- und Verwaltungsgebäuden, Industriebauten, Brücken, Straßen, Schienenwegen, Tunneln, Flugplätzen, Häfen, Kanälen, Deichen und Dämmen.
- Das Umweltingenieurwesen befasst sich mit der Planung und dem Bau von Versorgungs- und Entsorgungssystemen und städtischer Infrastruktur, mit Fragen der Bewirtschaftung von Gewässern und Grundwasser sowie von Abwässern und Abfällen und mit den grundsätzlichen Problemen des Umweltschutzes und der Nachhaltigkeit.
Im Bachelorstudiengang Bau- und Umweltingenieurwesen werden die Grundlagen für eine spätere Tätigkeit in diesen Berufsfeldern vermittelt.
Im Bachelorstudiengang "Bau- und Umweltingenieurwesen" werden die Grundlagen für eine spätere Tätigkeit in diesen Berufsfeldern vermittelt. Der Fokus liegt sowohl auf den methodischen als auch auf den theoretischen Grundlagen des Bau- und Umweltingenieurwesens. Praxisnahe Exkursionen runden das Lehrangebot ab. Zum Studium des Studiengangs Bau- und Umweltingenieurwesen gehören neue Betreuungskonzepte sowie neue Lehr- und Lernmethoden. Hier zählen zum Beispiel kompetenzorientierte Lernziele, das frühe Lernen in Praxisprojekten, die Einübung der Präsentation in der Gruppe sowie die Möglichkeit, den eigenen Lernstand im Semesterverlauf immer wieder einschätzen zu können.
Berufliche Perspektiven
Ein erfolgreicher Abschluss des Bachelor-Studienganges Bau- und Umweltingenieurwesen ermöglicht neben der Aufnahme eines wissenschaftlich vertiefenden Master-Studiums einen frühen Berufseinstieg in die Tätigkeitsfelder des Bau- und Umweltingenieurwesens. Dabei haben die Absolventen typischerweise ein weites und vielfältiges Aufgabengebiet. Dazu gehören die unterschiedlichsten Aspekte des Hoch- und Tiefbaus: Von der Planung über die statische Berechnung sowie die Überwachung der Ausführung bis hin zur Erstellung kompletter Hafenanlagen oder Flughäfen. Zu den Aufgaben, die dem Wasser- und Umweltingenieurwesen zugeordnet werden können, gehören der städtische Tiefbau mit den Wasserversorgungssystemen, den Kanalisations- und Kläranlagen, der Abfallentsorgung und -verwertung sowie der Bereich Städtebau und Verkehr mit dem Bau von Straßen und Kanälen.
Das Baugewerbe hat den höchsten Bedarf an Bau- und Umweltingenieuren. Diese Branche schaltet in den Tageszeitungen die meisten Stellenangebote, die Ingenieur- und Planungsbüros folgen an zweiter Stelle. Gestiegen ist auch der Bedarf der Bau-, Wasserwirtschafts- und Umweltbehörden, die der drittwichtigste Arbeitgeber für Bau- und Umweltingenieure sind. Diese drei Branchen machen mehr als zwei Drittel der gesamten Nachfrage aus. Anhand der in den Zeitungen angebotenen Stellen lässt sich heute ein zunehmender Bedarf feststellen.
Lernziele
Die Absolventen können eine Ingenieurtätigkeit in verschiedenen Tätigkeitsfeldern des Bau- und Umweltingenieurwesens verantwortungsvoll und kompetent ausüben. Sie können ihr ingenieurwissenschaftliches, mathematisches und naturwissenschaftliches Wissen zur Problemlösung in der Praxis anwenden.
Das bedeutet, die Absolventen haben die Fähigkeit,
- Entwürfe für Gründungen und Konstruktionen von Bauwerken nach spezifizierten Anforderungen zu erarbeiten
- Ingenieurplanungen im Bereich des hydrologischen Wasserkreislaufs wie Gewinnung, Aufbereitung und Reinigung von Wasser sowie zur Bewirtschaftung von Abfallressourcen selbständig durchzuführen;
- Theorie und Praxis zu kombinieren, um ingenieurwissenschaftliche Fragestellungen methodisch‐grundlagenorientiert zu analysieren und zu lösen;
- passende Techniken und Methoden auszuwählen und deren Grenzen einzuschätzen;
- ihr Wissen auf unterschiedlichen Gebieten unter Berücksichtigung sicherheitstechnischer, ökologischer, wirtschaftlicher und rechtlicher Erfordernisse verantwortungsbewusst anzuwenden und eigenverantwortlich zu vertiefen;
- über Inhalte und Probleme des Bau- und Umweltingenieurwesens mit Fachleuten und Laien in deutscher und englischer Sprache zu kommunizieren und auch in internationalen Gruppen zusammen zu arbeiten;
- die Ergebnisse ihrer Arbeit schriftlich und mündlich verständlich darzustellen;
- nicht‐technische Auswirkungen der Ingenieurtätigkeit zu einzuschätzen.
Studiengangsstruktur
Das Curriculum des Bachelorstudiengangs Bau- und Umweltingenieurwesen ist wie folgt gegliedert:
- Mathematisch-naturwissenschaftliche Grundlagen: 6 Module, 42 Leistungspunkte (LP), 1. - 3. Semester
- Fachspezifische Grundlagen: 7 Module, 42 LP, 1. bis 4. Semester
- Fachspezifische Weiterführung: 10 Module, 60 LP, 2. bis 6. Semester
- Technische Wahlpflichtmodule: 1 Modul, 6 LP, 3. und 4. Semester
- Übergreifende nichttechnische Inhalte: 3 Module, 18 LP, 1. bis 6. Semester
- Bachelorarbeit: 12 LP, 6. Semester
Damit ergibt sich ein Gesamtaufwand von 180 LP.
Die übergreifenden nichttechnischen Inhalte beinhalten die folgenden Module:
- Grundlagen der Betriebswirtschaftslehre: 6 LP, 3. Semester
- Bau- und Umweltmanagement: 6 LP, 4. Semester
- Nichttechnische Ergänzungskurse: 6 LP, 1. bis 6. Semester
Die Lehrveranstaltungen und Module des Bachelorstudiengangs sind bewusst fast durchgängig als Pflichtfächer konzipiert. Auf diese Weise wird gewährleistet, dass alle notwendigen bau- und umweltspezifischen Lernziele erreicht werden können. Dabei sind die Lehrinhalte in einem kompakten Kanon sinnvoll aufeinander abgestimmt. So wird auch die Voraussetzung geschaffen, um nach Abschluss des Bachelorstudiums erfolgreich entweder den Masterstudiengang "Bauingenieurwesen" oder "Wasser- und Umweltingenieurwesen" studieren zu können (Y-Modell).
