Studiengangsbeschreibung
Inhalt
Das Bauingenieurwesen beschäftigt sich mit der Errichtung von Bauwerken aller Art, insbesondere von Ingenieurbauwerken wie Brücken und Tunnel, Wasserbauwerken, Bauwerken der Ver-und Entsorgung, Hafenbauwerken, Straßen, Hallenbauwerken sowie Industrie-, Gewerbe- und Wohnimmobilien, inklusive des Bauens im Bestand. Der Masterstudiengang Bauingenieurwesen schafft die Voraussetzungen zur Bearbeitung anspruchsvoller Projekte in der Baupraxis inklusive der dafür notwendigen ökonomischen und Management-Kompetenzen. Bauwerke entstehen im Zusammenwirken von Bauherr, planenden und ausführenden Unternehmen, Umfeld, Politik und Gesellschaft. Das Bauwesen bewegt sich dabei im Spannungsfeld zwischen technisch und ökonomisch Machbarem, dem politischen Willen und den gesetzlichen Vorgaben. Darauf bereitet das Studium vor. Das Masterstudium Bauingenieurwesen eröffnet bei entsprechendem Abschluss auch die Möglichkeit einer Promotion und schafft die Voraussetzungen für eine erfolgreiche Forschungstätigkeit.
Der Masterstudiengang Bauingenieurwesen ist verknüpft mit dem
Bachelorstudiengang "Bau-
und Umweltingenieurwesen" sowie dem Studiengang "Allgemeine Ingenieurwissenschaften
Vertiefung Bauingenieurwesen" der TU Hamburg im Sinne
eines konsekutiven Studiengangs. Mögliche Übergänge aus anderen
Bachelorstudiengängen richten sich nach einem Anforderungskatalog, der
in dem Dokument "Fachspezifische Anforderungen für den
Masterstudiengang Bauingenieurwesen" beschrieben ist.
Berufliche Perspektiven
Der
Masterstudiengang Bauingenieurwesen bereitet auf eine leitende berufliche Tätigkeit in
Planungsbüros, ausführenden Unternehmen des Bauwesens, Baubehörden, Besitzern großer
Immobilien- und Infrastruktureinrichtungen, bei Herstellern von Bauprodukten, in der Materialprüfung und in Forschungseinrichtungen
vor. Er zielt dabei ab auf eine Tätigkeit im Bereich umfangreicher und schwieriger
Bauvorhaben, oder in der Forschung und Entwicklung. In Deutschland besteht zurzeit ein großer Bedarf an Bauingenieuren insbesondere mit guten Kenntnissen im konstruktiven Ingenieurbau. Der Studiengang orientiert sich an diesem Bedarf.
Lernziele
Die Absolventen und Absolventinnen erwerben dazu die Fertigkeiten um notwendige Eigenschaften, z.B. von Böden, Baustoffen und Bauteilen experimentell zu ermitteln und mit bauspezifischen Programmsystemen zur Berechnung des mechanischen Verhaltens, der Hydraulik von Systemen sowie anderer physikalisch-chemischer Prozesse umzugehen. Sie sind zu selbständigem Arbeiten im Bauingenieurwesen und in angrenzenden Disziplinen befähigt und können die für die Lösung technischer und planerischer Fragestellungen benötigten Methoden und Verfahren sowie neue Erkenntnisse anwenden, kritisch hinterfragen und weiterentwickeln.
Die Studentinnen und Studenten können über fortgeschrittene Inhalte und Probleme des Bauingenieurwesens mit Fachleuten und Laien kommunizieren. Sie sind in der Lage, Vorgehensweise und Ergebnisse ihrer Arbeit schriftlich und mündlich verständlich darzustellen. Die Absolventen und Absolventinnen erlernen außerdem Fragestellungen in einem Team zielorientiert zu bearbeiten und ihre Methodik und Ergebnisse verständlich und erfolgreich zu dokumentieren und mit zeitgemäßen Präsentationsmethoden gegenüber anderen Personen zu vertreten. Dabei erlernen sie, in Teilbereichen oder für das Gesamtprojekt, Führungsverantwortung zu übernehmen. Sie sind in der Lage sich ein Thema selbstständig zu erarbeiten, geeignete Methoden zu Lösung von Fragestellungen und Problemen auszuwählen und diese anzuwenden. Sie sind in der Lage, notwendige Informationen zu beschaffen und in den Kontext ihres Wissens zu setzen. Die Absolventinnen und Absolventen sind ferner qualifiziert, Entwürfe für anspruchsvolle Vorhaben des Hoch‐, Tief‐, Brücken‐ und Wasserbaus zu erarbeiten und diese unter Berücksichtigung der erforderlichen Abklärungen und der Prüfung vorhandener Informationen zu planen. Dabei können sie
- erfolgreich mit fachnahen und fachfremden Akteuren aus der öffentlichen Verwaltung, der Wirtschaft und der Wissenschaft zusammenarbeiten,
- selbständig Forschungsaufgaben zur theoretischen und experimentellen Untersuchung von Bauwerken, Baugrund, Baustoffen, Infrastrukturanlagen oder im Baumanagement definieren und hierfür Projekte planen und durchführen,
- die Belange von Baubeteiligten und Planungsbetroffenen sowie der Gesellschaft verantwortungsvoll einschätzen und berücksichtigen.
Studiengangsstruktur
Der Studiengang besteht mit Ausnahme der Masterarbeit aus Modulen, die jeweils 6 Leistungspunkte nach ECTS (LP) umfassen. Der Studiengang ist gegliedert in eine "Kernqualifikation" sowie in die fünf alternativen Vertiefungen "Hafenbau und Küstenschutz", "Tiefbau", "Tragwerke", "Wasser und Verkehr" und "Modellierung und Simulation" sowie die Masterarbeit. Die Kernqualifikation umfasst 24 LP, die Vertiefungen jeweils 66 LP und die Masterarbeit 30 LP. Das Studium umfasst damit insgesamt 120 LP, verteilt über 2 Jahre und 4 Studiensemester.
Die Kernqualifikation umfasst je ein Modul zu "Finite Elemente Methoden" sowie "Nachhaltigkeit und Risikomanagement" im 1. Semester. Hinzu kommen jeweils ein offenes Modul im 1., 2. oder 3. Semester aus dem Bereich Betrieb und Management sowie aus den nichttechnischen Angeboten im Master. Die Lehrveranstaltungen dieser offenen Module werden aus studiengangsübergreifenden Katalogen ausgewählt.
Die Vertiefungen umfassen jeweils 42 LP im Pflichtbereich, mit Modulen die für die jeweilige Vertiefung als unverzichtbar angesehen werden, und 24 LP im Wahlpflichtbereich. Sie beinhalten auch jeweils ein offenes Modul und eine Studienarbeit im Umfang von je 6 LP. Die Module des Pflichtbereichs mit Ausnahme der Studienarbeit liegen im 1. und 2. Semester.
Das 4. Semester umfasst die Masterarbeit. Außerdem können noch einzelne Lehrveranstaltungen des offenen Moduls der Vertiefung im 4. Semester belegt werden. Die Studentinnen und Studenten wählen eine Vertiefung, außerdem haben Sie Wahlmöglichkeiten im Bereich "Betrieb und Management", den "Nichttechnischen Angeboten im Master" sowie im Wahlpflichtbereich der gewählten Vertiefung.
Ein Auslandssemester ist möglich. Insbesondere das 3. Semester wird von Studentinnen und Studenten gerne als Auslandssemester genutzt, was dadurch erleichtert wird, dass im 3. Semester keine Pflichtmodule, sondern nur Wahlpflichtmodule vorgesehen sind (Mobilitätsfenster).
Fachmodule der Kernqualifikation
Modul M0523: Betrieb & Management |
Modulverantwortlicher | Prof. Matthias Meyer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0524: Nichttechnische Angebote im Master |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Nichttechnischen Angebote (NTA) vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im nichttechnischen Bereich gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M2004: Sustainable Circular Economy |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | none |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to describe single techniques and to give an overview for the field of safety and risk assessment, Circular Economy as well as environmental and sustainable engineering, in detail:
|
Fertigkeiten |
Students are able apply interdisciplinary system-oriented methods for Circularity and risk assessment as well as sustainability reporting. They can evaluate the effort and costs for processes and select economically feasible treatment concepts. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Students can gain knowledge of the subject area from given sources and transform it to new questions. Furthermore, they can define targets for new application or research-oriented duties in for risk management and sustainability concepts accordance with the potential social, economic and cultural impact. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (45 Minuten in Gruppen) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Management und Controlling: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemie- und Bioingenieurwesen: Wahlpflicht Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L3264: Circular Economy |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0319: Environment and Sustainability |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list shows examples:
|
Literatur | Wird in der Veranstaltung bekannt gegeben. |
Modul M2024: Finite Elemente |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mechanik I/II, Mathematik I/II, Differentialgleichungen I, Baustatik I, Baustatik II, Baustatik III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden theoretische, methodische und praktische Aspekte der Methode der finiten Elemente wiedergeben. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, Finite-Elemente-Formulierungen herzuleiten, zu implementieren und in geeigneter Weise anzuwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend diskutieren, ihre eigenen Ergebnisse und Ideen vor Kommilitonen und Dozenten vertreten, fachlich konstruktives Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen umgehen. |
Selbstständigkeit |
Die Studierenden können sich gegebene und fremde Quellen über das Fachgebiet erschließen sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen anwenden. Sie sind in der Lage, die notwendigen Arbeitsschritte für die Lösung von Fragestellungen der Finite-Elemente-Methode zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L3279: Finite Elemente |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Direkte Steifigkeitsmethode, variationelle Formulierung von finiten Elementen, Anforderungen an die Ansätze, Konvergenzbedingungen, isoparametrisches Konzeptfinite Elemente für Fachwerke, Balken, Scheiben und Platten, Locking und alternative FE-Formulierungen, Grundlagen der Modellbildung, mathematisches und numerisches Modell, Beurteilung und Interpretation von Rechenergebnissen, Singularitäten, Einfluss von Approximationsfehlern, Wechselwirkungen zwischen mathematischem und numerischem Modell |
Literatur |
Vorlesungsskript |
Lehrveranstaltung L3280: Finite Elemente |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Direkte Steifigkeitsmethode, variationelle Formulierung von finiten Elementen, Anforderungen an die Ansätze, Konvergenzbedingungen, isoparametrisches Konzeptfinite Elemente für Fachwerke, Balken, Scheiben und Platten, Locking und alternative FE-Formulierungen, Grundlagen der Modellbildung, mathematisches und numerisches Modell, Beurteilung und Interpretation von Rechenergebnissen, Singularitäten, Einfluss von Approximationsfehlern, Wechselwirkungen zwischen mathematischem und numerischem Modell |
Literatur | Vorlesungsskript |
Fachmodule der Vertiefung Hafenbau und Küstenschutz
Modul M0699: Geotechnik III |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Geotechnik I und II, Mathematik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem erfolgreichen Absolvieren des Moduls sind die Studierenden in der Lage,
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0375: Numerische Methoden in der Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Hans Mathäus Stanford |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt:
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein
|
Literatur |
|
Lehrveranstaltung L0497: Spezialtiefbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0498: Spezialtiefbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0964: Unterirdisches Bauen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Module aus dem Bachelorstudiengang Bau- und Umweltingenieurwesen:
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Kenntnis verschiederner Tunnelbauweisen sowie spezieller Methoden und Verfahren des unterirdischen Bauens. |
||||||||
Fertigkeiten |
Grundkenntnisse beim Entwurf von Tunneln sowie praktische Fertigkeiten in der Tunnelstatik. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Teamfähigkeit in der Projektplanung und beim Entwurf von Tunnelbauwerken. | ||||||||
Selbstständigkeit | Förderung des selbstständigen und kreativen Arbeitens im Rahmen einer Entwurfsübung. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L2407: Angewandter Tunnelbau |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe, Tim Babendererde |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0707: Einführung in den Tunnelbau |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Julian Bubel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1811: Einführung in den Tunnelbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Julian Bubel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1748: Construction Robotics |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basics of project-oriented programming |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Basics of robotics Applications in civil engineering Kinematics |
Fertigkeiten |
Use of specific hardware Development of software routines Python programming language Image processing Basics of localization (LIDAR, SLAM) |
Personale Kompetenzen | |
Sozialkompetenz |
Teamwork Communication skills |
Selbstständigkeit |
Independent work Independent decisions |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L2867: Construction Robotics |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | Prof. Kay Smarsly, Jan Stührenberg |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bock/Linner:
Construction Robotics |
Modul M0593: Baustoffe und Bauwerkserhaltung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde, Bauchemie und Bauphysik, z.B. über die Module Baustoffgrundlagen und Bauphysik sowie Baustoffe und Bauchemie |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können die Komponenten mineralischer Baustoffe und deren Funktion im Detail beschreiben und für die Herstellung von mineralischen Spezialbaustoffen einsetzen. Sie können die Charakteristika mineralischer Bindemittel darstellen. Die Herstellung, Eigenschaften und Anwendungsgebiete von Spezialmörteln und Spezialbetonen können Sie beschreiben und die werkstoffkundlichen Zusammenhänge darstellen. Die Grundlagen der Befestigungstechnik können sie darstellen. |
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage eine Granulometrieoptimierung eines mineralischen Baustoffs durchzuführen. Sie können die Rezeptur eines mineralischen Spezialmörtels entwerfen und diesen Mörtel herstellen. Die Studierenden sind in der Lage nachträgliche Bewehrungsanschlüsse herzustellen. Sie sind in der Lage, Bauschäden zu erkennen, die Ursachen einzugrenzen, die Grundzüge der Bauwerkserhaltung anzuwenden sowie Instandsetzungs- und Verstärkungsmaßnahmen auszuwählen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Die Studierenden sind in der Lage in einer Kleingruppe eine Spezialmörtelrezeptur zu entwickeln. Sie präsentieren ihr Arbeitsergebniss vor dem Dozenten und den anderen Studierenden und stellen sich einer kritischen Diskussion, in der sie ihre Ergebnisse verteidigen bzw. anpassen. Die Studierenden können auf der Basis dieses Feedbacks gemeinsam diesen Spezialbaustoff herstellen. | ||||||||
Selbstständigkeit | Die Studierenden sind in der Lage, die vorhandenen Resourcen an Materialien und Laborausstattung für ihr Projekt selbständig zu nutzen sowie fehlende Komponenten zu recherchieren und zu beschaffen. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht |
Lehrveranstaltung L0255: Instandsetzung von Bauteilen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bauwerkserhaltung, Instandsetzung und Verstärkung, nachträgliche Bauwerksabdichtung |
Literatur | BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen |
Lehrveranstaltung L0253: Mineralische Baustoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Komponenten mineralischer Baustoffe und deren Funktion, Bindemittel, Beton und Mörtel, Spezialmörtel, Spezialbetone |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0256: Technologie mineralischer Baustoffe |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Konzeption und Herstellung eines mineralischen Spezialbaustoffes |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0254: Transportprozesse in Baustoffen und Bauschäden |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Transportprozesse in Baustoffen und Schadensprozesse an Bauteilen |
Literatur | Blaich, J.: Bauschäden, Analyse und Vermeidung |
Modul M0723: Spannbeton- und Massivbrückenbau |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Vertiefte Kenntnisse der Bemessung und Konstruktion von Stahlbetontragwerken sowie Grundlagenwissen in der Berechnung von Stahlbetonkonstruktionen. Module: Massivbau I + II, Baustatik I + II, Mechanik I+II, Betontragwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die Einsatzgebiete der wesentlichen Brückentypen sowie die anzusetzenden Einwirkungen. Sie können die wesentlichen Berechnungsverfahren erläutern. Die Studierenden können die Bemessung einer Spannbetonkonstruktion erläutern. |
Fertigkeiten |
Die Studierenden können vorgespannte Massivbrücken nach den einschlägigen Vorschriften und Verfahren berechnen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppen eine reale Brücke zu entwerfen und zu bemessen. |
Selbstständigkeit |
Die Studierenden können eine Spannbetonbrücke eigenständig berechnen sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0603: Spannbeton- und Massivbrückenbau |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Spannbetonbau
Brückenbau
|
Literatur |
|
Lehrveranstaltung L0604: Spannbeton- und Massivbrückenbau |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1895: Digital Twinning im Bauingenieurwesen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Alexander Chmelnizkij |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | 20 min Vortrag und 5 Seiten Handout |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht |
Lehrveranstaltung L3136: Digital Twinning im Bauingenieurwesen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Alexander Chmelnizkij, Prof. Bastian Oesterle, Prof. Kay Smarsly |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L3137: Digital Twinning im Bauingenieurwesen |
Typ | Seminar |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Alexander Chmelnizkij, Prof. Bastian Oesterle, Prof. Kay Smarsly |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0827: Modellierung in der Wasserwirtschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Klaus Johannsen |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundwassermodellierung
Leitungssysteme
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die softwaregestützte Modellierung von Grundwasserströmungen, zugehörigen Transportprozessen und städtischen Wasserinfrastrukturen beschreiben. In Fallstudien können sie System- und Schwachpunktanalysen durchführen. Zudem können sie die hydraulischen und schadstoffspezifischen Wirkungszusammenhänge auf dem Pfad Boden - Gewässer quantitativ analysieren. |
Fertigkeiten |
Die Studierenden können softwarebasiert Lösungen für bestehende wasserwirtschaftliche Probleme entwickeln und bewerten. Insbesondere sind sie in der Lage, Grundwassermodelle zur Nachbildung von Strömungen und Schadstoffausbreitungsprozessen eigenständig und wissenschaftlich aufzubauen und anzuwenden. Sie haben die Fähigkeit, Fallbeispiele mit den zur Modellierung von Leitungssystemen maßgeblichen Softwarelösungen (zB EPANET, EPA SWMM) abzubilden und zu untersuchen. |
Personale Kompetenzen | |
Sozialkompetenz |
Wird nicht vermittelt. |
Selbstständigkeit |
Wird nicht vermittelt. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0543: Grundwassermodellierung in der Praxis |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Sonja Götz |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Einführung und Anwendung der Grundwassersoftware MODFLOW (PMWIN), Theoretischer Hintergrund des Modells, Studierende bearbeiten unter intensiver Anleitung praktische Fragestellungen mit dem Modell PMWIN. |
Literatur |
MODFLOW-Handbuch Chiang, Wen Hsien: PMWIN |
Lehrveranstaltung L0544: Grundwassermodellierung in der Praxis |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Sonja Götz |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0875: Modellierung von Leitungssystemen |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Modellierung von Wasserversorgungssystemen:
Überblick über die Modellierung von Stadtentwässerungssystemen |
Literatur | Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014. |
Modul M0756: Bodenmechanik und -dynamik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Module: Mathematik I-III, Mechanik I-II, Geotechnik I Lehrveranstaltungen: Bodenmechanisches Praktikum, (Anwendungen der Baudynamik) |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden sind in der Lage,
|
||||||||
Fertigkeiten |
Die Studierenden können
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Die Studierenden können im Team zu Arbeitsergebnissen zu messtechnischen und experimentellen Grundlagen kommen und ihre Ergebnisse am Ende des Semsters gemeinsam präsentieren. | ||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 135 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L0374: Ausgewählte Themen der Bodenmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Hans Mathäus Stanford |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt: ausgewählte Themen aus den Bereichen
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein, je nach behandelten Themen
|
Literatur |
|
Lehrveranstaltung L0452: Bodendynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Anne Hagemann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
• die wesentlichen Gleichungen des Einmassenschwingers herleiten und anwenden, • die Wellenausbreitung im Boden unter dynamischer Anregung • Bodendynamische Parameter und deren Bedeutung • die wesentlichen Labor- und Feldversuche zur Ermittlung bodendynamischer Kennwerte und deren Auswertung, • Maschinenfundamente, • Zyklische Verformungsakkumulation • Grundlagen der Plastodynamik |
Literatur |
|
Lehrveranstaltung L0706: Experimentelle Forschung in der Geotechnik |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Hans Mathäus Stanford, Göta Bürkner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Studierenden sollen:
Ein wesentliches Lernziel ist die Einführung in wissenschaftliches Arbeiten für Studierende, die eine akademische Karriere anstreben, sowie für diejenigen, die in der Praxis tätig sein werden und entsprechende Versuche beauftragen und die Ergebnisse bewerten müssen. Für die praktische Laborarbeit gibt es eine jährlich wechselnde Fragestellung, die jedoch auf den Erkenntnissen und Ergebnissen des Vorgängerjahres aufbauen soll. |
Literatur |
- Grabe, J. (2004): Bodenmechanik und Grundbau, Band 3 der
Veröffentlichungsreihe des Instituts für Geotechnik und Baubetrieb,
Technische Universität Hamburg-Harburg.