Fachmodule der Kernqualifikation
Modul M0580: Baustoffgrundlagen und Bauphysik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulwissen in Physik, Chemie und Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage grundlegende Beanspruchungen von Werkstoffen und Bauteilen zu erkennen, unterschiedliche Arten des mechanischen Verhaltens zu erklären, das Gefüge von Baustoffen und den Zusammenhang zwischen Gefügeeigenschaften und anderen Eigenschaften zu beschreiben, Fügeverfahren und Korrosionsprozesse darzustellen sowie die wesentlichen Gesetzmäßigkeiten sowie Baustoff- und Bauteilkenngrößen und deren Ermittlung im Bereich des Feuchteschutzes, des Wärmeschutzes, des Brandschutzes und des Schallschutzes zu beschreiben. |
Fertigkeiten |
Die Studierenden können die wichtigsten normgemäßen Nachweise im Bereich des Feuchteschutzes, der Energieeinsparverordnung, des Brandschutzes und des Schallschutzes für ein sehr einfaches Gebäude führen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage sich bei der Aneigung des sehr umfangreichen Fachwissens gegenseitige Hilfestellung zu geben. |
Selbstständigkeit |
Die Studierenden sind in der Lage sich das Fachwissen eines sehr umfangreichen Fachgebietes anzueignen und die dafür notwendige terminliche Planung und notwendigen Arbeitsschritte durchzuführen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 stündige Klausur |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0217: Bauphysik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Wärmetransport, Wärmebrücken, Energieverbrauchsbilanzen, Energieeinsparverordnung, Sommerlicher Wärmeschutz, Feuchtetransport, Tauwasser, Schimmelvermeidung, Brandschutz, Schallschutz |
Literatur | Fischer, H.-M. ; Freymuth, H.; Häupl, P.; Homann, M.; Jenisch, R.; Richter, E.; Stohrer, M.: Lehrbuch der Bauphysik. Vieweg und Teubner Verlag, Wiesbaden, ISBN 978-3-519-55014-3 |
Lehrveranstaltung L0219: Bauphysik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0247: Bauphysik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0215: Grundlagen der Baustoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Gefüge von Baustoffen Beanspruchungen Grundzüge des mechanischen Verhaltens Grundlagen der Metallkunde Fügeverfahren und Haftung Korrosion |
Literatur |
Wendehorst, R.: Baustoffkunde. ISBN 3-8351-0132-3 Scholz, W.:Baustoffkenntnis. ISBN 3-8041-4197-8 |
Modul M0687: Chemie |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Dorothea Rechtenbach |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage, grundlegende Zusammenhänge und Prinzipien in der Allgemeinen Chemie (Atombau, Periodensystem, Bindungstypen), der physikalischen Chemie (Aggregatzustände, Stofftrennung, Thermodynamik, Kinetik), der Anorganischen Chemie (Säure/Basen, pH-Wert, Salze, Löslichkeit, Redox, Metalle) und der Organischen Chemie (aliphate Kohlenwasserstoffe, funktionelle Gruppen, Carbonylverbindungen, Aromaten, Reaktionsmechanismen, Naturstoffe, Kunststoffe) zu benennen und einzuordnen. Des Weiteren können die Studierenden grundlegende chemische Fachbegriffe erklären. |
Fertigkeiten |
Die Studierenden sind in der Lage, Stoffgruppen und chemische Verbindungen zu beschreiben und auf dieser Grundlage einschlägige Methoden und verschiedene Reaktionsmechanismen zu erklären bzw. auszuwählen und anzuwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in interdisziplinären Teams mit lösungsortientierten eigenen Positionen zu Diskussionen chemischer Sachverhalte und Probleme beizutragen. |
Selbstständigkeit |
Die Studierenden können chemische Fragestellungen selbständig zu lösen, ihre Lösungswege argumentativ verteidigen und dokumentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0460: Chemie I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Christoph Wutz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Aufbau der Materie - Periodensystem - Elektronegativität der Elemente - chemische Bindungstypen - Festkörperverbindungen - Chemie des Wassers - chemische Reaktionen und Gleichgewichte - Thermodynamische Grundlagen - Säure-Base-Reaktionen - Redoxvorgänge |
Literatur |
- Blumenthal, Linke, Vieth: Chemie - Grundwissen für Ingenieure - Kickelbick: Chemie für Ingenieure (Pearson) - Mortimer: Chemie. Basiswissen der Chemie. - Brown, LeMay, Bursten: Chemie. Studieren kompakt. |
Lehrveranstaltung L0475: Chemie I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Dorothea Rechtenbach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0465: Chemie II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Christoph Wutz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Einfache Verbindungen des Kohlenstoffs, Alkane, Alkene, aromatische Kohlenwasserstoffe, - Alkohole, Phenole, Ether, Aldehyde, Ketone, Carbonsäuren, Ester, Amine, Aminosäuren, Fette, Zucker - Reaktionsmechanismen, Radikalreaktionen, Nucleophile Substitution, Eliminierungsreaktionen, Additionsreaktionen - Praktische Anwendungen und Beispiele |
Literatur |
- Blumenthal, Linke, Vieth: Chemie - Grundwissen für Ingenieure - Kickelbick: Chemie für Ingenieure (Pearson) - Schmuck: Basisbuch Organische Chemie (Pearson)
|
Lehrveranstaltung L0476: Chemie II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Dorothea Rechtenbach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0889: Mechanik I (Stereostatik) |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Robert Seifried |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Gefestigte und tiefgehende Schulkentnisse in Mathematik und Physik. Als gute Auffrischung der Mathematikkenntnisse ist der Mathematikvorkurs empfehlenswert. Parallel zum Modul Mechanik I sollte das Modul Mathematik I besucht werden. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L1001: Mechanik I (Stereostatik) |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Studienleistung | Freiwilliges Midterm: 45 min. Verbesserung der Modulnote: Ist die Midterm-Note besser als die Modulprüfungsnote wird das Midterm mit 20% auf die Modulnote angerechnet. |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kräftesysteme und Gleichgewicht Lagerung von Körpern Fachwerke Gewichtskraft und Schwerpunkt Reibung Innere Kräfte und Momente am Balken |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Lehrveranstaltung L1002: Mechanik I (Stereostatik) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kräftesysteme und Gleichgewicht Lagerung von Körpern Fachwerke Gewichtskraft und Schwerpunkt Reibung Innere Kräfte und Momente am Balken |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Lehrveranstaltung L1003: Mechanik I (Stereostatik) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kräftesysteme und Gleichgewicht Lagerung von Körpern Fachwerke Gewichtskraft und Schwerpunkt Reibung Innere Kräfte und Momente am Balken |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Modul M0850: Mathematik I |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulmathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis I) + 60 min (Lineare Algebra I) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1010: Analysis I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Differential- und Integralrechnung einer Variablen:
|
Literatur |
|
Lehrveranstaltung L1012: Analysis I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1013: Analysis I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0912: Lineare Algebra I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0913: Lineare Algebra I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0914: Lineare Algebra I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Christian Seifert |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0577: Nichttechnische Ergänzungskurse im Bachelor |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Nichttechnischen Angebote (NTA) vermitteln die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im Nichttechnischen Bereich gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0579: Baukonstruktion |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Gernod Deckelmann |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Inhalte des Moduls "Baustoffgrundlagen und Bauphysik" |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können nach der Teilnahme am Modul "Baukonstruktion"
|
Fertigkeiten |
Studierende sind nach der erfolgreichen Teilnahme am Modul "Baukonstruktion" in der Lage
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende sind nach der erfolgreichen Teilnahme am Modul "Baukonstruktion" in der Lage,
|
Selbstständigkeit |
Studierende können
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 minütige Klausur (max. 40 Punkte); semesterbegleitende Projektarbeit (max. 60 Punkte); Klausur mindestens mit 4,0 |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht |
Lehrveranstaltung L0205: Grundlagen der Baukonstruktion |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vortragsfolien der Lehrveranstaltung stehen über STUD.IP zum download zur Verfügung Neumann, Dietrich (Hestermann, Ulf.; Rongen, Ludwig.; Weinbrenner, Ulrich) |
Lehrveranstaltung L0209: Projektseminar Baukonstruktion |
Typ | Seminar |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vortragsfolien der Lehrveranstaltung stehen über STUD.IP zum download zur Verfügung Neumann, Dietrich (Hestermann, Ulf.; Rongen, Ludwig.; Weinbrenner, Ulrich) |
Lehrveranstaltung L0208: Projektseminar Baukonstruktion |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vortragsfolien der Lehrveranstaltung stehen über STUD.IP zum download zur Verfügung Neumann, Dietrich (Hestermann, Ulf.; Rongen, Ludwig.; Weinbrenner, Ulrich) |
Modul M0696: Mechanik II: Elastostatik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Swantje Bargmann |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Statik (Mechanik I) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Begriffe und Gesetze der Elastostatik, wie z.B. Spannungen, Verzerrungen, lineares Hookesches Materialgesetz benennen. |
Fertigkeiten |
Nach dem erfolgreichen Absolvieren dieses Kurses sind die Studierenden in der Lage, • die wesentlichen Elemente der mathematisch / mechanischen Analyse und Modellbildung im Kontext eigener Fragestellungen umzusetzen. sich hieran anschließend weiterführende Ansätze zu erarbeiten. |
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit | - |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0493: Mechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Spannungen und Dehnungen Stoffgesetze Zug und Druck Torsion Biegung Festigkeit Knickung Energiemethoden |
Literatur |
K. Magnus, H.H. Müller -Slany, Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2005) D. Gross, W. Hauger, W. Schnell, J. Schröder, Technische Mechanik 1&2. 8. Auflage, Springer |
Lehrveranstaltung L0494: Mechanik II |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1691: Mechanik II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0851: Mathematik II |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Mathematik I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis II) + 60 min (Lineare Algebra II) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1025: Analysis II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1026: Analysis II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1027: Analysis II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0915: Lineare Algebra II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0916: Lineare Algebra II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0917: Lineare Algebra II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Christian Seifert |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0976: Waste and Soil |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse | chemical basics |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students know how to describe relevant waste resources as well as the principles for the collection, the treatment of waste resources and primary resource mining. They are able to discuss resource strategies, like decoupling and urban mining as well as the consequences of worldwide demand on renewable and non-renewable resources. Additional, obstacles and efforts of waste resource management and urban mining and new technological approaches can be identified by the students. |
Fertigkeiten |
The students know relevant waste resources as well as the principles for the collection, the treatment of waste resources and primary resource mining. They have knowledge about resource strategies, like decoupling and urban mining as well as the consequences of worldwide demand on renewable and non-renewable resources. Additional, obstacles and efforts of waste resource management and urban mining and new technological approaches are identified. The students are capable to make their own decisions with respect to the selection of suitable rescources and ecologically/economically feasible treatment processes. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 1,5 Stunden |
Zuordnung zu folgenden Curricula |
Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L1174: Waste, Biology and Soil |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Students will learn ecological and economical consequences as well as appropriate alternatives to conventional treatment of organic wastes, focusing integrated solution and concepts. Therefore, biological processes in soil, composting and anaerobic digestion will be the main topic of the course. Based on general roles, biological basics, entropic discussions and efficiency definition, specific technologies and combined or integrated processes will be taught. Seldom-used technologies, foreign developments and innovative own research concepts are presented. Students learn recycling of organic wastes in the context of sustainable material management and learn to develop systematic solutions. Topics are, e.g.
|
Literatur |
1) Waste Management. Bernd Bilitewski; Georg Härdtle; Klaus Marek (Eds.), ISBN: 9783540592105 , Springer Verlag 3) Natural attenuation of fuels and chlorinated solvents in the subsurface. Todd H. Wiedemeier(Ed.), ISBN: 0471197491 Lesesaal 2: US - Umweltschutz, Signatur USH-844 |
Lehrveranstaltung L0322: Waste Ressources Management |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1173: Waste Resource Management |
Typ | Hörsaalübung | ||||||||||||
SWS | 1 | ||||||||||||
LP | 2 | ||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 | ||||||||||||
Dozenten | Prof. Kerstin Kuchta | ||||||||||||
Sprachen | EN | ||||||||||||
Zeitraum | SoSe | ||||||||||||
Inhalt |
|
||||||||||||
Literatur |
Modul M0590: Baustoffe und Bauchemie |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul Baustoffgrundlagen und Bauphysik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wichtigsten Komponenten, die Herstellung, das Gefüge, die wichtigsten Charakteristika des mechanischen Verhaltens und des Korrosionsverhaltens, die Materialprüfung und die Anwendungsfelder aller relevanter Baustoffe zu erklären. |
Fertigkeiten |
Die Studierenden können Baustoffe für die verschiedenen Anwendungen vergleichend beurteilen und gemäß ihren jeweiligen spezifischen Stärken und Schwächen auswählen. Die Studierenden können die Rezeptur eines Normalbetons entwerfen und im Hinblick auf die Übereinstimmung mit den geltenden Regeln überprüfen. Dabei können sie die vorliegenden Zusammenhänge betontechnologischer Größen berücksichtigen. Die Studierenden können geeignete Werkstoffe auswählen bzw. geeignete Rezepturen entwerfen um Schadensprozesse zu vermeiden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage sich in Lerngruppen bei der Aneignung des sehr umfangreichen Fachwissens gegenseitige Hilfestellung zu geben und in kleinen Gruppen Übungsaufgaben im Labor durchzuführen. |
Selbstständigkeit | -- |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 stündige Klausur |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht |
Lehrveranstaltung L0248: Baustoffe und Bauchemie |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Studienleistung | Freiwillige Möglichkeiten zur Verbesserung der Modulnote: Kurzvortrag, Bewertung eines Kurzvortrags, Teilnahme an einem Wettbewerb. Bonus max. 10% der Maximalpunktzahl der Klausur, wobei im Modul Baustoffe und Bauchemie nur eine Studienleistung (zur Übung oder zur Vorlesung) als Bonusmöglichkeit genutzt werden kann. Detailliertere Angaben am Anfang des Semesters über StudIP. |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Mineralische Bindemittel, Gesteinskörnung, Zusatzmittel und Zusatzstoffe für Mörtel und Beton, Beton, Dauerhaftigkeit zementgebundener Baustoffe, Betoninstandsetzung, Stahl, Gusseisen, NE-Metalle, Metallkorrosion, Holz, Kunststoffe, Naturstein, Künstliche Steine, Mörtel, Mauerwerk, Glas, Bitumen |
Literatur |
Wendehorst, R.: Baustoffkunde. ISBN 3-8351-0132-3 Scholz, W.:Baustoffkenntnis. ISBN 3-8041-4197-8 Henning, O.; Knöfel, D.: Baustoffchemie. ISBN 3-345-00799-1 Knoblauch, H.; Schneider, U.: Bauchemie. ISBN 3-8041-5174-4 |
Lehrveranstaltung L0249: Baustoffe und Bauchemie |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Studienleistung | Freiwillige Möglichkeiten zur Verbesserung der Modulnote: Protokoll zu den Übungen. Bonus max. 10% der Maximalpunktzahl der Klausur, wobei im Modul Baustoffe und Bauchemie nur eine Studienleistung (zur Übung oder zur Vorlesung) als Bonusmöglichkeit genutzt werden kann. Detailliertere Angaben am Anfang des Semesters über StudIP. |
Dozenten | Prof. Frank Schmidt-Döhl, Klaus-Dieter Henk |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0728: Wasserbau I |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I, II und III Mechanik I und II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Begriffe der Hydromechanik sowie der Hydrologie und der Wasserwirtschaft definieren. Sie sind in der Lage die Grundgleichungen i) der Hydrostatik, ii) der Kinematik der Wasserbewegungen sowie iii) der Erhaltungssätze abzuleiten und iv) die relevanten Prozesse des Wasserkreislaufes zu beschreiben und zu quantifizieren. Daneben können sie die wesentlichen Aspekte der Niederschlags-Abfluss-Modellierung beschreiben und können beispielsweise die Ableitung gängiger Speichermodelle oder einer Einheitsganglinie auf theoretischem Wege erläutern. |
Fertigkeiten |
Die Studierenden sind in der Lage die Grundgleichungen der Hydromechanik auf einfache praktische Fragestellungen anzuwenden. Daneben sind Sie in der Lage die in der Hydrologie gängigen Ansätze und Methoden anzuwenden und können als Grundlage für Niederschlags-Abflussmodelle exemplarisch die gängigen Speichermodelle oder eine Einheitsganglinie auf theoretischem Wege ableiten. Die Studierenden sind fähig, Grundkonzepte von Messungen hydrologischer und hydrodynamischer Größen in der Natur zu erläutern und entsprechende Messungen durchführen, statistisch auszuwerten und zu bewerten. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage in Gruppen fachliche Vorträge zu vorgegebnen Themen zu erarbeiten und adressatengerecht zu präsentieren. |
Selbstständigkeit |
Studierende können sich gegenseitig zu Einzel- und Gruppenleistungen Feedback geben. Sie sind zu eigenständiger Reflexion ihres Lernens und ihrer Lernstrategie in der Lage. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 2 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht |
Lehrveranstaltung L0909: Hydrologie |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in die wesentlichen Grundlagen der Hydrologie und der Gewässerkunde:
|
Literatur |
Maniak, Hydrologie und Wasserwirtschaft, Eine Einführung für Ingenieure, Springer Skript Hydrologie und Gewässerkunde |
Lehrveranstaltung L0956: Hydrologie |
Typ | Projekt-/problembasierte LehrveranstaltungLehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in die wesentlichen Grundlagen der Hydrologie und der Gewässerkunde:
Über das ganze Semester lernen die Studierenden in festen Gruppen, in denen sie entweder ein Thema präsentieren, ein Feedback geben oder einen Übungstermin vorbereiten. Der rote Faden wird an einem durchgehenden Fallbeispiel verdeutlich. Mit gemeinsamem Lernen entwickeln die Studierenden auch ihre Sozialkompetenz weiter. |
Literatur |
Maniak, Hydrologie und Wasserwirtschaft, Eine Einführung für Ingenieure, Springer Skript Hydrologie und Gewässerkunde |
Lehrveranstaltung L0615: Hydromechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Hydromechanik:
|
Literatur |
Skript zur Vorlesung Hydromechanik/Hydraulik, Kapitel 1-2 E-Learning Werkzeug: Hydromechanik und hydraulik (Link): (http://www.tu-harburg.de/ … hydraulik_tool/index.html) Truckenbrodt, E.: Lehrbuch der angewandten Fluidmechanik, Springer Verlag, Berlin, 1998. Truckenbrodt, E.: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide / Fluidmechanik, Springer Verlag, Berlin, 1996. |
Lehrveranstaltung L0616: Hydromechanik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0740: Baustatik I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Uwe Starossek |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mechanik I, Mathematik I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte der linearen Stabstatik statisch bestimmter Systeme wiedergeben. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage statisch bestimmte und statisch unbestimmte Tragwerke zu unterscheiden und für statisch bestimmte ebene und räumliche Rahmentragwerke und Fachwerke Zustandsgrößen zu berechnen und Einflusslinien zu konstruieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden sind in der Lage Hausübungen selbständig zu bearbeiten. Durch das semesterbegleitende Feedback wird es ihnen ermöglicht, sich während des Semesters selbst einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0666: Baustatik I |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Statisch bestimmte Systeme
|
Literatur |
Krätzig, W.B., Harte, R., Meskouris, K., Wittek, U.: Tragwerke 1 - Theorie und Berechnungsmethoden statisch bestimmter Stabtragwerke. 4. Aufl., Springer, Berlin, 1999. |
Lehrveranstaltung L0667: Baustatik I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Studienleistung | Freiwillige Bearbeitung von Hausübungen. Bei erfolgreicher Bearbeitung wird ein Testat erteilt, das im Falle des Bestehens der Klausur zur Verbesserung der Note führt. |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0829: Grundlagen der Betriebswirtschaftslehre |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christoph Ihl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulkenntnisse in Mathematik und Wirtschaft |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können...
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage
|
Selbstständigkeit |
Die Studierenden sind in der Lage
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Informatik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science: Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science: Vertiefung Informatik: Pflicht General Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science: Vertiefung Schiffbau: Pflicht General Engineering Science: Vertiefung Verfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Informatik: Pflicht General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0880: Grundlagen der Betriebswirtschaftslehre |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Christoph Ihl, Prof. Thorsten Blecker, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Kathrin Fischer, Prof. Cornelius Herstatt, Prof. Wolfgang Kersten, Prof. Matthias Meyer, Prof. Thomas Wrona |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Neben der Vorlesung, die die Fachinhalte vermittelt, erarbeiten die Studierenden selbstständig in Gruppen einen Business-Plan für ein Gründungsprojekt. Dafür wird auch das wissenschaftliche Arbeiten und Schreiben gezielt unterstützt. |
Literatur |
Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008 Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003 Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006. Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001. Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008. Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005. Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008. Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. |