|
Modul M0828: Urban Environmental Management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Dorothea Rechtenbach |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can
describe urban development corridors as well as current and future urban environmental
problems. They are able to explain the causes of environmental problems (like
noise).
Students can specify applications for various technical innovations and explain why these contribute to the improvement of urban life. They can, for example, derive and discuss measures for effective noise abatement. |
Fertigkeiten | Students are able to develop specific solutions for correcting existing or future environment-related problems of urban development. They can define a range of conceptual and technical solutions for environmental problems for different development paths. To solve specific urban environmental problems they can select technical innovations and integrate them into the urban context. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung plus Vortrag |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1109: Noise Protection |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Jäschke |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
1) Müller & Möser (2013): Handbook of Engineering Acoustics (also
available in German)
|
Lehrveranstaltung L0874: Urban Infrastructures |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Dr. Dorothea Rechtenbach |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Problem Based Learning Main topics are:
|
Literatur | Depends on chosen topic. |
Modul M0860: Hafenbau und Hafenplanung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
VL Grundlagen des Küstenwasserbaus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Aspekte der Hafenplanung zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Hafenbaus anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente eines Hafens entwerfen. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den funktionellen Entwurf eines Hafens auswählen und diese auf Bemessungsaufgaben anwenden.
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung für die funktionelle Entwurf eines Hafens einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten. |
Selbstständigkeit | Die studierenden können selbstständig deren Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 150 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0809: Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlagen des Hafenbaus
Elemente von Seehäfen
Anbindung von Hinterlandverkehren / Binnenverkehrswasserbau Schutz von Seehäfen
Fischereihäfen und andere kleine Häfen
|
Literatur | Brinkmann, B.: Seehäfen, Springer 2005 |
Lehrveranstaltung L1414: Hafenbau |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0378: Hafenplanung und Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Vorlesungsumdruck, s. www.tu-harburg.de/gbt |
Modul M0861: Modellieren im Wasserbau |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Küstenwasserbau I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Prozesse, die mit der Modellierung von Strömungen und Wellen / Seegang im Wasserbau und Küstenwasserbau verbunden sind, detailliert definieren. Daneben können sie wesentliche Aspekte der Modellierung benennen und die gängigen numerischen Modelle zur Simulation von Strömungen und Seegang beschreiben. |
Fertigkeiten |
Die Studierenden können numerische Modelle auf einfache Fragestellungen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden lernen die Fachkenntnisse in einfachen anwendungsorientierten Fragestellung einzusetzen und im Team mit anderen zusammen zu arbeiten. |
Selbstständigkeit | Die Studierenden können selbstständig ihr Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 3 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht |
Lehrveranstaltung L0813: Hydraulische Modelle |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Strobl, Zunic: Wasserbau, Kap. 11 Hydraulische Modelle, Springer |
Lehrveranstaltung L0812: Modellieren von Seegang |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Lehrveranstaltung L0810: Modelling of Flow in Rivers and Estuaries |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Edgar Nehlsen, Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Introduction to numerical flow modelling
|
Literatur |
Vorlesungsskript Literaturempfehlungen Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (1997): Hydraulische Berechnung von naturnahen Fließgewässern. Düsseldorf: BWK (BWK-Merkblatt). Chow, Ven-te (1959): Open-channel Hydraulics. New York usw.: McGraw-Hill (McGraw-Hill Civil Engineering Series). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019a): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 1: Geodaten in der Fließgewässermodellierung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-1). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019b): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 2: Bedarfsgerechte Datenerfassung und -aufbereitung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-2). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019c): Merkblatt DWA-M 543-3 Geodaten in der Fließgewässermodellierung - Teil 3: Aspekte der Strömungsmodellierung und Fallbeispiele. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-3). Hervouet, Jean-Michel (2007): Hydrodynamics of free surface flows. Modelling with the finite element method. Chichester: Wiley. Online verfügbar unter http://www.loc.gov/catdir/enhancements/fy0741/2007296953-b.html. IAHR (2015): Professional Specifications for Physical and Numerical Studies in Environmental Hydraulics. In: Hydrolink (3/2015), S. 90-92. Olsen, Nils Reidar B. (2012): Numerical Modelling and Hydraulics. 3. Aufl. Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology. Szymkiewicz, Romuald (2010): Numerical modeling in open channel hydraulics. Dordrecht: Springer (Water science and technology library, 83). van Waveren, Harold (1999-): Good modelling practice handbook. [Utrecht], Lelystad, Den Haag: STOWA; Rijkswaterstaat-RIZA; SDU, afd. SEO/RIZA [etc. distr.] (Nota, nr. 99.036). Zielke, Werner (Hg.) (1999): Numerische Modelle von Flüssen, Seen und Küstengewässern. Deutscher Verband für Wasserwirtschaft und Kulturbau. Bonn: Wirtschafts- und Verl.-Ges. Gas und Wasser (Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau, 127). |
Modul M0874: Abwassersysteme |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Joachim Behrendt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis abwasserwasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Abwasserwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die ganze Breite der Anlagentechniken bei siedlungswasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für einen nachhaltigen Gewässerschutz beschreiben. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. |
Fertigkeiten |
Studierende können verfügbare Abwasseraufbereitungsverfahren in der Breite der Anwendungen für Vorentwürfe auslegen und erklären, sowohl für kommunale als auch für einige industrielle Anlagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Im Rahmen dieses Moduls werden Sozialkompetenzen nicht gezielt angesprochen. |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig und planvoll ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0517: Biologische Abwasserreinigung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Charakterisierung von Abwasser |
Literatur |
Gujer, Willi |
Lehrveranstaltung L3122: Biologische Abwasserreinigung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0357: Advanced Wastewater Treatment |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Survey on advanced wastewater treatment reuse of reclaimed municipal wastewater Precipitation Flocculation Depth filtration Membrane Processes Activated carbon adsorption Ozonation "Advanced Oxidation Processes" Disinfection |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Lehrveranstaltung L0358: Advanced Wastewater Treatment |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Aggregate organic compounds (sum parameters) Industrial wastewater Processes for industrial wastewater treatment Precipitation Flocculation Activated carbon adsorption Recalcitrant organic compounds |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Modul M0922: Stadtplanung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Für die Lehrveranstaltung Grundlagen der Stadtplanung: Keine Für die Lehrveranstaltung Straßenraumgestaltung: Vorerfahrung in Verkehrsplanung, z. B. durch die Bachelorveranstaltung „Verkehrsplanung und Verkehrstechnik“ |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schritliche Ausarbeitung Grundlagenermittlung, zeichnerische Ausarbeitungen Entwürfe semesterbegleitend |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1066: Stadtplanung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
„Grundlagen der Stadtplanung“ behandelt die Determinanten städtebaulicher Entwicklung und ihre Zusammenhänge. Es geht um:
Ziel der Veranstaltung ist es, ein Grundverständnis städtebaulicher Probleme und Lösungsansätze zu erlangen und die Funktionsweise von Stadtplanung nachvollziehen zu können. Darüber befasst sich die Veranstaltung mit den vielfältigen funktionalen und gestalterischen Anforderungen an Stadtstraßen und Plätze als wichtigste Elemente des öffentlichen Raums In einem praxisorientierten Übungsprojekt werden für ein Planungsgebiet ein Rahmenplan, städtebaulicher Entwurf, Bebauungsplan sowie ein Straßenraumentwurf erstellt. |
Literatur |
Albers, Gerd; Wekel, Julian (2021) Stadtplanung: Eine illustrierte Einführung. 4. überarbeitete Auflage. Primus Verlag. Darmstadt. Frick, Dieter (2011) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. 3. veränderte Auflage. Wasmuth-Verlag. Tübingen Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York. |
Modul M0977: Baulogistik und Projektmanagement |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Heike Flämig |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können...
|
Fertigkeiten |
Studierende können...
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können...
|
Selbstständigkeit |
Studierende können...
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Zwei schriftliche Ausarbeitungen in Gruppen mit Ergebnispräsentationen |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht |
Lehrveranstaltung L1163: Baulogistik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung macht deutlich, wie die Logistik von Bauvorhaben inzwischen zu einem wichtigen Wettbewerbsfaktor geworden ist und was es dabei zu beachten gilt. Folgende Themenfelder werden behandelt:
|
Literatur |
Flämig, Heike: Produktionslogistik in Stadtregionen. In: Forschungsverbund Ökologische Mobilität (Hrsg.) Forschungsbericht Bd. 15.2. Wuppertal 2000. Krauss, Siri: Die Baulogistik in der schlüsselfertigen Ausführung, Bauwerk Verlag GmbH Berlin 2005. Lipsmeier, Klaus: Abfallkennzahlen für Neubauleistungen im Hochbau : Verlag Forum für Abfallwirtschaft und Altlasten, 2004. Schmidt, Norbert: Wettbewerbsfaktor Baulogistik. Neue Wertschöpfungspotenziale in der Baustoffversorgung. In: Klaus, Peter: Edition Logistik. Band 6. Deutscher Verkehrs-Verlag. Hamburg 2003. Seemann, Y.F. (2007): Logistikkoordination als Organisationseinheit bei der Bauausführung Wissenschaftsverlag Mainz in Aachen, Aachen. (Mitteilungen aus dem Fachgebiet Baubetrieb und Bauwirtschaft (Hrsg. Kuhne, V.): Heft 20) |
Lehrveranstaltung L1164: Baulogistik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1161: Projektentwicklung und -steuerung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig, Dr. Anton Worobei |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen dieser Vorlesung werden entlang einer Projektlebenszyklusbetrachtung die wesentlichen Aspekte der Projektentwicklung und –steuerung behandelt:
|
Literatur |
Projektmanagement-Fachmann. Band 1 und Band 2. RKW-Verlag, Eschborn, 2004. |
Lehrveranstaltung L1162: Projektentwicklung und -steuerung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig, Dr. Anton Worobei |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0998: Baustatik und Baudynamik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse der linearen Statik der statisch bestimmten und unbestimmten Stabtragwerke; Mechanik I/II, Mathematik I/II, Differentialgleichungen I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte der dynamischen Wirkungen auf Tragwerke und die entsprechenden Berechnungsverfahren erläutern. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, das Verhalten von Tragwerken unter dynamischer Belastung mittels rechnerischer Verfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich gegebene und fremde Quellen über das Fachgebiet erschließen sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen anwenden. Sie sind in der Lage , für die Lösung von Fragestellungen aus den Bereichen der Baustatik und Baudynamik die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 150 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1202: Baudynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1203: Baudynamik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0564: Bruchmechanik und Betriebsfestigkeit im Stahlbau |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
∙ Grundlagen von Ermüdungsbeanspruchung und Ermüdungsbeanspruchbarkeit sowie verschiedene Nachweisverfahren der Betriebsfestigkeit, ∙ Ermittlung und Anwendung von S-N-Kurven sowie Klassifikation von Kerbfällen ∙ Durchführung von Betriebsfestigkeitsnachweisen bei ein- und mehrstufigen Belastungen unter Anwendung der linearen Schadensakkumulation nach Palmgren-Miner ∙ Durchführung von Betriebsfestigkeitsberechnungen anhand verschiedener Beispiele ∙ Konstruktive Maßnahmen zur Verminderung der Ermüdungsbeanspruchung ∙ Grundlagen der linear-elastischen Bruchmechanik bei statischer und dynamischer Beanspruchung ∙ Praktische Anwendung der linear-elastischen Bruchmechanik zur Restlebensdauerberechnung anhand verschiedener Beispiele |
Literatur |
∙ Seeßelberg, C.; Kranbahnen - Bemessung und konstruktive Gestaltung; 3. Auflage; Bauwerk-Verlag; Berlin 2009 ∙ Kuhlmann, Dürr, Günther; Kranbahnen und Betriebsfestigkeit; in Stahlbau Kalender 2003; Verlag Ernst & Sohn; Berlin 2003 ∙ Deutscher Stahlbau-Verband (Hrsg.); Stahlbau Handbuch Band 1 Teil B; 3. Auflage; Stahlbau-Verlagsgesellschaft; Köln 1996 ∙ Petersen, C.; Stahlbau; 3. überarb. und erw. Auflage; Vieweg-Verlag; Braunschweig 1993 ∙ DIN V ENV 1993-1-1: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 1-1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau; 1993 ∙ DIN V ENV 1993-6: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 6: Kranbahnen; 2001 ∙ DIN-Fachbericht 126. Richtlinie zur Anwendung von DIN V ENV 1993-6; Nationales Anwendungsdokument (NAD); Berlin 2002 |
Lehrveranstaltung L0565: Bruchmechanik und Betriebsfestigkeit im Stahlbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0999: Projekt des Stahlbaus |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Stahl- und Verbundtragwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage sich einen Teilbereich der Projektaufgabe detailliert zu erarbeiten und anderen zu erklären. |
Fertigkeiten |
Die Studierenden können für ihren Teilbereich der Gesamtaufgabe Skizzen und Berechnungen anfertigen. Dabei sind sie in der Lage bei sich verändernden Rahmenbedingungen durch andere Teilprojekte nachzusteuern. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können ihre eigenen Ergebnisse in der Gruppe vorstellen und vertreten. Sie sind in der Lage konsensorientiert zu arbeiten und berücksichtigen dabei gruppenübergreifende Abhängigkeiten. Sie können in einer Gruppe selbständig Aufgaben verteilen und ausführen. |
Selbstständigkeit |
Die Studierenden können ein Teilgebiet der Gesamtaufgabe eigenverantwortlich bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 15-20 Seiten (exklusive Anhang) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L1206: Projekt des Stahlbaus |
Typ | Projektseminar |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Bearbeitung eines großen Bauprojektes, wie z.B Hochhaus, Großbrücke, Stadiondach etc. in Kleingruppen |
Literatur |
Wird je nach Projekt individuell angegeben. |
Modul M0663: Marine Geotechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gesamte Module: Geotechnik I-III, Mathematik I-III Einzelne Lehrveranstaltungen: Bodenmechanisches Praktikum |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage, Marine Gründungsstrukturen und Aspekte des Hafenbaus zu erklären. Sie können im Einzelnen
Die Studierenden verfügen außerdem über die nötigen Kenntnisse alle Einzelbauteile von Spundwandkonstruktionen zu entwerfen und in Abhängigkeit von äußeren Randbedingungen die richtigen Einzelbauteile auszuwählen. |
Fertigkeiten |
Die Studierenden können für technische Fragestellungen im Hafenbau und für Offshore-Bauwerke lösungsorientiert Analysen und Planungen durchführen. Sie sind hierfür in der Lage,
Die Studierenden können außderdem Spundwände mit allen Einzelbauteilen konstruieren, sinnvolle Einzelbauteile in Abhängigkeit von gegebenen Randbedingungen wählen, alle Arten von Spundwandkonstruktionen (Wellenspundwand, gemischte Spundwand) bemessen und alle Einzelbauteile und Anschlusskonstruktionen bemessen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0548: Marine Geotechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0549: Marine Geotechnik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1146: Stahlkonstruktionen im Grund- und Wasserbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Bemessung einer Wellenwand, Bemessung einer kombinierten Spundwand, Pfähle, Gurtung, Anschlüsse, Ermüdung |
Literatur | EAU 2012, EA-Pfähle, EAB |
Modul M1133: Hafenlogistik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Carlos Jahn | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | keine | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können nach Abschluss des Moduls …
|
||||||||
Fertigkeiten |
Die Studierenden sind nach Abschluss des Moduls in der Lage...
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können nach Abschluss des Moduls…
|
||||||||
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls fähig…
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0686: Hafenlogistik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Hafenlogistik beschäftigt sich mit der Planung, Steuerung, Durchführung und Kontrolle von Materialflüssen und den dazugehörigen Informationsflüssen im System Hafen und seinen Schnittstellen zu zahlreichen Akteuren innerhalb und außerhalb des Hafengeländes. Die außerordentliche Rolle des Seeverkehrs für den internationalen Handel erfordert sehr leistungsfähige Häfen. Diese müssen zahlreichen Anforderungen in Punkten Wirtschaftlichkeit, Geschwindigkeit, Sicherheit und Umwelt genügen. Vor diesem Hintergrund beschäftigt sich die Vorlesung Hafenlogistik mit der Planung, Steuerung, Durchführung und Kontrolle von Materialflüssen und den dazugehörigen Informationsflüssen im System Hafen und seinen Schnittstellen zu zahlreichen Akteuren innerhalb und außerhalb des Hafengeländes. Die Veranstaltung Hafenlogistik zielt darauf ab, Verständnis über Strukturen und Prozesse in Häfen zu vermitteln. Schwerpunktmäßig werden unterschiedliche Typen von Terminals, ihre charakteristischen Layouts und das eingesetzte technische Equipment und die voranschreitende Digitalisierung sowie das Zusammenspiel der beteiligten Akteure thematisiert. Außerdem werden regelmäßig renommierte Gastredner aus der Wissenschaft und Praxis eingeladen, um einige vorlesungsrelevante Themen aus alternativen Blickwinkeln zu beleuchten. Folgende Inhalte werden in der Veranstaltung vermittelt:
|
Literatur |
|
Lehrveranstaltung L1473: Hafenlogistik |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt der Übung ist die selbstständige Erstellung
eines wissenschaftlichen Papers und einer dazugehörigen Präsentation zu einem
aktuellen Thema der Hafenlogistik. Inhalt des Papers sind aktuelle Themen der
Hafenlogistik, beispielsweise die zukünftigen Herausforderungen in Nachhaltigkeit
und Produktivität von Häfen, die digitale Transformation von Terminals und
Häfen oder die Einführung von neuen Regularien durch die International Maritime
Organisation in Bezug auf das verifizierte Bruttogewicht von Containern. Aufgrund
der internationalen Ausrichtung der Veranstaltung ist das Paper in englischer
Sprache zu erstellen.
|
Literatur |
|
Modul M1721: Water and Environment: Theory and Application |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Nima Shokri |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Basic knowledge in water and environmental research, Hydrology |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Common research tools and techniques together with the fundamental knowledge relevant to multi-scale and multi-phase challenges present in water and environmental research will be discussed in this module. Both theory and application will be considered. |
Fertigkeiten |
In addition to the fundamental knowledge, the students will be exposed to several analytical, experimental and numerical tools and techniques relevant to water and environmental research at different scales. This will provide the students with an excellent opportunity to improve their skills on multiple fronts which will be useful in their future career. |
Personale Kompetenzen | |
Sozialkompetenz |
Developing teamwork and problem solving skills through Research-Based Teaching approaches will be at the core of this module. |
Selbstständigkeit |
The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Report und Präsentation |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht |
Lehrveranstaltung L2754: Water and Environment |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Salome Shokri-Kuehni |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2753: Water and Environment |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Research based learning: The students will be engaged in active research focused on water and environmental related challenges. The required knowledge and tools will be discussed during the semester. |
Literatur | NA |
Modul M1132: Maritimer Transport |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Carlos Jahn | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | |||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können…
|
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage...
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können…
|
||||||||
Selbstständigkeit |
Studierende sind fähig…
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0063: Maritimer Transport |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Zu den generellen Aufgaben der maritimen Logistik zählen die Planung, Gestaltung, Durchführung und Steuerung von Material- und Informationsflüssen in der Logistikkette Schiff - Hafen - Hinterland. Ziel der Lehrveranstaltung ist es, den Studierenden Kenntnisse des maritimen Transports und der an der maritimen Transportkette beteiligten Akteure zu vermitteln. Hierbei wird, unter Beachtung der wirtschaftlichen Entwicklung, auf typische Problemfelder und Aufgaben eingegangen. Somit sind sowohl klassische Probleme als auch aktuelle Entwicklungen und Trends im Bereich der Maritimen Logistik berücksichtigt. In der Vorlesung werden die Bestandteile der maritimen Logistikkette und die beteiligten Akteure beleuchtet sowie Risikoabschätzungen von menschlichen Störungen auf die Supply Chain erarbeitet. Darüber hinaus lernen Studierenden die Potentiale der Digitalisierung in der Seeschifffahrt, Insbesondere im Hinblick auf das Monitoring von Schiffen, abzuschätzen. Zudem sind Studierende in der Lage, für Flotten von Container- oder Trampschiffen eine Einsatzplanung zu entwerfen. Ein weiterer Inhalt der Vorlesung sind die verschiedenen Verkehrsträger im Hinterland, welche Studierenden nach Abschluss der Lehrveranstaltung hinsichtlich ihrer Vor- und Nachteile bewerten können. |
Literatur |
|
Lehrveranstaltung L0064: Maritimer Transport |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bei der Gruppenübung im Modul "Maritimer Transport" werden den Studierenden durch das haptische Planspiel MARITIME grundlegende Kenntnisse über Akteure und Prozesse in maritimen Transportketten vermittelt. Weiterhin ermöglicht das Planspiel und die darauf aufbauende Gruppenarbeit das selbständige Erlernen verschiedener Prozessmodellierungstechniken und fördert die Kompetenzen der Studierenden im Bereich der Präsentation, Moderation und Diskussion. |
Literatur |
|
Modul M1724: Smart Monitoring |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge or interest in object-oriented modeling, programming, and sensor technologies are helpful. Interest in modern research and teaching areas, such as Internet of Things, Industry 4.0 and cyber-physical systems, as well as the will to deepen skills of scientific working, are required. Basic knowledge in scientific writing and good English skills. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will become familiar with the principles and practices of smart monitoring. The students will be able to design decentralized smart systems to be applied for continuous (remote) monitoring of systems in the built and in the natural environment. In addition, the students will learn to design and to implement intelligent sensor systems using state-of-the-art data analysis techniques, modern software design concepts, and embedded computing methodologies. Besides lectures, project work is also part of this module, which will be conducted throughout the semester and will contribute to the grade. In small groups, the students will design smart monitoring systems that integrate a number of “intelligent” sensors to be implemented by the students. Specific focus will be put on the application of machine learning techniques. The smart monitoring systems will be mounted on real-world (built or natural) systems, such as bridges or slopes, or on scaled lab structures for validation purposes. The outcome of every group will be documented in a paper. All students of this module will “automatically” participate with their smart monitoring system in the annual "Smart Monitoring" competition. The written papers and oral examinations form the final grades. The module will be taught in English. Limited enrollment. |
Fertigkeiten |
The students will gain insights into operating state-of-the-art smart sensor systems, used for monitoring a wide range of physical processes relevant to engineering, such as environmental, structural, or comfort monitoring. The students will be capable of devising monitoring strategies of physical processes as part of group projects, tailored to their knowledge backgrounds, and to implement the strategies in smart wireless sensor nodes, using embedded computing and programming. Finally, the students will be able to document the findings of their projects in short reports. |
Personale Kompetenzen | |
Sozialkompetenz |
The students will be able to work in groups, share parts of the work for their projects, and develop communication skills, towards achieving the common project goals. |
Selbstständigkeit |
The students will be able to gain a solid basis on approaching and solving problems in engineering, as well as on documenting results, through their involvement in their monitoring group projects. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten Ausarbeitung mit 15-minütigem Abgabegespräch |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2762: Smart Monitoring |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
In this course, principles of smart monitoring will be taught, focusing on modern concepts of data acquisition, data storage, and data analysis. Also, fundamentals of intelligent sensors and embedded computing will be illuminated. Autonomous software and decentralized data processing are further crucial parts of the course, including concepts of the Internet of Things, Industry 4.0 and cyber-physical systems. Furthermore, measuring principles, data acquisition systems, data management and data analysis algorithms will be discussed. Besides the theoretical background, numerous practical examples will be shown to demonstrate how smart monitoring may advantageously be used for assessing the condition of systems in the built or natural environment. |
Literatur | The course contents couples different fields, such as signal processing, sensing technologies, data analytics, environmental engineering, civil engineering, artificial intelligence, database systems, and many more. The basics will be taught in this course. However, specific literature that covers all these topics does not exist. Instead, literature will be referenced in the lectures, all of which are papers that are freely available online. |
Lehrveranstaltung L2763: Smart Monitoring |
Typ | Gruppenübung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | The contents of the exercises are based on the lecture contents. In addition to the exercises, project work will be conducted throughout the semester, which will consume the majority of the workload. As part of the project work, students will design smart monitoring systems that will be tested in the laboratory or in the field. As mentioned in the module description, the students will participate in the “Smart Monitoring” competition, hosted annually by the Institute of Digital and Autonomous Construction. Students are encouraged to contribute their own ideas. The tools required to implement the smart monitoring systems will be taught in the group exercises as well as through external sources, such as video tutorials and literature. |
Literatur |
The course contents couples different fields, such as signal processing, sensing technologies, data analytics, environmental engineering, civil engineering, artificial intelligence, database systems, and many more. The basics will be taught in this course. However, specific literature that covers all these topics does not exist. Instead, literature will be referenced in the lectures, all of which are papers that are freely available online. |
Modul M1845: Flächentragwerke |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte des Tragverhaltens von Flächentragwerken wiedergeben. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, Flächentragwerke zu Modellieren und deren Tragverhalten durch geeignete analytische und numerische Berechnungsverfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich gegebene und fremde Quellen über das Fachgebiet erschließen sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen anwenden. Sie sind in der Lage, die notwendigen Arbeitsschritte für die Lösung von Fragestellungen der Modellierung und Berechnung von Flächentragwerken zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L1199: Flächentragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Scheiben
Schalen
Stabilitätsprobleme (Übersicht)
|
Literatur |
|
Lehrveranstaltung L3045: Flächentragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0858: Coastal Hydraulic Engineering I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Basics of hydraulic engineering, hydrology and hydromechanics |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students are able to define and explain the basic concepts of coastal engineering and port engineering. They are able to apply the concepts to selected practical problems of coastal engineering. Students can define and determine the basics for design and dimensioning of coastal engineering constructions. |
Fertigkeiten |
The students are capable to apply basic design approaches to selected and pre-defined design tasks in coastal engineering. |
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to deploy their gained knowledge in applied problems such as the design of coastal protection structures. Additionaly, they will be able to work in team with engineers of other disciplines, for instance designing of coastal breakwaters. |
Selbstständigkeit |
The students will be able to independently extend their knowledge and applyit to new problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 2 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0807: Basics of Coastal Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Coastal Engineering Manual, CEM Vorlesungsumdruck |
Lehrveranstaltung L1413: Basics of Coastal Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1878: Nachhaltige elektrische Energie aus Wind und Wasser |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Marvin Scherzinger |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul: Thermodynamik I, Modul: Thermodynamik II, Modul: Grundlagen der Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Des Weiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studierenden können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0067: Offshore-Geotechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jan Dührkop |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Achleitner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0581: Water Protection |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students can describe the basic principles of the regulatory framework related to the international and European water sector. They can explain limnological processes, substance cycles and water morphology in detail. They are able to assess complex problems related to water protection, such as ecosystem service and wastewater treatment with a special focus on innovative solutions, remediation measures as well as conceptual approaches. |
Fertigkeiten |
Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare presentations and discussions. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung plus Vortrag |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht |
Lehrveranstaltung L0226: Water Protection and Wastewater Management |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
The literature listed below is available in the library of the TUHH.