Lehrveranstaltung L0882: Projekt Entrepreneurship |
Typ | Projekt-/problembasierte LehrveranstaltungLehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christoph Ihl, Katharina Roedelius, Dr. Maximilian Mülke, Tobias Vlcek |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Inhalt ist die eigenständige Erarbeitung eines Gründungsprojekts, von der ersten Idee bis zur fertigen Konzeption, wobei die betriebswirtschaftlichen Grundkenntnisse aus der Vorlesung "Grundlagen der Betriebswirtschaftslehre" zum Einsatz kommen sollen. Die Erarbeitung erfolgt in Teams und unter Anleitung eines Mentors. |
Literatur | Relevante Literatur aus der korrespondierenden Vorlesung. |
Modul M0878: Anwendungen im Bau- und Umweltingenieurwesen |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Wilfried Schneider |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Je nach gewählter Veranstaltung sind die Studierenden in der Lage, die Methoden von Anwendungsrichtungen im Studiengang - z. B. numerisch und computergestützt, konstruktiv-projektförmig - zu beschreiben. |
Fertigkeiten |
Die Studierenden sind in der Lage, die in den jeweiligen Lehrveranstaltungen dargebotenen Anwendungen und Methoden selbständig für praktische Fragestellungen anzuwenden. Sie sind in der Lage, die erlernten Methoden selbständig auf neue Anwendungsfelder zu beziehen. |
Personale Kompetenzen | |
Sozialkompetenz |
Je nach gewählter Veranstaltung sind die Studierenden in der Lage, Arbeitsaufgaben oder Projekte im Team durchzuführen und die Ergebnisse gemeinsam zu präsentieren, zu diskutieren und zu dokumentieren. |
Selbstständigkeit |
Je nach gewählter Veranstaltung sind die einzelnen Studierenden in der
Lage, Arbeitsschritte und Abläufe selbständig für sich oder für ihr
studentisches Team zu planen und zu dokumentieren. |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0211: Angewandte numerische Methoden |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 4 schriftliche Ausarbeitungen und erfolgreiche Bearbeitung von semesterbegleitenden Vips |
Dozenten | Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Vortragsfolien der Lehrveranstaltung stehen über STUD.IP zum download zur Verfügung Müller, Günter (Groth, Clemens)
|
Lehrveranstaltung L0791: Anwendungen der Baudynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 15 min |
Dozenten | Dr. Kira Holtzendorff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung bietet einen Einstieg in die klassische Baudynamik mit besonderem Schwerpunkt auf die Anwendung in der Praxis. Neben den benötigten theoretischen Grundlagen werden typische Problemstellungen aus der Praxis dargestellt und verschiedene konstruktive Lösungsmöglichkeiten für einen möglichen Schwingungs- bzw. Erschütterungsschutz infolge z.B. Schienenverkehr, Maschinenbetrieb oder durch die Bewegung von Personen aufgezeigt. Die Vorlesung wird ergänzt durch vorgeführte Schwingungsmessungen sowie durch gemeinsam durchgeführte, baudynamische Experimente im Labor. Folgende Themen werden behandelt: Besonderheiten der Baudynamik Grundbegriffe zeitabhängiger Einwirkungen Freie Schwingungen (Eigenfrequenzen) Erzwungene Schwingungen Stoßartige Anregungen von Baukonstruktionen Methoden zur Amplitudenreduktion (Schwingungsisolierung) Einführung in die Baugrunddynamik Schwingungsmessungen und Anforderungen im Erschütterungsschutz Menscheninduzierte Schwingungen |
Literatur |
Helmut Kramer: Angewandte Baudynamik, Ernst & Sohn Verlag, 2. Auflage 2013 Christian Petersen: Dynamik der Baukonstruktionen, Vieweg Verlag, 2. Auflage von 2000 |
Lehrveranstaltung L1211: AutoCAD |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Thomas Kölzer |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Konstruieren diverserer Zeichnungen (u. a. Linie, Kreis, Bogen, ...) Ändern von Konstruktionen (u. a. Kopieren, Spiegeln, Dehnen, Stutzen, Abrunden, ...) Verwendung und Verwaltung der Zeichnungslayer Arbeiten im Modell- und Layoutbereich Verwenden von Plotstiltabellen Bemaßungen (Konstruktions- u. Bauteilbemaßungen) Beschriften von Zeichnungen und Bauteilen Schraffieren von Bauteilen |
Literatur |
Ludolph, M. / Wüstefeld, J. (2011): AutoCAD 2D-Grundlagen (Skript zur Übung) |
Lehrveranstaltung L1903: Building Information Modeling |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | siehe Modulhandbuch |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1904: Building Information Modeling |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | siehe Modulhandbuch |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0370: Computerbasierte Tragwerksberechnungen |
Typ | Vorlesung |
SWS | 1 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 76, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0372: Computerbasierte Tragwerksberechnungen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | |
Prüfungsdauer und -umfang | Siehe korrespondierende Vorlesung |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0286: Einführung in die Statistik mit R |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in R Graphiken mit R Deskriptive Statistik (Boxplot, Perzentile, Ausreißer) Wahrscheinlichkeitsrechnung (Kombinatorik, Relative Häufigkeiten, Bedingte Wahrscheinlichkeit) Zufallszahlen und Verteilungen (Vertrauensbereich, stetige und diskrete Verteilungen, Prüfverteilungen (t-F-X²-Verteilung)) Korrelations- und Regressionsanalyse (Vertrauensbereich von Kalibriergraden, Linearität) Statistische Testverfahren (Mittelwert-t-Test, Chi^2-Test, F-Test) Varianzanalyse (ANOVA, Bartlett-Test, Kruskal-Wallis Ranksummen Test) Einführung in Zeitreihen (tseries) Einführung in die Clusteranalyse (k-means) |
Literatur |
Regionales Rechenzentrum für Niedersachsen Einführung in die Statistik mit R, Andreas Handl, Skript Uni Bielefeld und die dazugehörige Aufgabensammlung |
Lehrveranstaltung L0776: Einführung in die Statistik mit R |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | siehe Vorlesung |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0470: Grundlagen der Geomatik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schriftliche Ausarbeitungen zu allen fünf Übungen, ggf. Testklausur |
Dozenten | Prof. Peter Andree |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Andree, P.: Grundlagen der Geomatik (Skript) Resnik, B. / Bill, R.: Vermessungskunde für den Planungs- Bau- und Umweltbereich, Wichmann-verlag Witte, B. / Sparla, P.: Vermessungskunde und Grundlagen der Statistik für das Bauwesen, Wichmann-Verlag Gruber, F.J. / Joeckel, R.: Formelsammlung für das Vermessungswesen, Vieweg + Teubner-Verlag |
Lehrveranstaltung L0471: Grundlagen der Geomatik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Peter Andree |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0125: Numerik und Matlab |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | 5 Übungsaufgaben jeweils mit Testat am Ende |
Studienleistung | Verpflichtendes Testat: Die Studenten müssen wöchentlich Programmieraufgaben in Matlab lösen. Zum erfolgreichen Bestehen des Laborpraktikums müssen alle gestellten Aufgaben gelöst werden. Die Studenten müssen dazu ihre Lösungen direkt am Rechner den betreuenden Tutoren und/oder wissenschaflichen Mitarbeitern gut vorbereitet präsentieren. Keine Bonusmöglichkeit für die Modulnote. |
Dozenten | Prof. Siegfried Rump, Weitere Mitarbeiter |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur (Software-Teil):
|
Lehrveranstaltung L1744: Praktikum Trinkwasserchemie |
Typ | Laborpraktikum |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | 6 Versuchsprotokolle |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
!Maximal 12 Teilnehmer! Die Studierenden werden mit grundlegenden experimentellen Arbeiten im Laboratorium vertraut gemacht. Die Versuche geben einen Überblick über die wichtigsten chemischen Analysemethoden von Trinkwasser. Hierzu gehören neben der Probenahme, die Photometrie, die Säure-Base-Titration und die komplexometrische Bestimmung. Alle Versuche stehen in engem Zusammenhang mit praktischen Aspekten der Trinkwasseraufbereitung und der Trinkwasserverteilung (z.B. Enteisenung, Enthärtung und Entsäuerung). Instrumentelle Analytik ist nicht Thema des Praktikums. 1. Tag: Einführung, Sicherheitsbelehrung und Vorbereitung 2. Tag: Elektrische Leitfähigkeit, Calcitsättigung, Härte des Wassers 3. Tag: Organischer Kohlenstoff, Eisen, Säure- und Basekapazität 4. Tag: Auswertung und Anfertigen der Protokolle 5. Tag: Testierung der Protokolle |
Literatur |
Siehe Skript. See Script. |
Lehrveranstaltung L1228: Projekte II |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | ca. zehnminütige Präsentation |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Exkursionen zu verschiedenen Projekten der Bau- und Umweltwirtschaft |
Literatur | keine |
Lehrveranstaltung L0472: Vorbeugender und abwehrender Brandschutz |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Andreas Kattge |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0853: Mathematik III |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I + II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis III) + 60 min (Differentialgleichungen 1) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1028: Analysis III |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Differential- und Integralrechnung mehrerer Variablen:
|
Literatur |
|
Lehrveranstaltung L1029: Analysis III |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1030: Analysis III |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1031: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Theorie und Numerik gewöhnlicher Differentialgleichungen
|
Literatur |
|
Lehrveranstaltung L1032: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1033: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0613: Massivbau I |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundkenntnisse in Baustatik und Baustoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Geschichte des Massivbaus in wesentlichen Zügen wiedergeben und die Grundsätze der Tragwerksplanung unter Beachtung gängiger Einwirkungskombinationen und Sicherheitskonzepte erläutern. Sie können einfache Stabtragwerke entwerfen und bemessen und das mechanischen Verhalten der Baustoffe und häufiger Bauteile beurteilen und diskutieren. |
Fertigkeiten |
Die Studierenden können die grundlegenden Entwurfs- und Bemessungsverfahren auf praktische Fragestellungen anwenden. Sie sind in der Lage, einfache Tragwerke des Massivbaus zu entwerfen und für Biegung und Biegung mit Längskraft zu bemessen sowie hierfür die bauliche und konstruktive Umsetzung vorzusehen. Darüber hinaus können sie Entwurfs- und Konstruktionsskizzen anfertigen und die Ergebnisse von Berechnung und Bemessung sprachlich darlegen. |
Personale Kompetenzen | |
Sozialkompetenz | keine |
Selbstständigkeit | Die Studierenden sind fähig, einfache Stahlbetontragwerke eigenständig zu entwerfen und zu bemessen sowie die Ergebnisse kritisch zu beurteilen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht |
Lehrveranstaltung L0896: Projektseminar Massivbau I |
Typ | Seminar |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Im Rahmen des Projektseminars wird ein einfaches Tragwerk entworfen und bemessen. |
Literatur |
Lehrveranstaltung L0303: Stahlbetonbau I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Es werden folgende Themen/Inhalte behandelt:
|
Literatur |
Download der Unterlagen zur Vorlesung über Stud.IP! |
Lehrveranstaltung L0305: Stahlbetonbau I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0660: Bau- und Umweltmanagement |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz | -- |
Selbstständigkeit | -- |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 100 Minuten |
Zuordnung zu folgenden Curricula |
Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L0396: Bauprojektmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0397: Bauprojektmanagement |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0408: Bauvertragsrecht |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Günter Schmeel |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0346: Umweltrecht |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Friederike Mechel |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Überblick über die Entwicklung des Umweltrechts Aufbau des Umweltrechts in Europa und in Deutschland Wichtige europäische und deutsche Rechtsvorschriften:
Zusammenspiel Umweltrecht und Technische Standards (SdT, BAT) |
Literatur |
|
Modul M0706: Geotechnik I |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Module aus dem B.Sc. Bau- und Umweltingenieurwesen:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die bodenmechanischen Grundlagen wie den Aufbau und die Eigenschaften des Bodens, die Spannungsverteilung infolge von Eigengewicht, Wasser oder Strukturen, die Konsolidierung und Setzung sowie das Versagen des Bodens infolge von Grund- und Böschungsbruch beschreiben. |
Fertigkeiten |
Die Studierenden sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz | -- |
Selbstständigkeit | -- |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht |
Lehrveranstaltung L0550: Bodenmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0551: Bodenmechanik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1493: Bodenmechanik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Studienleistung | Testate (Anm: Abweichend von der Lehrveranstaltungsform 'Testat' laut ASPO sind hier Kurztests gemeint): Sechs Testate. Durch Bestehen aller Testate kann die Modulnote um 0,3 verbessert werden. |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0744: Baustatik II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Uwe Starossek |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte der linearen Stabstatik statisch unbestimmter Systeme wiedergeben. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage baustatische Berechnungen von statisch bestimmten und statisch unbestimmten Tragwerken durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden sind in der Lage Hausübungen selbständig zu bearbeiten. Durch das semesterbegleitende Feedback wird es ihnen ermöglicht, sich während des Semesters selbst einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht |
Lehrveranstaltung L0673: Baustatik II |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Krätzig, W. B.; Harte, R.; Meskouris, K.; Wittek, U.: Tragwerke 2 - Theorie und Berechnungsmethoden statisch unbestimmter Stabtragwerke, 4. Auflage, Berlin, 2004 |
Lehrveranstaltung L0674: Baustatik II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Studienleistung | Freiwillige Bearbeitung von Hausübungen. Bei erfolgreicher Bearbeitung wird ein Testat erteilt, das im Falle des Bestehens der Klausur zur Verbesserung der Note führt. |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0869: Wasserbau II |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Wasserbau I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Begriffe des Wasserbaus und der Hydraulik definieren. Sie sind in der Lage die Anwendung der Erhaltungssätze der Hydromechanik auf praktische Probleme der Hydraulik zu erläutern. Sie können darüber hinaus die wesentlichen Aufgaben des Wasserbaus darstellen und einen Überblick geben über den Flussbau, den Hochwasserschutz, den Energiewasserbau und den Verkehrswasserbau. |
Fertigkeiten |
Die Studierenden sind in der Lage die Methoden und Ansätze des Wasserbaus auf einfache praktische Fragestellungen anzuwenden. Sie können einfache wasserbauliche Systeme entwerfen. Daneben sind Sie in der Lage die in der Hydraulik gängigen Ansätze anzuwenden und können als Grundlage für den Entwurf im Wasserbau Wasserspiegellagen in Gerinnen, Einflüsse von Bauwerken sowie Strömungsverhältnisse in Rohren berechnen und bewerten. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten. |
Selbstständigkeit | Die studierenden können selbstständig deren Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 2 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0957: Hydraulik |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bewegungen inkompressibler Flüssigkeiten in geschlossenen und offenen Systemen