|
Lehrveranstaltung L2008: Water Protection and Wastewater Management |
Typ | Projektseminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Modul M0595: Materialprüfung, Bauzustands- und Schadensanalyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde oder Werkstoffkunde, z.B. über das Modul Baustoffe und Bauchemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die Regeln für das Handeln mit sowie die Anwendung und Kennzeichnung von Bauprodukten in Deutschland zu beschreiben. Sie wissen welche Methoden zur Ermittlung von Baustoffeigenschaften zur Verfügung stehen und welche Grenzen und Charakteristika die wichtigsten Methoden haben. |
Fertigkeiten | Die Studierenden können selbstständig die Regeln für das Handeln mit und die Verwendbarkeit von Bauprodukten in Deutschland ermitteln. Sie können geeignete Prüfmethoden für die Überwachung von Bauprodukten, die Untersuchung von Schadensprozessen sowie für die Bauzustandsanalyse auswählen. Sie können von Symptomen auf die Ursache von Bauschäden schließen. Sie sind in der Lage die Ergebnisse einer Materialprüfung in einem Untersuchungsbericht oder Gutachten zusammenzufassen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die unterschiedlichen Rollen von Herstellern sowie von Prüf-, Überwachungs- und Zertifizierungstellen beschreiben, die im Rahmen der Materialprüfung zum Tragen kommen. Das gleiche gilt für die unterschiedlichen Rollen der verschiedenen Beteiligten in gerichtlichen Auseinandersetzungen. |
Selbstständigkeit | Die Studierenden sind in der Lage sich das Fachwissen eines sehr umfangreichen Fachgebietes anzueignen und die dafür notwendige terminliche Planung und notwendigen Arbeitsschritte durchzuführen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht |
Lehrveranstaltung L0260: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Materialprüfung und Kennzeichnung von Bauprodukten, Untersuchungsmethoden für Baustoffe und Bauteile, Untersuchungsberichte und Gutachten, Bauzustandbeschreibung, vom Symptom zur Schadensursache |
Literatur |
Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013. |
Lehrveranstaltung L0261: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0713: Betontragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | NN | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlagen der Baustatik, Entwurf und Bemessung von Tragwerken des Massivbaus Module: Massivbau I + II, Baustatik I + II, Mechanik I+II |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden erweitern ihre Kenntnisse in der Tragwerksplanung, speziell in Richtung Hochbau (Gebäude, Dächer, Hallen). Sie verfügen über das für den Entwurf und die Bemessung von Stahlbetonhochbauten bzw. häufig vorkommender Bauteile benötigte Wissen. |
||||||||
Fertigkeiten |
Die Studierenden können die Entwurfs- und Bemessungsverfahren auf praktische Fragestellungen des Stahlbetonhochbaus anwenden. Sie sind in der Lage, Tragwerke zu entwerfen und für allgemeine Beanspruchungen zu bemessen sowie hierfür die bauliche und konstruktive Umsetzung vorzusehen. Darüber hinaus können sie Entwurfs- und Konstruktionsskizzen anfertigen und die Ergebnisse von Berechnung und Bemessung sprachlich darlegen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppenarbeit hochwertige Arbeitsergebnissen zu erzielen. |
||||||||
Selbstständigkeit |
Die Studierenden sind fähig, angeleitet durch Lehrende komplexe Stahlbetontragwerke zu entwerfen und zu bemessen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0579: Betontragwerke |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Anhand einer semesterbegleitenden Gruppenarbeit werden die Inhalte der Lehrveranstaltung "Stahl- und Spannbetonbauteile" eingeübt, diskutiert und präsentiert. |
Literatur | - Projektbezogene Unterlagen werden abgegeben. |
Lehrveranstaltung L0577: Stahl- und Spannbetonbauteile |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Vorlesungsunterlagen können im STUDiP heruntergeladen werden
|
Lehrveranstaltung L0578: Stahl- und Spannbetonbauteile |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0923: Integrierte Verkehrsplanung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Verkehrsplanung, z. B. aus dem Modul Verkehrsplanung und Verkehrstechnik im Bachelor |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schriftliche Ausarbeitung mit Präsentation, semesterbegleitend in Teilschritten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1068: Integrierte Verkehrsplanung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz, Dr. Philine Gaffron, Jacqueline Bianca Maaß |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Lehrveranstaltung wird ein Verständnis für die Interdependenzen zwischen Siedlungsstruktur und Verkehrsentwicklung vermittelt. Behandelt werden u. a.:
|
Literatur |
Kutter, Eckhard (2019) Stadtstruktur und Erreichbarkeit in der postfossilen Zukunft. Erich Schmidt Verlag. Berlin. Gies, Huber u. a. (Hrsg.) (93. Ergänzung 2022) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen) |
Modul M0963: Stahl- und Verbundtragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen des Stahlbaus (z.B. Stahlbau I und II, BUBC) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten können nach der Absolvierung des Moduls
|
Fertigkeiten |
Nach erfolgreicher Teilnahme an diesem Modul sind die Studenten in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz | -- |
Selbstständigkeit | -- |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1204: Stahl- und Verbundtragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag |
Lehrveranstaltung L1205: Stahl- und Verbundtragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1097: Stahlbrückenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Yves Freundt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
• Von der Ausschreibung bis zur Fertigstellung - der Weg einer Stahlbrücke • Aufbau einer Brückenstatik - konstruktive Details, Beispiele für Detailnachweise: ◦ mittragende Breite unter Berücksichtigung von Längssteifen ◦ Auflagerpunkt, Auflagersteifen ◦ Querträgerdurchbruch, Säumung ◦ Zinkennachweis (Querträgersteg zwischen Trapezsteifen) • Stahlsorten, -bezeichnungen, Prüfungen und Abnahmezeugnisse • Zerstörungsfreie Schweißnahtprüfverfahren • Korrosionsschutz • Brückenlager - Arten, Aufbau, Funktion, Berechnung, Einbau • Fahrbahnübergänge • Schwingungen von Rundhängern und Seilen - Schwingungsdämpfer • Bewegliche Brücken • Ausführliche Berichte von verschieden Montagevorgängen und -hilfsmitteln • Ausgewählte Schadensfälle |
Literatur |
|
Modul M0967: Studienarbeit Hafenbau und Küstenschutz |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Lehrinhalte der Vertiefung Hafenbau und Küstenschutz. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ihre Detailkenntnisse im Gebiet des Hafenbaus und Küstenschutzes demonstrieren. Sie können zum Stand von Entwicklung und Anwendung Beispiele geben und diese kritisch unter Berücksichtigung aktueller Probleme und Rahmenbedingungen in Wissenschaft und Gesellschaft diskutieren. Die Studierenden sind in der Lage, für eine grundlagenorientierte, praktische Fragestellung aus dem Bereich des Hafenbaus und Küstenschutzes eigenständig eine Lösungsstrategie zu definieren und einzelne Lösungsansätze zu skizzieren. Dabei können sie theorieorientiert vorgehen und aktuelle sicherheitstechnische, ökologische, ethische und wirtschaftliche Gesichtspunkte nach dem Stand der Wissenschaft und zugehöriger gesellschaftlicher Diskussionen einbeziehen. Wissenschaftliche Arbeitstechniken, die sie zur eigenen Projektbearbeitung gewählt haben, können sie detailliert darlegen und kritisch erörtern. |
Fertigkeiten |
Die Studierenden sind in der Lage, zur Projektbearbeitung selbständig Methoden auszuwählen und diese Auswahl zu begründen. Sie können darlegen, wie sie die Methoden auf das spezifische Anwendungsfeld beziehen und hierfür an den Anwendungskontext anpassen. Über das Projekt hinaus weisende Ergebnisse sowie Weiterentwicklungen können sie in Grundzügen skizzieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und Kolleginnen und Kollegen Rückmeldung zu ihren Projekten geben. |
Selbstständigkeit |
Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erreichen. |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Studienarbeit |
Prüfungsdauer und -umfang | Die Seitenzahl ist abhängig von der Aufgabenstellung. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht |
Modul M0969: Ausgewählte Themen des Bauingenieurwesens |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | --- |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L3092: Bemessung von Verbundbrücken |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalte dieser Vorlesung ist der Entwurf, die Konstruktion, die Nachweisführung nach der aktuellen Norm, die Bewertung und die Ertüchtigung von Verbundbrücken. |
Literatur |
Lehrveranstaltung L1867: Berechnung von Offshore-Tragwerken |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Said Fawad Mohammadi |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Topic 1: Types of Offshore Structures, Fixed and floating structures for Oil & Gas and Offshore Wind industry Topic 2: Wave Forces, Morisons equation Topic 3: Irregular Seastates, Power spectrum and application of FFT Topic 4: Additional Environmental Forces, wind spectra, current forces Topic 5: Linear-Time-Invariant Systems, response of an LTI-system in frequency domain Topic 6: Tubular Welded Connections, stress concentration factors, weld geometry Topic 7: Introduction to Fracture Mechanics, criteria for fracture initiation and crack growth Topic 8: Time and Frequency Domain Fatigue Analyses, rainflow counting, application of LTI-systems for frequency domain fatigue Topic 9: Offshore Installation and Exam, installation of structures, pile driving, pipe laying techniques |
Literatur |
Chakrabarti, Handbook of Offshore Engineering, 2005 Sarpkaya, Wave Forces on Offshore Structures, 2010 Faltinsen, Sea Loads on Ships and Offshore Structures, 1998 Sorensen, Basic Coastal Engineering, 2006 Dowling, Mechanical Behavior of Materials, 2007 Haibach, Betriebsfestigkeit, 2006 Marshall, Design of Welded Tubular Connections, 1992 Newland, Random vibrations, spectral and wavelet analysis, 1993 |
Lehrveranstaltung L3227: Energie-Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung (laut FPrO) |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Pauline Kaminski |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Energie-Geotechnik ist ein junges Fachgebiet im Bereich der Geotechnik mit dem Ziel nachhaltige geotechnische Lösungen für zukunftsrelevante Fragestellungen bezüglich Produktion, Transport, Betrieb, Rückbau und Abfallverwertung verschiedener Energieträger zu entwickeln. Beispiele möglicher Betätigungsfelder der Energie-Geotechnik sind die Geothermie und thermische aktivierte Gründungsbauteile, Gründungen von Windenergieanlagen on- und offshore, der Rückbau von Förderanlagen sowie der Umgang mit Abfallprodukten fossiler Energieträger wie bspw. Kippenböden und die geologische Speicherung von CO2. Relevante bodenmechanische Prozesse in diesen Anwendungen sind u.a. das thermo-hydro-mechanisch-gekoppelte Verhalten von Böden, Mehrphasenströmung in porösen Medien und teilgesättigte Böden. Die Lehrveranstaltung gibt einen Überblick über verschiedene Aspekte der Energie-Geotechnik und vermittelt vertieftes Wissen zu den einhergehenden bodenmechanischen Prozessen. Ergänzend werden CO2-arme geotechnische Verfahren besprochen und Emissionsabschätzungen sowie die Optimierung von geotechnischen Strukturen nach Nachhaltigkeitsaspekten thematisiert. |
Literatur |
Lehrveranstaltung L0052: Feststoffverfahrenstechnik für Biomassen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Werner Sitzmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Die großtechnische Anwendung verfahrenstechnischer Grundoperationen wird an aktuellen Beispielen der Verarbeitung fester Biomassen demonstriert. Hierzu gehören unter anderem: Zerkleinern, Fördern und Dosieren, Trocknen und Agglomerieren nachwachsender Rohstoffe im Rahmen der Herstellung von Brennnstoffen, der Bioethanolerzeugung, der Gewinnung und Veredelung von Pflanzenölen, von Biomass-to-liquid-Prozessen sowie der Herstellung von wood-plasic-composites. Aspekte zum Explosionsschutz und zur Anlagenplanung ergänzen die Vorlesung. |
Literatur |
Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe, Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175 |
Lehrveranstaltung L1634: Forum I - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Vorträge zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur | -- |
Lehrveranstaltung L1635: Forum II - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Vortrage zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur | -- |
Lehrveranstaltung L1151: Holzbau |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Torsten Faber |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2666: Innovativer Holzbau |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 45 Minuten |
Dozenten | Dr. Andreas Meisel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Holz ist DER nachhaltige Baustoff schlechthin, seine Anwendung
feiert auch im norddeutschen Raum seit einigen Jahren eine Renaissance.
Neben gewöhnlichen Hochbauten werden unter anderem auch weitgespannte
Hallentragwerke und Hochhäuser immer häufig in Holzbauweise errichtet.
In der Ausbildung angehender BauingenieurInnen sind daher mehr als nur
Grundlagenkenntnisse erforderlich, um tragsichere, wirtschaftliche,
ästhetische und nicht zuletzt dauerhafte Tragwerke aus Holz konstruieren
und bemessen zu können.
|
Literatur |
- Blass, J.: "Ingenieurholzbau"
|
Lehrveranstaltung L1152: Konstruktiver Glasbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Konstruktiver Glasbau - Einführung in den Baustoff Glas (Herstellung, Veredelung, Materialverhalten) - Konstruktion von Fassaden - Fassadentypen - Statische Berechnung von Verglasungen - Statische Berechnung von Fassaden - Unterschiede Plattentragwirkung / Membranwirkung bei Verglasungen - Vertikal- / Horizontalverglasungen mit sicherheitsrelevanten Anforderungen (begehbare, betretbare und absturzsichernde Verglasungen) - Glastragwerke - Brandschutz bei Glasfassaden - Bauphysik bei Fassaden bzw. Verglasungen |
Literatur |
Lehrveranstaltung L1447: Konstruktiver Glasbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L3270: Sustainable landfill design and operation |
Typ | Integrierte Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The course introduces the development of modern waste resource management and demonstrates the importance of landfills in the context of recycling processes. Based on international (EU) and national legislation, the current landfill situation is presented and the future significance of landfills will be discussed. A central element of the course deals with the main transformation processes in the landfilled waste, the emission of gases and leachate, the long-term behaviour of landfills as well as aftercare and after-utilisation measures. Further focal points of the course are measures for the sustainable reduction of environmentally and climate-damaging emissions and aspects of landfill technology in an international context. |
Literatur |
1) Waste
Management. Bernd Bilitewski; Georg Härdtle; Klaus Marek (Eds.), ISBN:
9783540592105 , Springer Verlag 3) Solid Waste Landfilling - Concepts, Processes, Technologies. Cossu, R. and Stegmann, R. (Eds.), ISBN: 978-0-12-818336-6 PDF (Volltext) über TUB |
Lehrveranstaltung L3091: Spezialthemen des Stahlbaus |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Marcus Rutner, Nikolay Lalkovski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel dieser Lehrveranstaltung ist es, auf einige in der Praxis wichtige Themen des Stahlbaus näher einzugehen, die im Rahmen der Bachelor-Fächer „Stahlbau I“ und „Stahlbau II“ nicht oder nur einleitend behandelt werden können. Im Folgenden sind diese Themen mit kurzer Beschreibung der Inhalte aufgezählt: 1. Nachweisverfahren Plastisch-Plastisch: Eine Einleitung in das Verfahren wird bereits im Rahmen der Lehrveranstaltung „Stahlbau II“ gegeben. Nach kurzer Wiederholung der Grundlagen fällt der Fokus auf folgende bei der praktischen Anwendung potentiell wichtigen Aspekte des Verfahrens: Einfluss der Theorie 2. Ordnung auf die Traglast - besonders wichtig bei verschieblichen Rahmentragwerken Einfluss von Normal- und Querkräften auf die Momente in den plastischen Gelenken und damit auf die Traglast Unterdrückung von lokalen Instabilitäten als Bedingung für die Anwendung des Verfahrens Plastisch-Plastisch Inkrementeller plastischer Kollaps und Shakedown 2. Plattenbeulen: Differentialgleichung des Verzweigungsproblems Nachweis von unausgesteiften und ausgesteiften Beulfeldern; überkritische Tragreserven 3. Seilkonstruktionen: Wesentliche Unterschiede zu Tragwerken aus biegesteifen Gliedern Herleitung der Seilgleichung für einige typische Belastungsfälle Grundlagen der Berechnung von Hängedächern und seilabgespannten Dächern; Diskussion der jeweils verwandten Probleme bei Hänge- und Schrägseilbrücken 4. Ermüdung und Betriebsfestigkeit: Wöhlerlinie Kerbfälle Vorstellung der gängigen Verfahren zum Nachweis der Betriebsfestigkeit, z. B. Reservoirmethode |
Literatur |
Lehrveranstaltung L2378: Spezielle Themen des Bauingenieurwesens 1LP |
Typ | |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt | Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur | Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2379: Spezielle Themen des Bauingenieurwesens 2LP |
Typ | |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur |
Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2380: Spezielle Themen des Bauingenieurwesens 3LP |
Typ | |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur |
Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2789: Tragwerksentwurf |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Dr. Jan Mittelstädt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Das Seminar Tragwerksentwurf beschäftigt sich mit dem Zusammenhang zwischen Architektur und Struktur. Die |
Literatur |
[1] Structure Systems by Heino Engel, Hantje Cantz, 3rd edition (Feb 2007), ISBN-10: 3775718761 |
Modul M0801: Wasserressourcen und -versorgung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Mathias Ernst |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis wasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Trinkwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Konfliktfelder wasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für eine nachhaltige Wasserversorgung skizzieren. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. Die Studierenden können Organisationsstrukturen von Wasserversorgungsunternehmen erläutern und einordnen. Sie können verfügbare Trinkwasseraufbereitungsverfahren in der Breite der Anwendungen erklären. |
Fertigkeiten |
Die Studierende können komplexe Problemfelder aus Sicht der Trinkwassergewinnung einordnen und Lösungsansätze für wasserwirtschaftliche sowie technische Maßnahmen aufstellen. Sie können hierfür anwendbare Bewertungsmethoden einordnen. Die Studierenden sind in der Lage wasserchemische Berechnungen für ausgewählte Aufbereitungsprozessen durchzuführen. Sie können ausgewählte allgemein anerkannte Regeln der Technik auf Prozesse der Trinkwasseraufbereitung anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in einer fachlich heterogenen Gruppe gemeinsam komplexe Lösungen für das Management sowie die Aufbereitung von Trinkwasser erarbeiten und dokumentieren. Sie können professionell z.B. als Vertreter/in von Nutzungsinteressen angemessen Stellung beziehen. Sie können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Chemie) + Referat (WRM) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Chemie- und Bioingenieurwesen: Technischer Ergänzungskurs: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0311: Chemie der Trinkwasseraufbereitung |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Vorlesung wird das für die Praxis relevante wasserchemische Wissen mit Bezug auf die Wassergewinnung, -aufbereitung und -verteilung vermittelt. Die Themenschwerpunkte sind Löslichkeit von Gasen, Kohlensäure-Gleichgewicht, Kalk-Kohlensäure-Gleichgewicht, Entsäuerung, Mischung von Wässern, Enthärtung, Redoxprozesse, Werkstoffe sowie gesetzliche Anforderungen an die Aufbereitung. Alle Themen werden vor dem Hintergrund der allgemein anerkannten Regeln der Technik (DVGW-Regelwerk, DIN-Normen) praxisnah behandelt. Ein wesentlicher Teil der Veranstaltung sind Berechnungen anhand realer Analysendaten (z.B. Berechnung des pH-Wertes und der Calcitlösekapazität ). Zu jeder Einheit gibt es Übungen und Hausaufgaben. Durch das Lösen der Hausaufgaben erhalten die Studierenden ein Feedback und können Bonuspunkte für die Klausur erwerben. Da Kenntnisse der Wasseraufbereitungsprozesse von großer Bedeutung sind, werden diese in Abstimmung mit der Vorlesung „Wasserressourcenmanagement“ zu Beginn des Semesters erklärt. |
Literatur |
MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003. |
Lehrveranstaltung L0312: Chemie der Trinkwasseraufbereitung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0402: Wasserressourcenmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung vermittelt weitergehende Kenntnisse zur den Abhängigkeiten des Wasserressourcenmanagements mit Blick auf die Trinkwasserversorgung. Die aktuelle Situation der globalen Wasserressourcen wird dargestellt, Abhängigkeiten zwischen Nutzungsinteressen erarbeitet und internationale Beispiele für „Best-Pratice“ sowie unzureichenden Wasserressourcenmanagements präsentiert und diskutiert. Entsprechend werden den Studierenden notwendige Voraussetzungen und Rahmenbedingungen für ein „integriertes Wasserressourcenmanagement“ vermittelt. Mit Bezug zum EU Raum und insbesondere Deutschland werden weiterhin Aspekte relevanter Rechtsnormen, administrative Strukture der Wasserversorgung sowie Fragen der Organisation von Trinkwasserversorgungsunternehmen (kommunal, privat, public privat partnership) vermittelt. Managementinstrumente wie das Life-Cycle Assessment, Modelle des Benchmarkings sowie der Wasserdargebotserfassungwerden für die Trinkwasserversorgung präsentiert und diskutiert. Die Inhalte der Vorlesung schließen wo möglich und sinnvoll, regionale Bezüge mit ein. |
Literatur |
|
Lehrveranstaltung L0403: Wasserressourcenmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1505: Anpassung an den Klimawandel in der wasserbaulichen Praxis (AKWAS) |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Anfertigung einer schriftliche Ausarbeitung zu einer komplexen Fragestellung mit Referat und anschließender Diskussion. Die Bearbeitung der Fragestellung erfolgt parallel zur Lehrveranstaltung. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2291: Anpassung an den Klimawandel in der wasserbaulichen Praxis |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1779: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Anfertigung einer schriftliche Ausarbeitung zu einer komplexen Fragestellung mit Referat und anschließender Diskussion. Die Bearbeitung der Fragestellung erfolgt parallel zur Lehrveranstaltung. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2926: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1725: Scientific Working in Computational Engineering |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge in scientific writing. String interest in topics related to computing in civil engineering. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will learn to apply concepts and methods of scientific working in computational engineering. In interaction with the course instructors and in collaboration with each other, the students will also learn to understand the complex process of scientific thinking, being able to accurately plan, implement and analyze scientific projects, such as prospective master theses. A project will be conducted throughout the semester, which will contribute to the grade. Since scientific writing is of particular importance in this course, a scientific paper will be developed based, which is a prerequisite for the final examination. The paper will be written based on the project conducted within this course. Project meetings in small groups, presentations, and critical discussions of scientific publications are further key activities. |
Fertigkeiten |
The students will be capable (i) of solving a scientific problem following a scientific methodology, (ii) of documenting their work effectively in the form of a paper, and (iii) of sharing their work in a presentation. |
Personale Kompetenzen | |
Sozialkompetenz |
The students will be able to work in a multidisciplinary team and develop communication skills necessary for problem solving. |
Selbstständigkeit |
The students will be able to extend their knowledge and apply it to solve scientific problems by working independently in a project. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten Ausarbeitung mit 15-minütigem Abgabegespräch |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht |
Lehrveranstaltung L2764: Scientific Working in Computational Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
In the course, a scientific problem of practical relevance will first be defined, taking into account the interests of the students participating in the course. The scientific problem will then systematically be solved within the framework of a comprehensive project. The principles of scientific working will be taught based on the scientific problem defined previously. As an integral part of scientific working, fundamentals of scientific writing will be presented and applied to a scientific paper to be written during the course. Topics related to scientific writing include structuring in scientific writing (structuring the abstract, the introduction, the main part, the summary and conclusions, and the acknowledgments and references) and recommendations on effective scientific writing (principles of composition, use of English in scientific writing, useful tips, creating figures, writing in mathematics, referencing, and formal email correspondence). A final paper and a final presentation will be assembled by the students. |
Literatur |
Smarsly, K. & Dragos, K., 2019. Scientific Writing in Engineering. Tredition, Hamburg, Germany. |
Modul M1844: Modern discretization methods in structural mechanics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of this module, students can express the
basic aspects of modern discretization methods in structural mechanics. |
Fertigkeiten |
After successful completion of this module, the students will be
able to use and further improve modern discretization methods for problems in structural mechanics. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of modern discretization methods. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L3043: Modern discretization methods in structural mechanics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The course covers variational formulations, various locking phenomena and alternative formulations for finite elements and modern discretization schemes in the context of structural mechanics, like isogeometric analysis.
|
Literatur |
|
Lehrveranstaltung L3044: Modern discretization methods in structural mechanics |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1956: Bau- und Tiefbaurecht |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gesamte Module: Geotechnik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erhalten Kenntnisse über
|
Fertigkeiten |
Studierende lernen juristische Aspekte in der Planung und im Bau rechtlich ausgewogen anwenden zu können. Studierende lernen, wie sie rechtliche und baubetriebliche Aspekte in der Praxis (Planen und Bauen) auf der Baustelle gezielt einsetzen und das Bauvorhaben optimal managen können. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L3182: Baurecht BGB und VOB - Recht in der (Tiefbau-)Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Günther Schalk |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt: |
Literatur |
Literatur: |
Lehrveranstaltung L3181: Baustreitigkeiten aus der baubetrieblichen (Tiefbau-)Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Ingo Junker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel ist es, den Studierenden aus der baubetrieblichen Praxis einen Einblick in die vielfältigen Inhalte: |
Literatur |
Modul M0859: Coastal Hydraulic Engineering II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Coastal Engineering I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students have the capability to define and explain in detail the important aspects of erosion protection and flood protection and are able to apply the aspects to practical coastal protection problems. They are able to design and dimension important coastal protection measures from the functional and from the constructional point of view. |
Fertigkeiten |
The students are able to select design approaches for the functional and constructional design of erosion and flood protection measures and apply these approaches to practical design tasks. |
Personale Kompetenzen | |
Sozialkompetenz | The students are able to deploy their gained knowledge in applied problems such as the functional and constructive design of coastal and flood protection structures. Additionaly, they will be able to work in team with engineers of other disciplines. |
Selbstständigkeit | The students will be able to independently extend their knowledge and apply it to new problems. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 130 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0808: Coastal- and Flood Protection |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Protection of sandy coasts
Flood Protection
|
Literatur |
Vorlesungsumdruck Coastal Engineering Manual CEM |
Lehrveranstaltung L1415: Coastal- and Flood Protection |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1411: Maintenance and Defence of Flood Protection Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Olaf Müller |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Modul M2003: Biological Waste Treatment |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse | chemical and biological basics | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The module aims possess knowledge concerning the planning of biological waste treatment plants. Students are able to explain the design and layout of anaerobic and aerobic waste treatment plants in detail, describe different techniques for waste gas treatment plants for biological waste treatment plants and explain different methods for waste analytics. |
||||||||
Fertigkeiten |
The students are able to discuss the compilation of design and layout of plants. They can critically evaluate techniques and quality control measurements. The students can recherché and evaluate literature and date connected to the tasks given in der module and plan additional tests. They are capable of reflecting and evaluating findings in the group. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development in front of colleagues. Furthermore, they can give and accept professional constructive criticism. |
||||||||
Selbstständigkeit |
Students can independently tap knowledge from literature, business or test reports and transform it to the course projects. They are capable, in consultation with supervisors as well as in the interim presentation, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Referat | ||||||||
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (15-25 Minuten in Gruppen) | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemie- und Bioingenieurwesen: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L0328: Waste and Environmental Chemistry |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The participants are divided into groups. Each group prepares a transcript on the experiment performed, which is then used as basis for discussing the results and to evaluate the performance of the group and the individual student. In some experiments the test procedure and the results are presented in seminar form, accompanied by discussion and results evaluation. Experiments ar e.g. Screening and particle size determination Fos/Tac AAS Chalorific value |
Literatur | Scripte |
Lehrveranstaltung L0318: Biological Waste Treatment |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Modul M2025: Finite element modeling of structures |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of this module, students can express the
basic aspects of modelling of structures with finite elements. |
Fertigkeiten |
After successful completion of this module, the students will be
able to model structures with finite elements and to analyse structures using appropriate computational methods. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students are able to gain knowledge of the subject area from
given and other sources and apply it to new problems.
Furthermore, they are able to structure the solution process
for problems in the area of finite element modelling of structures. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schriftliche Ausarbeitung einer Projektarbeit (10-15 Seiten) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L3046: Finite element modeling of structures |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic phenomena and aspects of the finite element modelling of structures are discussed. Besides theoretical decription of the phenomena and methods, a strong focus is on the practical use a commercial finite element software within computer-based exercises. The covered topics are:
|
Literatur | Vorlesungsmanuskript, Vorlesungsfolien |
Lehrveranstaltung L3047: Finite element modeling of structures |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M2033: Subsurface Processes |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Nima Shokri |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic Mathematics, Hydrology |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Upon completion of this module, the students will understand the mechanisms controlling solute transport in soil and natural porous media and will be able to work with the equations that govern the fate and transport of solutes in porous media. Analytical, numerical and experimental tools and techniques will be used in this module. |
Fertigkeiten | In addition to the physical insights, the students will be exposed to analytical, experimental and numerical tools and techniques in this module. This provides them with an excellent opportunity to improve their skills on multiple fronts which will be useful in their future career. |
Personale Kompetenzen | |
Sozialkompetenz | Teamwork & problem solving |
Selbstständigkeit | The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Report |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Chemie- und Bioingenieurwesen: Technischer Ergänzungskurs: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L2731: Modeling of Subsurface Processes |
Typ | Gruppenübung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Milad Aminzadeh |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic usage and background of chosen computer software to calculate flow and transport in the saturated and unsaturated zone and to analyze field data like pumping test data |
Literatur |
Lehrveranstaltung L2728: Subsurface Solute Transport |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic physical properties of soil: Definition and quantification; Liquid flow in soils (Darcy’s law); Solute transport in soils; Practical analysis to measure dispersion coefficient in soil under different boundary conditions; Advanced topics (e.g. Application of Artificial Intelligence to predict soil salinization) |
Literatur |
- Environmental Soil Physics, by Daniel Hillel - Soil Physics, Sixth Edition, by William A. Jury and Robert Horton |
Lehrveranstaltung L2729: Subsurface Solute Transport |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Hannes Nevermann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule der Vertiefung Tiefbau
Modul M0699: Geotechnik III |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Geotechnik I und II, Mathematik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem erfolgreichen Absolvieren des Moduls sind die Studierenden in der Lage,
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0375: Numerische Methoden in der Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Hans Mathäus Stanford |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt:
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein
|
Literatur |
|
Lehrveranstaltung L0497: Spezialtiefbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0498: Spezialtiefbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0964: Unterirdisches Bauen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Module aus dem Bachelorstudiengang Bau- und Umweltingenieurwesen:
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Kenntnis verschiederner Tunnelbauweisen sowie spezieller Methoden und Verfahren des unterirdischen Bauens. |
||||||||
Fertigkeiten |
Grundkenntnisse beim Entwurf von Tunneln sowie praktische Fertigkeiten in der Tunnelstatik. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Teamfähigkeit in der Projektplanung und beim Entwurf von Tunnelbauwerken. | ||||||||
Selbstständigkeit | Förderung des selbstständigen und kreativen Arbeitens im Rahmen einer Entwurfsübung. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L2407: Angewandter Tunnelbau |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe, Tim Babendererde |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0707: Einführung in den Tunnelbau |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Julian Bubel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1811: Einführung in den Tunnelbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Julian Bubel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1748: Construction Robotics |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basics of project-oriented programming |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Basics of robotics Applications in civil engineering Kinematics |
Fertigkeiten |
Use of specific hardware Development of software routines Python programming language Image processing Basics of localization (LIDAR, SLAM) |
Personale Kompetenzen | |
Sozialkompetenz |
Teamwork Communication skills |
Selbstständigkeit |
Independent work Independent decisions |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L2867: Construction Robotics |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | Prof. Kay Smarsly, Jan Stührenberg |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bock/Linner:
Construction Robotics |
Modul M0593: Baustoffe und Bauwerkserhaltung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde, Bauchemie und Bauphysik, z.B. über die Module Baustoffgrundlagen und Bauphysik sowie Baustoffe und Bauchemie |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können die Komponenten mineralischer Baustoffe und deren Funktion im Detail beschreiben und für die Herstellung von mineralischen Spezialbaustoffen einsetzen. Sie können die Charakteristika mineralischer Bindemittel darstellen. Die Herstellung, Eigenschaften und Anwendungsgebiete von Spezialmörteln und Spezialbetonen können Sie beschreiben und die werkstoffkundlichen Zusammenhänge darstellen. Die Grundlagen der Befestigungstechnik können sie darstellen. |
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage eine Granulometrieoptimierung eines mineralischen Baustoffs durchzuführen. Sie können die Rezeptur eines mineralischen Spezialmörtels entwerfen und diesen Mörtel herstellen. Die Studierenden sind in der Lage nachträgliche Bewehrungsanschlüsse herzustellen. Sie sind in der Lage, Bauschäden zu erkennen, die Ursachen einzugrenzen, die Grundzüge der Bauwerkserhaltung anzuwenden sowie Instandsetzungs- und Verstärkungsmaßnahmen auszuwählen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Die Studierenden sind in der Lage in einer Kleingruppe eine Spezialmörtelrezeptur zu entwickeln. Sie präsentieren ihr Arbeitsergebniss vor dem Dozenten und den anderen Studierenden und stellen sich einer kritischen Diskussion, in der sie ihre Ergebnisse verteidigen bzw. anpassen. Die Studierenden können auf der Basis dieses Feedbacks gemeinsam diesen Spezialbaustoff herstellen. | ||||||||
Selbstständigkeit | Die Studierenden sind in der Lage, die vorhandenen Resourcen an Materialien und Laborausstattung für ihr Projekt selbständig zu nutzen sowie fehlende Komponenten zu recherchieren und zu beschaffen. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht |
Lehrveranstaltung L0255: Instandsetzung von Bauteilen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bauwerkserhaltung, Instandsetzung und Verstärkung, nachträgliche Bauwerksabdichtung |
Literatur | BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen |
Lehrveranstaltung L0253: Mineralische Baustoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Komponenten mineralischer Baustoffe und deren Funktion, Bindemittel, Beton und Mörtel, Spezialmörtel, Spezialbetone |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0256: Technologie mineralischer Baustoffe |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Konzeption und Herstellung eines mineralischen Spezialbaustoffes |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0254: Transportprozesse in Baustoffen und Bauschäden |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Transportprozesse in Baustoffen und Schadensprozesse an Bauteilen |
Literatur | Blaich, J.: Bauschäden, Analyse und Vermeidung |
Modul M0723: Spannbeton- und Massivbrückenbau |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Vertiefte Kenntnisse der Bemessung und Konstruktion von Stahlbetontragwerken sowie Grundlagenwissen in der Berechnung von Stahlbetonkonstruktionen. Module: Massivbau I + II, Baustatik I + II, Mechanik I+II, Betontragwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die Einsatzgebiete der wesentlichen Brückentypen sowie die anzusetzenden Einwirkungen. Sie können die wesentlichen Berechnungsverfahren erläutern. Die Studierenden können die Bemessung einer Spannbetonkonstruktion erläutern. |
Fertigkeiten |
Die Studierenden können vorgespannte Massivbrücken nach den einschlägigen Vorschriften und Verfahren berechnen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppen eine reale Brücke zu entwerfen und zu bemessen. |
Selbstständigkeit |
Die Studierenden können eine Spannbetonbrücke eigenständig berechnen sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0603: Spannbeton- und Massivbrückenbau |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Spannbetonbau
Brückenbau
|
Literatur |
|
Lehrveranstaltung L0604: Spannbeton- und Massivbrückenbau |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1895: Digital Twinning im Bauingenieurwesen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Alexander Chmelnizkij |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | 20 min Vortrag und 5 Seiten Handout |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht |
Lehrveranstaltung L3136: Digital Twinning im Bauingenieurwesen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Alexander Chmelnizkij, Prof. Bastian Oesterle, Prof. Kay Smarsly |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L3137: Digital Twinning im Bauingenieurwesen |
Typ | Seminar |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Alexander Chmelnizkij, Prof. Bastian Oesterle, Prof. Kay Smarsly |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0827: Modellierung in der Wasserwirtschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Klaus Johannsen |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundwassermodellierung
Leitungssysteme
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die softwaregestützte Modellierung von Grundwasserströmungen, zugehörigen Transportprozessen und städtischen Wasserinfrastrukturen beschreiben. In Fallstudien können sie System- und Schwachpunktanalysen durchführen. Zudem können sie die hydraulischen und schadstoffspezifischen Wirkungszusammenhänge auf dem Pfad Boden - Gewässer quantitativ analysieren. |
Fertigkeiten |
Die Studierenden können softwarebasiert Lösungen für bestehende wasserwirtschaftliche Probleme entwickeln und bewerten. Insbesondere sind sie in der Lage, Grundwassermodelle zur Nachbildung von Strömungen und Schadstoffausbreitungsprozessen eigenständig und wissenschaftlich aufzubauen und anzuwenden. Sie haben die Fähigkeit, Fallbeispiele mit den zur Modellierung von Leitungssystemen maßgeblichen Softwarelösungen (zB EPANET, EPA SWMM) abzubilden und zu untersuchen. |
Personale Kompetenzen | |
Sozialkompetenz |
Wird nicht vermittelt. |
Selbstständigkeit |
Wird nicht vermittelt. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0543: Grundwassermodellierung in der Praxis |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Sonja Götz |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Einführung und Anwendung der Grundwassersoftware MODFLOW (PMWIN), Theoretischer Hintergrund des Modells, Studierende bearbeiten unter intensiver Anleitung praktische Fragestellungen mit dem Modell PMWIN. |
Literatur |
MODFLOW-Handbuch Chiang, Wen Hsien: PMWIN |
Lehrveranstaltung L0544: Grundwassermodellierung in der Praxis |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Sonja Götz |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0875: Modellierung von Leitungssystemen |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Modellierung von Wasserversorgungssystemen:
Überblick über die Modellierung von Stadtentwässerungssystemen |
Literatur | Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014. |
Modul M0756: Bodenmechanik und -dynamik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Module: Mathematik I-III, Mechanik I-II, Geotechnik I Lehrveranstaltungen: Bodenmechanisches Praktikum, (Anwendungen der Baudynamik) |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden sind in der Lage,
|
||||||||
Fertigkeiten |
Die Studierenden können
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Die Studierenden können im Team zu Arbeitsergebnissen zu messtechnischen und experimentellen Grundlagen kommen und ihre Ergebnisse am Ende des Semsters gemeinsam präsentieren. | ||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 135 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L0374: Ausgewählte Themen der Bodenmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Hans Mathäus Stanford |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt: ausgewählte Themen aus den Bereichen
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein, je nach behandelten Themen
|
Literatur |
|
Lehrveranstaltung L0452: Bodendynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Anne Hagemann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
• die wesentlichen Gleichungen des Einmassenschwingers herleiten und anwenden, • die Wellenausbreitung im Boden unter dynamischer Anregung • Bodendynamische Parameter und deren Bedeutung • die wesentlichen Labor- und Feldversuche zur Ermittlung bodendynamischer Kennwerte und deren Auswertung, • Maschinenfundamente, • Zyklische Verformungsakkumulation • Grundlagen der Plastodynamik |
Literatur |
|
Lehrveranstaltung L0706: Experimentelle Forschung in der Geotechnik |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Hans Mathäus Stanford, Göta Bürkner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Studierenden sollen:
Ein wesentliches Lernziel ist die Einführung in wissenschaftliches Arbeiten für Studierende, die eine akademische Karriere anstreben, sowie für diejenigen, die in der Praxis tätig sein werden und entsprechende Versuche beauftragen und die Ergebnisse bewerten müssen. Für die praktische Laborarbeit gibt es eine jährlich wechselnde Fragestellung, die jedoch auf den Erkenntnissen und Ergebnissen des Vorgängerjahres aufbauen soll. |
Literatur |
- Grabe, J. (2004): Bodenmechanik und Grundbau, Band 3 der
Veröffentlichungsreihe des Instituts für Geotechnik und Baubetrieb,
Technische Universität Hamburg-Harburg.
|
Modul M0828: Urban Environmental Management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Dorothea Rechtenbach |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can
describe urban development corridors as well as current and future urban environmental
problems. They are able to explain the causes of environmental problems (like
noise).
Students can specify applications for various technical innovations and explain why these contribute to the improvement of urban life. They can, for example, derive and discuss measures for effective noise abatement. |
Fertigkeiten | Students are able to develop specific solutions for correcting existing or future environment-related problems of urban development. They can define a range of conceptual and technical solutions for environmental problems for different development paths. To solve specific urban environmental problems they can select technical innovations and integrate them into the urban context. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung plus Vortrag |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1109: Noise Protection |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Jäschke |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
1) Müller & Möser (2013): Handbook of Engineering Acoustics (also
available in German)
|
Lehrveranstaltung L0874: Urban Infrastructures |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Dr. Dorothea Rechtenbach |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Problem Based Learning Main topics are:
|
Literatur | Depends on chosen topic. |
Modul M0860: Hafenbau und Hafenplanung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
VL Grundlagen des Küstenwasserbaus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Aspekte der Hafenplanung zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Hafenbaus anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente eines Hafens entwerfen. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den funktionellen Entwurf eines Hafens auswählen und diese auf Bemessungsaufgaben anwenden.
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung für die funktionelle Entwurf eines Hafens einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten. |
Selbstständigkeit | Die studierenden können selbstständig deren Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 150 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0809: Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlagen des Hafenbaus
Elemente von Seehäfen
Anbindung von Hinterlandverkehren / Binnenverkehrswasserbau Schutz von Seehäfen
Fischereihäfen und andere kleine Häfen
|
Literatur | Brinkmann, B.: Seehäfen, Springer 2005 |
Lehrveranstaltung L1414: Hafenbau |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0378: Hafenplanung und Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Vorlesungsumdruck, s. www.tu-harburg.de/gbt |
Modul M0861: Modellieren im Wasserbau |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Küstenwasserbau I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Prozesse, die mit der Modellierung von Strömungen und Wellen / Seegang im Wasserbau und Küstenwasserbau verbunden sind, detailliert definieren. Daneben können sie wesentliche Aspekte der Modellierung benennen und die gängigen numerischen Modelle zur Simulation von Strömungen und Seegang beschreiben. |
Fertigkeiten |
Die Studierenden können numerische Modelle auf einfache Fragestellungen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden lernen die Fachkenntnisse in einfachen anwendungsorientierten Fragestellung einzusetzen und im Team mit anderen zusammen zu arbeiten. |
Selbstständigkeit | Die Studierenden können selbstständig ihr Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 3 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht |
Lehrveranstaltung L0813: Hydraulische Modelle |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Strobl, Zunic: Wasserbau, Kap. 11 Hydraulische Modelle, Springer |
Lehrveranstaltung L0812: Modellieren von Seegang |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Lehrveranstaltung L0810: Modelling of Flow in Rivers and Estuaries |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Edgar Nehlsen, Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Introduction to numerical flow modelling
|
Literatur |
Vorlesungsskript Literaturempfehlungen Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (1997): Hydraulische Berechnung von naturnahen Fließgewässern. Düsseldorf: BWK (BWK-Merkblatt). Chow, Ven-te (1959): Open-channel Hydraulics. New York usw.: McGraw-Hill (McGraw-Hill Civil Engineering Series). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019a): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 1: Geodaten in der Fließgewässermodellierung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-1). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019b): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 2: Bedarfsgerechte Datenerfassung und -aufbereitung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-2). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019c): Merkblatt DWA-M 543-3 Geodaten in der Fließgewässermodellierung - Teil 3: Aspekte der Strömungsmodellierung und Fallbeispiele. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-3). Hervouet, Jean-Michel (2007): Hydrodynamics of free surface flows. Modelling with the finite element method. Chichester: Wiley. Online verfügbar unter http://www.loc.gov/catdir/enhancements/fy0741/2007296953-b.html. IAHR (2015): Professional Specifications for Physical and Numerical Studies in Environmental Hydraulics. In: Hydrolink (3/2015), S. 90-92. Olsen, Nils Reidar B. (2012): Numerical Modelling and Hydraulics. 3. Aufl. Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology. Szymkiewicz, Romuald (2010): Numerical modeling in open channel hydraulics. Dordrecht: Springer (Water science and technology library, 83). van Waveren, Harold (1999-): Good modelling practice handbook. [Utrecht], Lelystad, Den Haag: STOWA; Rijkswaterstaat-RIZA; SDU, afd. SEO/RIZA [etc. distr.] (Nota, nr. 99.036). Zielke, Werner (Hg.) (1999): Numerische Modelle von Flüssen, Seen und Küstengewässern. Deutscher Verband für Wasserwirtschaft und Kulturbau. Bonn: Wirtschafts- und Verl.-Ges. Gas und Wasser (Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau, 127). |
Modul M0874: Abwassersysteme |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Joachim Behrendt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis abwasserwasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Abwasserwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die ganze Breite der Anlagentechniken bei siedlungswasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für einen nachhaltigen Gewässerschutz beschreiben. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. |
Fertigkeiten |
Studierende können verfügbare Abwasseraufbereitungsverfahren in der Breite der Anwendungen für Vorentwürfe auslegen und erklären, sowohl für kommunale als auch für einige industrielle Anlagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Im Rahmen dieses Moduls werden Sozialkompetenzen nicht gezielt angesprochen. |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig und planvoll ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0517: Biologische Abwasserreinigung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Charakterisierung von Abwasser |
Literatur |
Gujer, Willi |
Lehrveranstaltung L3122: Biologische Abwasserreinigung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0357: Advanced Wastewater Treatment |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Survey on advanced wastewater treatment reuse of reclaimed municipal wastewater Precipitation Flocculation Depth filtration Membrane Processes Activated carbon adsorption Ozonation "Advanced Oxidation Processes" Disinfection |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Lehrveranstaltung L0358: Advanced Wastewater Treatment |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Aggregate organic compounds (sum parameters) Industrial wastewater Processes for industrial wastewater treatment Precipitation Flocculation Activated carbon adsorption Recalcitrant organic compounds |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Modul M0922: Stadtplanung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Für die Lehrveranstaltung Grundlagen der Stadtplanung: Keine Für die Lehrveranstaltung Straßenraumgestaltung: Vorerfahrung in Verkehrsplanung, z. B. durch die Bachelorveranstaltung „Verkehrsplanung und Verkehrstechnik“ |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schritliche Ausarbeitung Grundlagenermittlung, zeichnerische Ausarbeitungen Entwürfe semesterbegleitend |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1066: Stadtplanung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
„Grundlagen der Stadtplanung“ behandelt die Determinanten städtebaulicher Entwicklung und ihre Zusammenhänge. Es geht um:
Ziel der Veranstaltung ist es, ein Grundverständnis städtebaulicher Probleme und Lösungsansätze zu erlangen und die Funktionsweise von Stadtplanung nachvollziehen zu können. Darüber befasst sich die Veranstaltung mit den vielfältigen funktionalen und gestalterischen Anforderungen an Stadtstraßen und Plätze als wichtigste Elemente des öffentlichen Raums In einem praxisorientierten Übungsprojekt werden für ein Planungsgebiet ein Rahmenplan, städtebaulicher Entwurf, Bebauungsplan sowie ein Straßenraumentwurf erstellt. |
Literatur |
Albers, Gerd; Wekel, Julian (2021) Stadtplanung: Eine illustrierte Einführung. 4. überarbeitete Auflage. Primus Verlag. Darmstadt. Frick, Dieter (2011) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. 3. veränderte Auflage. Wasmuth-Verlag. Tübingen Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York. |
Modul M0977: Baulogistik und Projektmanagement |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Heike Flämig |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können...
|
Fertigkeiten |
Studierende können...
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können...
|
Selbstständigkeit |
Studierende können...
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Zwei schriftliche Ausarbeitungen in Gruppen mit Ergebnispräsentationen |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht |
Lehrveranstaltung L1163: Baulogistik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung macht deutlich, wie die Logistik von Bauvorhaben inzwischen zu einem wichtigen Wettbewerbsfaktor geworden ist und was es dabei zu beachten gilt. Folgende Themenfelder werden behandelt:
|
Literatur |
Flämig, Heike: Produktionslogistik in Stadtregionen. In: Forschungsverbund Ökologische Mobilität (Hrsg.) Forschungsbericht Bd. 15.2. Wuppertal 2000. Krauss, Siri: Die Baulogistik in der schlüsselfertigen Ausführung, Bauwerk Verlag GmbH Berlin 2005. Lipsmeier, Klaus: Abfallkennzahlen für Neubauleistungen im Hochbau : Verlag Forum für Abfallwirtschaft und Altlasten, 2004. Schmidt, Norbert: Wettbewerbsfaktor Baulogistik. Neue Wertschöpfungspotenziale in der Baustoffversorgung. In: Klaus, Peter: Edition Logistik. Band 6. Deutscher Verkehrs-Verlag. Hamburg 2003. Seemann, Y.F. (2007): Logistikkoordination als Organisationseinheit bei der Bauausführung Wissenschaftsverlag Mainz in Aachen, Aachen. (Mitteilungen aus dem Fachgebiet Baubetrieb und Bauwirtschaft (Hrsg. Kuhne, V.): Heft 20) |
Lehrveranstaltung L1164: Baulogistik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1161: Projektentwicklung und -steuerung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig, Dr. Anton Worobei |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen dieser Vorlesung werden entlang einer Projektlebenszyklusbetrachtung die wesentlichen Aspekte der Projektentwicklung und –steuerung behandelt:
|
Literatur |
Projektmanagement-Fachmann. Band 1 und Band 2. RKW-Verlag, Eschborn, 2004. |
Lehrveranstaltung L1162: Projektentwicklung und -steuerung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig, Dr. Anton Worobei |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0998: Baustatik und Baudynamik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse der linearen Statik der statisch bestimmten und unbestimmten Stabtragwerke; Mechanik I/II, Mathematik I/II, Differentialgleichungen I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte der dynamischen Wirkungen auf Tragwerke und die entsprechenden Berechnungsverfahren erläutern. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, das Verhalten von Tragwerken unter dynamischer Belastung mittels rechnerischer Verfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich gegebene und fremde Quellen über das Fachgebiet erschließen sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen anwenden. Sie sind in der Lage , für die Lösung von Fragestellungen aus den Bereichen der Baustatik und Baudynamik die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 150 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1202: Baudynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1203: Baudynamik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0564: Bruchmechanik und Betriebsfestigkeit im Stahlbau |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
∙ Grundlagen von Ermüdungsbeanspruchung und Ermüdungsbeanspruchbarkeit sowie verschiedene Nachweisverfahren der Betriebsfestigkeit, ∙ Ermittlung und Anwendung von S-N-Kurven sowie Klassifikation von Kerbfällen ∙ Durchführung von Betriebsfestigkeitsnachweisen bei ein- und mehrstufigen Belastungen unter Anwendung der linearen Schadensakkumulation nach Palmgren-Miner ∙ Durchführung von Betriebsfestigkeitsberechnungen anhand verschiedener Beispiele ∙ Konstruktive Maßnahmen zur Verminderung der Ermüdungsbeanspruchung ∙ Grundlagen der linear-elastischen Bruchmechanik bei statischer und dynamischer Beanspruchung ∙ Praktische Anwendung der linear-elastischen Bruchmechanik zur Restlebensdauerberechnung anhand verschiedener Beispiele |
Literatur |
∙ Seeßelberg, C.; Kranbahnen - Bemessung und konstruktive Gestaltung; 3. Auflage; Bauwerk-Verlag; Berlin 2009 ∙ Kuhlmann, Dürr, Günther; Kranbahnen und Betriebsfestigkeit; in Stahlbau Kalender 2003; Verlag Ernst & Sohn; Berlin 2003 ∙ Deutscher Stahlbau-Verband (Hrsg.); Stahlbau Handbuch Band 1 Teil B; 3. Auflage; Stahlbau-Verlagsgesellschaft; Köln 1996 ∙ Petersen, C.; Stahlbau; 3. überarb. und erw. Auflage; Vieweg-Verlag; Braunschweig 1993 ∙ DIN V ENV 1993-1-1: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 1-1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau; 1993 ∙ DIN V ENV 1993-6: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 6: Kranbahnen; 2001 ∙ DIN-Fachbericht 126. Richtlinie zur Anwendung von DIN V ENV 1993-6; Nationales Anwendungsdokument (NAD); Berlin 2002 |
Lehrveranstaltung L0565: Bruchmechanik und Betriebsfestigkeit im Stahlbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0999: Projekt des Stahlbaus |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Stahl- und Verbundtragwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage sich einen Teilbereich der Projektaufgabe detailliert zu erarbeiten und anderen zu erklären. |
Fertigkeiten |
Die Studierenden können für ihren Teilbereich der Gesamtaufgabe Skizzen und Berechnungen anfertigen. Dabei sind sie in der Lage bei sich verändernden Rahmenbedingungen durch andere Teilprojekte nachzusteuern. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können ihre eigenen Ergebnisse in der Gruppe vorstellen und vertreten. Sie sind in der Lage konsensorientiert zu arbeiten und berücksichtigen dabei gruppenübergreifende Abhängigkeiten. Sie können in einer Gruppe selbständig Aufgaben verteilen und ausführen. |
Selbstständigkeit |
Die Studierenden können ein Teilgebiet der Gesamtaufgabe eigenverantwortlich bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 15-20 Seiten (exklusive Anhang) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L1206: Projekt des Stahlbaus |
Typ | Projektseminar |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Bearbeitung eines großen Bauprojektes, wie z.B Hochhaus, Großbrücke, Stadiondach etc. in Kleingruppen |
Literatur |
Wird je nach Projekt individuell angegeben. |
Modul M0663: Marine Geotechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gesamte Module: Geotechnik I-III, Mathematik I-III Einzelne Lehrveranstaltungen: Bodenmechanisches Praktikum |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage, Marine Gründungsstrukturen und Aspekte des Hafenbaus zu erklären. Sie können im Einzelnen
Die Studierenden verfügen außerdem über die nötigen Kenntnisse alle Einzelbauteile von Spundwandkonstruktionen zu entwerfen und in Abhängigkeit von äußeren Randbedingungen die richtigen Einzelbauteile auszuwählen. |
Fertigkeiten |
Die Studierenden können für technische Fragestellungen im Hafenbau und für Offshore-Bauwerke lösungsorientiert Analysen und Planungen durchführen. Sie sind hierfür in der Lage,
Die Studierenden können außderdem Spundwände mit allen Einzelbauteilen konstruieren, sinnvolle Einzelbauteile in Abhängigkeit von gegebenen Randbedingungen wählen, alle Arten von Spundwandkonstruktionen (Wellenspundwand, gemischte Spundwand) bemessen und alle Einzelbauteile und Anschlusskonstruktionen bemessen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0548: Marine Geotechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0549: Marine Geotechnik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1146: Stahlkonstruktionen im Grund- und Wasserbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Bemessung einer Wellenwand, Bemessung einer kombinierten Spundwand, Pfähle, Gurtung, Anschlüsse, Ermüdung |
Literatur | EAU 2012, EA-Pfähle, EAB |
Modul M1724: Smart Monitoring |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge or interest in object-oriented modeling, programming, and sensor technologies are helpful. Interest in modern research and teaching areas, such as Internet of Things, Industry 4.0 and cyber-physical systems, as well as the will to deepen skills of scientific working, are required. Basic knowledge in scientific writing and good English skills. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will become familiar with the principles and practices of smart monitoring. The students will be able to design decentralized smart systems to be applied for continuous (remote) monitoring of systems in the built and in the natural environment. In addition, the students will learn to design and to implement intelligent sensor systems using state-of-the-art data analysis techniques, modern software design concepts, and embedded computing methodologies. Besides lectures, project work is also part of this module, which will be conducted throughout the semester and will contribute to the grade. In small groups, the students will design smart monitoring systems that integrate a number of “intelligent” sensors to be implemented by the students. Specific focus will be put on the application of machine learning techniques. The smart monitoring systems will be mounted on real-world (built or natural) systems, such as bridges or slopes, or on scaled lab structures for validation purposes. The outcome of every group will be documented in a paper. All students of this module will “automatically” participate with their smart monitoring system in the annual "Smart Monitoring" competition. The written papers and oral examinations form the final grades. The module will be taught in English. Limited enrollment. |
Fertigkeiten |
The students will gain insights into operating state-of-the-art smart sensor systems, used for monitoring a wide range of physical processes relevant to engineering, such as environmental, structural, or comfort monitoring. The students will be capable of devising monitoring strategies of physical processes as part of group projects, tailored to their knowledge backgrounds, and to implement the strategies in smart wireless sensor nodes, using embedded computing and programming. Finally, the students will be able to document the findings of their projects in short reports. |
Personale Kompetenzen | |
Sozialkompetenz |
The students will be able to work in groups, share parts of the work for their projects, and develop communication skills, towards achieving the common project goals. |
Selbstständigkeit |
The students will be able to gain a solid basis on approaching and solving problems in engineering, as well as on documenting results, through their involvement in their monitoring group projects. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten Ausarbeitung mit 15-minütigem Abgabegespräch |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2762: Smart Monitoring |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
In this course, principles of smart monitoring will be taught, focusing on modern concepts of data acquisition, data storage, and data analysis. Also, fundamentals of intelligent sensors and embedded computing will be illuminated. Autonomous software and decentralized data processing are further crucial parts of the course, including concepts of the Internet of Things, Industry 4.0 and cyber-physical systems. Furthermore, measuring principles, data acquisition systems, data management and data analysis algorithms will be discussed. Besides the theoretical background, numerous practical examples will be shown to demonstrate how smart monitoring may advantageously be used for assessing the condition of systems in the built or natural environment. |
Literatur | The course contents couples different fields, such as signal processing, sensing technologies, data analytics, environmental engineering, civil engineering, artificial intelligence, database systems, and many more. The basics will be taught in this course. However, specific literature that covers all these topics does not exist. Instead, literature will be referenced in the lectures, all of which are papers that are freely available online. |
Lehrveranstaltung L2763: Smart Monitoring |
Typ | Gruppenübung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | The contents of the exercises are based on the lecture contents. In addition to the exercises, project work will be conducted throughout the semester, which will consume the majority of the workload. As part of the project work, students will design smart monitoring systems that will be tested in the laboratory or in the field. As mentioned in the module description, the students will participate in the “Smart Monitoring” competition, hosted annually by the Institute of Digital and Autonomous Construction. Students are encouraged to contribute their own ideas. The tools required to implement the smart monitoring systems will be taught in the group exercises as well as through external sources, such as video tutorials and literature. |
Literatur |
The course contents couples different fields, such as signal processing, sensing technologies, data analytics, environmental engineering, civil engineering, artificial intelligence, database systems, and many more. The basics will be taught in this course. However, specific literature that covers all these topics does not exist. Instead, literature will be referenced in the lectures, all of which are papers that are freely available online. |
Modul M1845: Flächentragwerke |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte des Tragverhaltens von Flächentragwerken wiedergeben. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, Flächentragwerke zu Modellieren und deren Tragverhalten durch geeignete analytische und numerische Berechnungsverfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich gegebene und fremde Quellen über das Fachgebiet erschließen sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen anwenden. Sie sind in der Lage, die notwendigen Arbeitsschritte für die Lösung von Fragestellungen der Modellierung und Berechnung von Flächentragwerken zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L1199: Flächentragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Scheiben
Schalen
Stabilitätsprobleme (Übersicht)
|
Literatur |
|
Lehrveranstaltung L3045: Flächentragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0858: Coastal Hydraulic Engineering I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Basics of hydraulic engineering, hydrology and hydromechanics |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students are able to define and explain the basic concepts of coastal engineering and port engineering. They are able to apply the concepts to selected practical problems of coastal engineering. Students can define and determine the basics for design and dimensioning of coastal engineering constructions. |
Fertigkeiten |
The students are capable to apply basic design approaches to selected and pre-defined design tasks in coastal engineering. |
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to deploy their gained knowledge in applied problems such as the design of coastal protection structures. Additionaly, they will be able to work in team with engineers of other disciplines, for instance designing of coastal breakwaters. |
Selbstständigkeit |
The students will be able to independently extend their knowledge and applyit to new problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 2 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0807: Basics of Coastal Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Coastal Engineering Manual, CEM Vorlesungsumdruck |
Lehrveranstaltung L1413: Basics of Coastal Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1878: Nachhaltige elektrische Energie aus Wind und Wasser |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Marvin Scherzinger |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul: Thermodynamik I, Modul: Thermodynamik II, Modul: Grundlagen der Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Des Weiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studierenden können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0067: Offshore-Geotechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jan Dührkop |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Achleitner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0581: Water Protection |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students can describe the basic principles of the regulatory framework related to the international and European water sector. They can explain limnological processes, substance cycles and water morphology in detail. They are able to assess complex problems related to water protection, such as ecosystem service and wastewater treatment with a special focus on innovative solutions, remediation measures as well as conceptual approaches. |
Fertigkeiten |
Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare presentations and discussions. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung plus Vortrag |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht |
Lehrveranstaltung L0226: Water Protection and Wastewater Management |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
The literature listed below is available in the library of the TUHH.
|
Lehrveranstaltung L2008: Water Protection and Wastewater Management |
Typ | Projektseminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Modul M0595: Materialprüfung, Bauzustands- und Schadensanalyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde oder Werkstoffkunde, z.B. über das Modul Baustoffe und Bauchemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die Regeln für das Handeln mit sowie die Anwendung und Kennzeichnung von Bauprodukten in Deutschland zu beschreiben. Sie wissen welche Methoden zur Ermittlung von Baustoffeigenschaften zur Verfügung stehen und welche Grenzen und Charakteristika die wichtigsten Methoden haben. |
Fertigkeiten | Die Studierenden können selbstständig die Regeln für das Handeln mit und die Verwendbarkeit von Bauprodukten in Deutschland ermitteln. Sie können geeignete Prüfmethoden für die Überwachung von Bauprodukten, die Untersuchung von Schadensprozessen sowie für die Bauzustandsanalyse auswählen. Sie können von Symptomen auf die Ursache von Bauschäden schließen. Sie sind in der Lage die Ergebnisse einer Materialprüfung in einem Untersuchungsbericht oder Gutachten zusammenzufassen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die unterschiedlichen Rollen von Herstellern sowie von Prüf-, Überwachungs- und Zertifizierungstellen beschreiben, die im Rahmen der Materialprüfung zum Tragen kommen. Das gleiche gilt für die unterschiedlichen Rollen der verschiedenen Beteiligten in gerichtlichen Auseinandersetzungen. |
Selbstständigkeit | Die Studierenden sind in der Lage sich das Fachwissen eines sehr umfangreichen Fachgebietes anzueignen und die dafür notwendige terminliche Planung und notwendigen Arbeitsschritte durchzuführen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht |
Lehrveranstaltung L0260: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Materialprüfung und Kennzeichnung von Bauprodukten, Untersuchungsmethoden für Baustoffe und Bauteile, Untersuchungsberichte und Gutachten, Bauzustandbeschreibung, vom Symptom zur Schadensursache |
Literatur |
Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013. |
Lehrveranstaltung L0261: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0713: Betontragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | NN | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlagen der Baustatik, Entwurf und Bemessung von Tragwerken des Massivbaus Module: Massivbau I + II, Baustatik I + II, Mechanik I+II |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden erweitern ihre Kenntnisse in der Tragwerksplanung, speziell in Richtung Hochbau (Gebäude, Dächer, Hallen). Sie verfügen über das für den Entwurf und die Bemessung von Stahlbetonhochbauten bzw. häufig vorkommender Bauteile benötigte Wissen. |
||||||||
Fertigkeiten |
Die Studierenden können die Entwurfs- und Bemessungsverfahren auf praktische Fragestellungen des Stahlbetonhochbaus anwenden. Sie sind in der Lage, Tragwerke zu entwerfen und für allgemeine Beanspruchungen zu bemessen sowie hierfür die bauliche und konstruktive Umsetzung vorzusehen. Darüber hinaus können sie Entwurfs- und Konstruktionsskizzen anfertigen und die Ergebnisse von Berechnung und Bemessung sprachlich darlegen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppenarbeit hochwertige Arbeitsergebnissen zu erzielen. |
||||||||
Selbstständigkeit |
Die Studierenden sind fähig, angeleitet durch Lehrende komplexe Stahlbetontragwerke zu entwerfen und zu bemessen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0579: Betontragwerke |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Anhand einer semesterbegleitenden Gruppenarbeit werden die Inhalte der Lehrveranstaltung "Stahl- und Spannbetonbauteile" eingeübt, diskutiert und präsentiert. |
Literatur | - Projektbezogene Unterlagen werden abgegeben. |
Lehrveranstaltung L0577: Stahl- und Spannbetonbauteile |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Vorlesungsunterlagen können im STUDiP heruntergeladen werden
|
Lehrveranstaltung L0578: Stahl- und Spannbetonbauteile |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0801: Wasserressourcen und -versorgung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Mathias Ernst |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis wasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Trinkwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Konfliktfelder wasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für eine nachhaltige Wasserversorgung skizzieren. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. Die Studierenden können Organisationsstrukturen von Wasserversorgungsunternehmen erläutern und einordnen. Sie können verfügbare Trinkwasseraufbereitungsverfahren in der Breite der Anwendungen erklären. |
Fertigkeiten |
Die Studierende können komplexe Problemfelder aus Sicht der Trinkwassergewinnung einordnen und Lösungsansätze für wasserwirtschaftliche sowie technische Maßnahmen aufstellen. Sie können hierfür anwendbare Bewertungsmethoden einordnen. Die Studierenden sind in der Lage wasserchemische Berechnungen für ausgewählte Aufbereitungsprozessen durchzuführen. Sie können ausgewählte allgemein anerkannte Regeln der Technik auf Prozesse der Trinkwasseraufbereitung anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in einer fachlich heterogenen Gruppe gemeinsam komplexe Lösungen für das Management sowie die Aufbereitung von Trinkwasser erarbeiten und dokumentieren. Sie können professionell z.B. als Vertreter/in von Nutzungsinteressen angemessen Stellung beziehen. Sie können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Chemie) + Referat (WRM) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Chemie- und Bioingenieurwesen: Technischer Ergänzungskurs: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0311: Chemie der Trinkwasseraufbereitung |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Vorlesung wird das für die Praxis relevante wasserchemische Wissen mit Bezug auf die Wassergewinnung, -aufbereitung und -verteilung vermittelt. Die Themenschwerpunkte sind Löslichkeit von Gasen, Kohlensäure-Gleichgewicht, Kalk-Kohlensäure-Gleichgewicht, Entsäuerung, Mischung von Wässern, Enthärtung, Redoxprozesse, Werkstoffe sowie gesetzliche Anforderungen an die Aufbereitung. Alle Themen werden vor dem Hintergrund der allgemein anerkannten Regeln der Technik (DVGW-Regelwerk, DIN-Normen) praxisnah behandelt. Ein wesentlicher Teil der Veranstaltung sind Berechnungen anhand realer Analysendaten (z.B. Berechnung des pH-Wertes und der Calcitlösekapazität ). Zu jeder Einheit gibt es Übungen und Hausaufgaben. Durch das Lösen der Hausaufgaben erhalten die Studierenden ein Feedback und können Bonuspunkte für die Klausur erwerben. Da Kenntnisse der Wasseraufbereitungsprozesse von großer Bedeutung sind, werden diese in Abstimmung mit der Vorlesung „Wasserressourcenmanagement“ zu Beginn des Semesters erklärt. |
Literatur |
MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003. |
Lehrveranstaltung L0312: Chemie der Trinkwasseraufbereitung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0402: Wasserressourcenmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung vermittelt weitergehende Kenntnisse zur den Abhängigkeiten des Wasserressourcenmanagements mit Blick auf die Trinkwasserversorgung. Die aktuelle Situation der globalen Wasserressourcen wird dargestellt, Abhängigkeiten zwischen Nutzungsinteressen erarbeitet und internationale Beispiele für „Best-Pratice“ sowie unzureichenden Wasserressourcenmanagements präsentiert und diskutiert. Entsprechend werden den Studierenden notwendige Voraussetzungen und Rahmenbedingungen für ein „integriertes Wasserressourcenmanagement“ vermittelt. Mit Bezug zum EU Raum und insbesondere Deutschland werden weiterhin Aspekte relevanter Rechtsnormen, administrative Strukture der Wasserversorgung sowie Fragen der Organisation von Trinkwasserversorgungsunternehmen (kommunal, privat, public privat partnership) vermittelt. Managementinstrumente wie das Life-Cycle Assessment, Modelle des Benchmarkings sowie der Wasserdargebotserfassungwerden für die Trinkwasserversorgung präsentiert und diskutiert. Die Inhalte der Vorlesung schließen wo möglich und sinnvoll, regionale Bezüge mit ein. |
Literatur |
|
Lehrveranstaltung L0403: Wasserressourcenmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0923: Integrierte Verkehrsplanung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Verkehrsplanung, z. B. aus dem Modul Verkehrsplanung und Verkehrstechnik im Bachelor |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schriftliche Ausarbeitung mit Präsentation, semesterbegleitend in Teilschritten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1068: Integrierte Verkehrsplanung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz, Dr. Philine Gaffron, Jacqueline Bianca Maaß |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Lehrveranstaltung wird ein Verständnis für die Interdependenzen zwischen Siedlungsstruktur und Verkehrsentwicklung vermittelt. Behandelt werden u. a.:
|
Literatur |
Kutter, Eckhard (2019) Stadtstruktur und Erreichbarkeit in der postfossilen Zukunft. Erich Schmidt Verlag. Berlin. Gies, Huber u. a. (Hrsg.) (93. Ergänzung 2022) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen) |
Modul M0963: Stahl- und Verbundtragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen des Stahlbaus (z.B. Stahlbau I und II, BUBC) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten können nach der Absolvierung des Moduls
|
Fertigkeiten |
Nach erfolgreicher Teilnahme an diesem Modul sind die Studenten in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz | -- |
Selbstständigkeit | -- |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1204: Stahl- und Verbundtragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag |
Lehrveranstaltung L1205: Stahl- und Verbundtragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1097: Stahlbrückenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Yves Freundt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
• Von der Ausschreibung bis zur Fertigstellung - der Weg einer Stahlbrücke • Aufbau einer Brückenstatik - konstruktive Details, Beispiele für Detailnachweise: ◦ mittragende Breite unter Berücksichtigung von Längssteifen ◦ Auflagerpunkt, Auflagersteifen ◦ Querträgerdurchbruch, Säumung ◦ Zinkennachweis (Querträgersteg zwischen Trapezsteifen) • Stahlsorten, -bezeichnungen, Prüfungen und Abnahmezeugnisse • Zerstörungsfreie Schweißnahtprüfverfahren • Korrosionsschutz • Brückenlager - Arten, Aufbau, Funktion, Berechnung, Einbau • Fahrbahnübergänge • Schwingungen von Rundhängern und Seilen - Schwingungsdämpfer • Bewegliche Brücken • Ausführliche Berichte von verschieden Montagevorgängen und -hilfsmitteln • Ausgewählte Schadensfälle |
Literatur |
|
Modul M0966: Studienarbeit Tiefbau |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Dozenten des SD B |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Lehrinhalte der Vertiefung Tiefbau. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ihre Detailkenntnisse im Gebiet der Geotechnik und des Tiefbaus demonstrieren. Sie können zum Stand von Entwicklung und Anwendung Beispiele geben und diese kritisch unter Berücksichtigung aktueller Probleme und Rahmenbedingungen in Wissenschaft und Gesellschaft diskutieren. Die Studierenden sind in der Lage, für eine grundlagenorientierte, praktische Fragestellung aus dem Bereich der Geotechnik und des Tiefbaus eigenständig eine Lösungsstrategie zu definieren und einzelne Lösungsansätze zu skizzieren. Dabei können sie theorieorientiert vorgehen und aktuelle sicherheitstechnische, ökologische, ethische und wirtschaftliche Gesichtspunkte nach dem Stand der Wissenschaft und zugehöriger gesellschaftlicher Diskussionen einbeziehen. Wissenschaftliche Arbeitstechniken, die sie zur eigenen Projektbearbeitung gewählt haben, können sie detailliert darlegen und kritisch erörtern. |
Fertigkeiten |
Die Studierenden sind in der Lage, zur Projektbearbeitung selbständig Methoden auszuwählen und diese Auswahl zu begründen. Sie können darlegen, wie sie die Methoden auf das spezifische Anwendungsfeld beziehen und hierfür an den Anwendungskontext anpassen. Über das Projekt hinaus weisende Ergebnisse sowie Weiterentwicklungen können sie in Grundzügen skizzieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und Kolleginnen und Kollegen Rückmeldung zu ihren Projekten geben. |
Selbstständigkeit |
Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erreichen. |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Studienarbeit |
Prüfungsdauer und -umfang | laut FSPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Pflicht |
Modul M0969: Ausgewählte Themen des Bauingenieurwesens |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | --- |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L3092: Bemessung von Verbundbrücken |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalte dieser Vorlesung ist der Entwurf, die Konstruktion, die Nachweisführung nach der aktuellen Norm, die Bewertung und die Ertüchtigung von Verbundbrücken. |
Literatur |
Lehrveranstaltung L1867: Berechnung von Offshore-Tragwerken |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Said Fawad Mohammadi |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Topic 1: Types of Offshore Structures, Fixed and floating structures for Oil & Gas and Offshore Wind industry Topic 2: Wave Forces, Morisons equation Topic 3: Irregular Seastates, Power spectrum and application of FFT Topic 4: Additional Environmental Forces, wind spectra, current forces Topic 5: Linear-Time-Invariant Systems, response of an LTI-system in frequency domain Topic 6: Tubular Welded Connections, stress concentration factors, weld geometry Topic 7: Introduction to Fracture Mechanics, criteria for fracture initiation and crack growth Topic 8: Time and Frequency Domain Fatigue Analyses, rainflow counting, application of LTI-systems for frequency domain fatigue Topic 9: Offshore Installation and Exam, installation of structures, pile driving, pipe laying techniques |
Literatur |
Chakrabarti, Handbook of Offshore Engineering, 2005 Sarpkaya, Wave Forces on Offshore Structures, 2010 Faltinsen, Sea Loads on Ships and Offshore Structures, 1998 Sorensen, Basic Coastal Engineering, 2006 Dowling, Mechanical Behavior of Materials, 2007 Haibach, Betriebsfestigkeit, 2006 Marshall, Design of Welded Tubular Connections, 1992 Newland, Random vibrations, spectral and wavelet analysis, 1993 |
Lehrveranstaltung L3227: Energie-Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung (laut FPrO) |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Pauline Kaminski |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Energie-Geotechnik ist ein junges Fachgebiet im Bereich der Geotechnik mit dem Ziel nachhaltige geotechnische Lösungen für zukunftsrelevante Fragestellungen bezüglich Produktion, Transport, Betrieb, Rückbau und Abfallverwertung verschiedener Energieträger zu entwickeln. Beispiele möglicher Betätigungsfelder der Energie-Geotechnik sind die Geothermie und thermische aktivierte Gründungsbauteile, Gründungen von Windenergieanlagen on- und offshore, der Rückbau von Förderanlagen sowie der Umgang mit Abfallprodukten fossiler Energieträger wie bspw. Kippenböden und die geologische Speicherung von CO2. Relevante bodenmechanische Prozesse in diesen Anwendungen sind u.a. das thermo-hydro-mechanisch-gekoppelte Verhalten von Böden, Mehrphasenströmung in porösen Medien und teilgesättigte Böden. Die Lehrveranstaltung gibt einen Überblick über verschiedene Aspekte der Energie-Geotechnik und vermittelt vertieftes Wissen zu den einhergehenden bodenmechanischen Prozessen. Ergänzend werden CO2-arme geotechnische Verfahren besprochen und Emissionsabschätzungen sowie die Optimierung von geotechnischen Strukturen nach Nachhaltigkeitsaspekten thematisiert. |
Literatur |
Lehrveranstaltung L0052: Feststoffverfahrenstechnik für Biomassen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Werner Sitzmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Die großtechnische Anwendung verfahrenstechnischer Grundoperationen wird an aktuellen Beispielen der Verarbeitung fester Biomassen demonstriert. Hierzu gehören unter anderem: Zerkleinern, Fördern und Dosieren, Trocknen und Agglomerieren nachwachsender Rohstoffe im Rahmen der Herstellung von Brennnstoffen, der Bioethanolerzeugung, der Gewinnung und Veredelung von Pflanzenölen, von Biomass-to-liquid-Prozessen sowie der Herstellung von wood-plasic-composites. Aspekte zum Explosionsschutz und zur Anlagenplanung ergänzen die Vorlesung. |
Literatur |
Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe, Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175 |
Lehrveranstaltung L1634: Forum I - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Vorträge zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur | -- |
Lehrveranstaltung L1635: Forum II - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Vortrage zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur | -- |
Lehrveranstaltung L1151: Holzbau |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Torsten Faber |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2666: Innovativer Holzbau |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 45 Minuten |
Dozenten | Dr. Andreas Meisel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Holz ist DER nachhaltige Baustoff schlechthin, seine Anwendung
feiert auch im norddeutschen Raum seit einigen Jahren eine Renaissance.
Neben gewöhnlichen Hochbauten werden unter anderem auch weitgespannte
Hallentragwerke und Hochhäuser immer häufig in Holzbauweise errichtet.
In der Ausbildung angehender BauingenieurInnen sind daher mehr als nur
Grundlagenkenntnisse erforderlich, um tragsichere, wirtschaftliche,
ästhetische und nicht zuletzt dauerhafte Tragwerke aus Holz konstruieren
und bemessen zu können.
|
Literatur |
- Blass, J.: "Ingenieurholzbau"
|
Lehrveranstaltung L1152: Konstruktiver Glasbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Konstruktiver Glasbau - Einführung in den Baustoff Glas (Herstellung, Veredelung, Materialverhalten) - Konstruktion von Fassaden - Fassadentypen - Statische Berechnung von Verglasungen - Statische Berechnung von Fassaden - Unterschiede Plattentragwirkung / Membranwirkung bei Verglasungen - Vertikal- / Horizontalverglasungen mit sicherheitsrelevanten Anforderungen (begehbare, betretbare und absturzsichernde Verglasungen) - Glastragwerke - Brandschutz bei Glasfassaden - Bauphysik bei Fassaden bzw. Verglasungen |
Literatur |
Lehrveranstaltung L1447: Konstruktiver Glasbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L3270: Sustainable landfill design and operation |
Typ | Integrierte Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The course introduces the development of modern waste resource management and demonstrates the importance of landfills in the context of recycling processes. Based on international (EU) and national legislation, the current landfill situation is presented and the future significance of landfills will be discussed. A central element of the course deals with the main transformation processes in the landfilled waste, the emission of gases and leachate, the long-term behaviour of landfills as well as aftercare and after-utilisation measures. Further focal points of the course are measures for the sustainable reduction of environmentally and climate-damaging emissions and aspects of landfill technology in an international context. |
Literatur |
1) Waste
Management. Bernd Bilitewski; Georg Härdtle; Klaus Marek (Eds.), ISBN:
9783540592105 , Springer Verlag 3) Solid Waste Landfilling - Concepts, Processes, Technologies. Cossu, R. and Stegmann, R. (Eds.), ISBN: 978-0-12-818336-6 PDF (Volltext) über TUB |
Lehrveranstaltung L3091: Spezialthemen des Stahlbaus |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Marcus Rutner, Nikolay Lalkovski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel dieser Lehrveranstaltung ist es, auf einige in der Praxis wichtige Themen des Stahlbaus näher einzugehen, die im Rahmen der Bachelor-Fächer „Stahlbau I“ und „Stahlbau II“ nicht oder nur einleitend behandelt werden können. Im Folgenden sind diese Themen mit kurzer Beschreibung der Inhalte aufgezählt: 1. Nachweisverfahren Plastisch-Plastisch: Eine Einleitung in das Verfahren wird bereits im Rahmen der Lehrveranstaltung „Stahlbau II“ gegeben. Nach kurzer Wiederholung der Grundlagen fällt der Fokus auf folgende bei der praktischen Anwendung potentiell wichtigen Aspekte des Verfahrens: Einfluss der Theorie 2. Ordnung auf die Traglast - besonders wichtig bei verschieblichen Rahmentragwerken Einfluss von Normal- und Querkräften auf die Momente in den plastischen Gelenken und damit auf die Traglast Unterdrückung von lokalen Instabilitäten als Bedingung für die Anwendung des Verfahrens Plastisch-Plastisch Inkrementeller plastischer Kollaps und Shakedown 2. Plattenbeulen: Differentialgleichung des Verzweigungsproblems Nachweis von unausgesteiften und ausgesteiften Beulfeldern; überkritische Tragreserven 3. Seilkonstruktionen: Wesentliche Unterschiede zu Tragwerken aus biegesteifen Gliedern Herleitung der Seilgleichung für einige typische Belastungsfälle Grundlagen der Berechnung von Hängedächern und seilabgespannten Dächern; Diskussion der jeweils verwandten Probleme bei Hänge- und Schrägseilbrücken 4. Ermüdung und Betriebsfestigkeit: Wöhlerlinie Kerbfälle Vorstellung der gängigen Verfahren zum Nachweis der Betriebsfestigkeit, z. B. Reservoirmethode |
Literatur |
Lehrveranstaltung L2378: Spezielle Themen des Bauingenieurwesens 1LP |
Typ | |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt | Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur | Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2379: Spezielle Themen des Bauingenieurwesens 2LP |
Typ | |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur |
Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2380: Spezielle Themen des Bauingenieurwesens 3LP |
Typ | |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur |
Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2789: Tragwerksentwurf |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Dr. Jan Mittelstädt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Das Seminar Tragwerksentwurf beschäftigt sich mit dem Zusammenhang zwischen Architektur und Struktur. Die |
Literatur |
[1] Structure Systems by Heino Engel, Hantje Cantz, 3rd edition (Feb 2007), ISBN-10: 3775718761 |
Modul M1505: Anpassung an den Klimawandel in der wasserbaulichen Praxis (AKWAS) |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Anfertigung einer schriftliche Ausarbeitung zu einer komplexen Fragestellung mit Referat und anschließender Diskussion. Die Bearbeitung der Fragestellung erfolgt parallel zur Lehrveranstaltung. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2291: Anpassung an den Klimawandel in der wasserbaulichen Praxis |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1725: Scientific Working in Computational Engineering |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge in scientific writing. String interest in topics related to computing in civil engineering. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will learn to apply concepts and methods of scientific working in computational engineering. In interaction with the course instructors and in collaboration with each other, the students will also learn to understand the complex process of scientific thinking, being able to accurately plan, implement and analyze scientific projects, such as prospective master theses. A project will be conducted throughout the semester, which will contribute to the grade. Since scientific writing is of particular importance in this course, a scientific paper will be developed based, which is a prerequisite for the final examination. The paper will be written based on the project conducted within this course. Project meetings in small groups, presentations, and critical discussions of scientific publications are further key activities. |
Fertigkeiten |
The students will be capable (i) of solving a scientific problem following a scientific methodology, (ii) of documenting their work effectively in the form of a paper, and (iii) of sharing their work in a presentation. |
Personale Kompetenzen | |
Sozialkompetenz |
The students will be able to work in a multidisciplinary team and develop communication skills necessary for problem solving. |
Selbstständigkeit |
The students will be able to extend their knowledge and apply it to solve scientific problems by working independently in a project. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten Ausarbeitung mit 15-minütigem Abgabegespräch |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht |
Lehrveranstaltung L2764: Scientific Working in Computational Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
In the course, a scientific problem of practical relevance will first be defined, taking into account the interests of the students participating in the course. The scientific problem will then systematically be solved within the framework of a comprehensive project. The principles of scientific working will be taught based on the scientific problem defined previously. As an integral part of scientific working, fundamentals of scientific writing will be presented and applied to a scientific paper to be written during the course. Topics related to scientific writing include structuring in scientific writing (structuring the abstract, the introduction, the main part, the summary and conclusions, and the acknowledgments and references) and recommendations on effective scientific writing (principles of composition, use of English in scientific writing, useful tips, creating figures, writing in mathematics, referencing, and formal email correspondence). A final paper and a final presentation will be assembled by the students. |
Literatur |
Smarsly, K. & Dragos, K., 2019. Scientific Writing in Engineering. Tredition, Hamburg, Germany. |
Modul M1779: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Anfertigung einer schriftliche Ausarbeitung zu einer komplexen Fragestellung mit Referat und anschließender Diskussion. Die Bearbeitung der Fragestellung erfolgt parallel zur Lehrveranstaltung. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2926: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1844: Modern discretization methods in structural mechanics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of this module, students can express the
basic aspects of modern discretization methods in structural mechanics. |
Fertigkeiten |
After successful completion of this module, the students will be
able to use and further improve modern discretization methods for problems in structural mechanics. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of modern discretization methods. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L3043: Modern discretization methods in structural mechanics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The course covers variational formulations, various locking phenomena and alternative formulations for finite elements and modern discretization schemes in the context of structural mechanics, like isogeometric analysis.
|
Literatur |
|
Lehrveranstaltung L3044: Modern discretization methods in structural mechanics |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1956: Bau- und Tiefbaurecht |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gesamte Module: Geotechnik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erhalten Kenntnisse über
|
Fertigkeiten |
Studierende lernen juristische Aspekte in der Planung und im Bau rechtlich ausgewogen anwenden zu können. Studierende lernen, wie sie rechtliche und baubetriebliche Aspekte in der Praxis (Planen und Bauen) auf der Baustelle gezielt einsetzen und das Bauvorhaben optimal managen können. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L3182: Baurecht BGB und VOB - Recht in der (Tiefbau-)Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Günther Schalk |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt: |
Literatur |
Literatur: |
Lehrveranstaltung L3181: Baustreitigkeiten aus der baubetrieblichen (Tiefbau-)Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Ingo Junker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel ist es, den Studierenden aus der baubetrieblichen Praxis einen Einblick in die vielfältigen Inhalte: |
Literatur |
Modul M0859: Coastal Hydraulic Engineering II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Coastal Engineering I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students have the capability to define and explain in detail the important