|
Literatur |
Zanke, Ulrich C. , Hydraulik für den WasserbauUrsprünglich erschienen unter: Schröder/Zanke "Technische Hydraulik", Springer-Verlag, 2003 Naudascher, E.: Hydraulik der Gerinne und Gerinnebauwerke, Springer, 1992 |
Lehrveranstaltung L0958: Hydraulik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0959: Wasserbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlagen des Wasserbaus
|
Literatur |
Strobl, T. & Zunic, F: Wasserbau, Springer 2006 Patt, H. & Gonsowski, P: Wasserbau, Springer 2011 |
Lehrveranstaltung L0960: Wasserbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0611: Stahlbau I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können nach der Absolvierung des Moduls:
|
Fertigkeiten |
Die Studierenden können den Werkstoff Stahl in Bezug auf seine Eigenschaften und seine Anwendung beurteilen und sinnvoll einsetzen. Sie können das Sicherheitskonzept in Bezug auf Einwirkungen, Schnittgrößen und Grenzwiderstände anwenden. Sie können die Tragsicherheit und Gebrauchstauglichkeit von einfachen Stäben unter Zug-, Druck- und Biegebeanspruchung bewerten. |
Personale Kompetenzen | |
Sozialkompetenz | Sie können sich nach der Teilnahme an der freiwilligen Veranstaltung zum Bau eines Fachwerkträgers selbständig in Kleingruppen organisieren und einen Fachwerkträger mit geschraubten Verbindungen nach Anleitung und Konstruktionsplänen zusammenbauen. |
Selbstständigkeit |
Die Studierenden entwickeln die Fähigkeit, einfache Tragwerke in Stahlbauweise zu entwerfen und zu bemessen. Auf dem erworbenen Grundlagenwissen aufbauend können sich die Studierenden bei Bedarf mit weiteren, spezielleren Themen des Stahlbaus im Eigenstudium befassen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht |
Lehrveranstaltung L0299: Stahlbau I |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Petersen, C.: Stahlbau, 4. Auflage 2013, Springer-Vieweg Verlag Wagenknecht, G.: Stahlbau-Praxis nach Eurocode 3, Bauwerk-Verlag 2011
|
Lehrveranstaltung L0300: Stahlbau I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0628: Wasserwirtschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Mathematik I bis III; Wasserbau I; Chemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die hydrologischen und wasserwirtschaftlichen Begriffe des Wasserkreislaufs und die Stoffparameter zur Kennzeichnung der Gewässergüte definieren. Die typischen Aquifertypen sowie die darin ablaufenden Strömungs- und Speicherungsvorgänge können sie fachlich erläutern. Sie können das Darcy-Gesetz und die mathematische Beschreibung von Strömungsvorgängen sowie deren Lösungsansätze ableiten. Sie sind in der Lage den physikalischen Hintergrund der Brunnenanströmung zu erklären. Die Grundlagen des Stofftransports im Grundwasser können sie wiedergeben. |
Fertigkeiten |
Die Studierenden sind in der Lage die grundlegenden Zusammenhänge der Hydrologie und Wasserwirtschaft zur Lösung praktischer Fragestellungen anzuwenden. Sie sind in der Lage Wasserqualitätsdaten zu bewerten und hydrologische Wasserbilanzen zu erstellen. Es ist ihnen möglich, aus Grundwasserstandsdaten Potential- und Stromlinien abzuleiten und daraus Fließgeschwindigkeiten, Fließwege und Fließzeiten zu berechnen. Sie können hydraulische Tests im Labor und Gelände zur Bestimmung von Durchlässigkeiten und Speicherkoeffizienten auswerten. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können sich bei der Lösung von Problemstellungen gegenseitig Hilfestellung geben. |
Selbstständigkeit |
Werden in diesem Modul nicht vermittelt. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0251: Grundwasserhydrologie |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Hydrologische Wasserbilanz, Aquifertypen, Grundwasserfließgeschwindigkeiten, Darcy-Gesetz, Grundwassergleichen, Speichervermögen, Grundwasserströmungsgleichung, Pumpversuche, Beyer-Verfahren, Stofftransport im Grundwasser |
Literatur |
Todd; K. (2005): Groundwater Hydrology Fetter, C.W. (2001): Applied Hydrogeology Hölting & Coldewey (2005): Hydrogeologie Charbeneau, R.J. (2000): Groundwater Hydraulics and pollutant Transport |
Lehrveranstaltung L0252: Grundwasserhydrologie |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0366: Wasserwirtschaft und Gewässergüte |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Teil: Wasserwirtschaft Die Vorlesung Wasserwirtschaft und Gewässergüte vermittelt im Bereich Wasserwirtschaft den Studierenden grundlegende Kenntnisse über den globalen sowie den regionalen Wasserkreislauf. Bilanzgrößen zur Ermittlung des regionalen Wasserhaushalts, des Wasserdargebots und der Wasserknappheit werden vorgestellt und mögliche Ansätze der Wasserkreislaufschließung in urbanen Systemen werden diskutiert. Vermittelt werden die durch Wassernutzung und wasserwirtschaftliche Maßnahme eingebrachten bzw. entfernten Stoffe, die für Gewässergüte und Wasserversorgung von Bedeutung sind. Die Studierenden erhalten einen Überblick über natürliche und anthropogene Wasserinhaltsstoffe und Ihre Bedeutung in der wasserwirtschaftlichen Nutzung. Weiterhin werden Bewertungs- und Entscheidungsverfahren auf Basis der Ökobilanz (Life-Cycle Assessment) im wasserwirtschaftlichen Kontext vorgestellt und anhand von Beispielen vertieft. |
Literatur |
Teil Wasserwirtschaft:
|
Modul M0631: Massivbau II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, die grundlegenden Prinzipien und Verfahren der Bemessung von Stahlbetontragwerken abzuleiten und zu erläutern. Gleiches gilt auch für die Schnittgrößenermittelung von einfachen Plattensystemen. |
Fertigkeiten |
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, die im Stahlbetonbau gebräuchlichen Bemessungskonzepte im Grenzzustand der Tragfähigkeit (V, M, T) sowie im Grenzzustand der Gebrauchstauglichkeit (Rissbreiten & Formänderung) an Stab- und einfachen Flächentragwerken anzuwenden. Weiterhin können Sie die Schnittgrößen von einfachen Plattentragwerken ermitteln. Studierende können die Ergebnisse der Bemessung in Bewehrungspläne für Stahlbetontragwerke umsetzen. Sie können den Aufbau und den wesentlichen Inhalt einer statischen Berechnung angeben. |
Personale Kompetenzen | |
Sozialkompetenz |
Nach Abschluss des Projektes sind die Studierenden in der Lage, in einem Team ein reales Gebäude zu bemessen und die Ergebnisse zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind fähig, einfache Stahlbetontragwerke eigenständig zu entwerfen und zu bemessen sowie die Ergebnisse kritisch zu beurteilen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0894: Projektseminar Stahlbetonbau II |
Typ | Projektseminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Entwurf und Bemessung eines einfachen Stahlbetontragwerks |
Literatur | Skript zur Lehrveranstaltung "Stahlbetonbau II" |
Lehrveranstaltung L0348: Stahlbetonbau II |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0349: Stahlbetonbau II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0755: Geotechnik II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Module:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage, die grundlegenden Prinzipien und Verfahren zum Nachweis und zur Bemessung im Grundbau zu beschreiben. |
Fertigkeiten |
Die Studierenden können die grundlegenden Prinzipien und Verfahren zum Nachweis und zur Bemessung im Grundbau anwenden. Sie sind insbesondere in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen
Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und
Lernmanagement zu
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0552: Grundbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0553: Grundbau |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1494: Grundbau |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Studienleistung | Testate (Anm: Abweichend von der Lehrveranstaltungsform 'Testat' laut ASPO sind hier Kurztests gemeint): Sechs Testate. Durch Bestehen aller Testate kann die Modulnote um 0,3 verbessert werden. |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0887: Verkehrsplanung und Verkehrstechnik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Vier schriftliche Ausarbeitungen in Gruppenarbeit semesterbegleitend |
Zuordnung zu folgenden Curricula |
Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L0997: Verkehrsplanung und Verkehrstechnik |
Typ | Projekt-/problembasierte LehrveranstaltungLehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Lehrveranstaltung gibt einen einführenden Überblick in das Grundlagenwissen für städtische und regionale Verkehrsplanung, einschließlich des Teilgebiets Verkehrstechnik. Folgende Themenfelder werden behandelt:
|
Literatur |
Steierwald, Gerd; Kühne, Hans Dieter; Vogt, Walter (Hrsg.) (2005) Stadtverkehrsplanung: Grundlagen, Methoden, Ziele. Springer Verlag. Berlin. Bosserhoff, Dietmar (2000) Integration von Verkehrsplanung und räumlicher Planung. Schriftenreihe der Hessischen Straßen- und Verkehrsverwaltung, Heft 42. Hessisches Landesamt für Straßen- und Verkehrswesen. Wiesbaden. Lohse, Dieter; Schnabel, Werner (2011) Grundlagen der Straßenverkehrstechnik und der Verkehrsplanung: Band 1; Straßenverkehrstechnik. Beuth Verlag. Berlin. Forschungsgesellschaft für Straßen- und Verkehrswesen (2007) Richtlinien für die Anlage von Stadtstraßen – RASt 06. FGSV-Verlag. Köln (FGSV, 200). |
Modul M0612: Stahlbau II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Stahlbau I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können nach der Absolvierung des Moduls:
|
Fertigkeiten | Die Studenten können einfache Stahltragwerke entwerfen, Verbindungen konstruieren, den Kraftfluss beschreiben und mögliche Versagensmodi erkennen, Imperfektionen für globale und lokale Versagensmodi festlegen, Zustandsgrößen für imperfekte Stabtragwerke nach Theorie II. Ordnung berechnen und die Ergebnisse überprüfen. |
Personale Kompetenzen | |
Sozialkompetenz | -- |
Selbstständigkeit | -- |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L0301: Stahlbau II |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Petersen, C.: Stahlbau, 4. Auflage 2013, Springer-Vieweg Verlag Wagenknecht, G.: Stahlbau-Praxis nach Eurocode 3, Bauwerk-Verlag 2011
|
Lehrveranstaltung L0302: Stahlbau II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0686: Siedlungswasserwirtschaft |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ihre vertieften Kenntnisse der städtischen Wasserinfrastrukturen beispielhaft wiedergeben und die Richtlinien zur Auslegung von Trinkwasserver- und Abwasserentsorgungssystemen in Deutschland sowie im Ausland herleiten. Zugleich sind sie in der Lage, die zu Grunde liegenden naturwissenschaftlichen Zusammenhänge und empirischen Annahmen detailliert zu erklären. Die Prozesse in der Siedlungswasserwirtschaft und die zur Trinkwasseraufbereitung und Abwasserreinigung eingesetzten Technologien können sie darstellen und diskutieren. Die Studierenden können zudem aktuelle Probleme und Entwicklungen der Siedlungswasserwirtschaft unter Risiko- und Sicherheitsaspekten beurteilen und in den legislativen Kontext einordnen. Wichtige Zukunftstechnologien, wie bspw. Nieder- und Hochdruck-Membrantechnik sowie Technologien zum Rückhalt von Mikroschadstoffen, können sie skizzieren. |
Fertigkeiten |
Die Studierenden können siedlungswasserwirtschaftliche Bemessungsvorgaben eigenständig anwenden. Dies umfasst sowohl Fertigkeiten zur systemaren Auslegung (Trinkwasserversorgungsysteme, Kanalisationen, Abwasserreinigungsanlagen) als auch zur Bemessung konkreter Technologien in der Trinkwasseraufbereitung und Abwasserreinigung. Neben technischen Fertigkeiten verfügen die Studierenden über Know-how, um biologisch-chemische Prozess-Fragestellungen im fachspezifischen Kontext zu bearbeiten. |
Personale Kompetenzen | |
Sozialkompetenz |
Im Rahmen dieses Moduls werden Sozialkompetenzen nicht gezielt angesprochen. |
Selbstständigkeit | Neben der Anwendung klassischer Bemessungsinstrumente sind die Studierenden in der Lage, eigene Ideen zur Optimierung siedlungswasserwirtschaftlicher Prozesse zu entwickeln und sich hierfür mit Hilfe von Hinweisen eigenständig notwendiges Wissen zu erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0276: Abwasserentsorgung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung und Übung "Abwasserentsorgung" umfassen Themen der Stadtentwässerung und Abwasserbehandlung. Stadtentwässerung
Abwasserbehandlung
|
Literatur |
Die hier aufgeführte Literatur ist in der Bibliothek der TUHH verfügbar. The literature listed below is available in the library of the TUHH.
|
Lehrveranstaltung L0278: Abwasserentsorgung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0306: Trinkwasserversorgung |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen, Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung Trinkwasserversorgung vermittelt den Studierenden grundlegende Kenntnisse zum gesamten Wasserversorgungssystem bestehend aus Gewinnungsanlagen, Aufbereitung, inklusive Pumpentechnik, Rohrleitungen, Speicheinrichtungen und dem Verteilungssystem bis hin zum Verbraucher. . Zunächst werden in der der Vorlesung die Grundlagen zur Bemessung von Rohrleitungen und zur Hydraulik von Rohrleitungssystemen bestehend aus Anlagen/Rohrleitungen (Anlagenkennlinie) und Pumpen (Pumpenkennlinie) vermittelt. An Hand von Beispielen lernen die Studierenden, wie daraus der Anlagenbetriebspunkt ermittelt wird. Weiterhin werden Wasservorkommen und deren Erschließung vorgestellt und die Studierenden in die Lage versetzt, einfache Bemessungen von Grundwasserbrunnen durchzuführen. Für den Bereich der Wasserverteilung wird gelehrt, wie Wasserbedarfszahlen ermittelt werden und daraus Planungswerte zur Dimensionierung der unterschiedlichen Elemente und Aufgaben einer Wasserversorgung (z. B. Feuerlöschbedarf) abgeleitet werden. Die Aufgaben von Speichern und deren Bemessung werden erklärt, so dass die unterschiedlichen Möglichkeiten der Speicheranordnung im System begründet werden können. Die Studierenden können schließlich die Bemessung eines einfachen Verteilungssystems eigenständig durchzuführen. In einem weiteren Teil der Vorlesung werden die Prozesse der Trinkwasseraufbereitung behandelt. Diese umfassen, die zentralen Mechanismen und Auslegungsparameter der Sedimentation, der Filtration, der Flockung, der Membranverfahren, der Adsorption, der Enthärtung, des Gasaustausch, des Ionenaustauschs und der Desinfektion. Die Grundlagen zur Technik der Prozessaufbereitung werden vertieft durch parallele Analyse der Auswirkungen des jeweiligen Prozesses auf die chemisch - physikalischen Parameter der Wasserqualität. |
Literatur |
Gujer, Willi (2007): Siedlungswasserwirtschaft. 3., bearb. Aufl., Springer-Verlag. Karger, R., Cord-Landwehr, K., Hoffmann, F. (2005): Wasserversorgung. 12., vollst. überarb. Aufl., Teubner Verlag Rautenberg, J. et al. (2014): Mutschmann/Stimmelmayr Taschenbuch der Wasserversorgung. 16. Aufl., Springer-Vieweg Verlag. DVGW Lehr- und Handbuch Wasserversorgung: Wasseraufbereitung - Grundlagen und Verfahren, m. CD-ROM: Band 6 (2003). |
Lehrveranstaltung L0308: Trinkwasserversorgung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Klaus Johannsen, Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Thesis
Modul M-001: Bachelorarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 360, Präsenzstudium 0 |
Leistungspunkte | 12 |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Abschlussarbeit: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Abschlussarbeit: Pflicht Bau- und Umweltingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energie- und Umwelttechnik: Abschlussarbeit: Pflicht General Engineering Science: Abschlussarbeit: Pflicht General Engineering Science (7 Semester): Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen (Weiterentwicklung): Abschlussarbeit: Pflicht Logistik und Mobilität: Abschlussarbeit: Pflicht Maschinenbau: Abschlussarbeit: Pflicht Mechatronik: Abschlussarbeit: Pflicht Schiffbau: Abschlussarbeit: Pflicht Technomathematik: Abschlussarbeit: Pflicht Teilstudiengang Lehramt Elektrotechnik-Informationstechnik: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht |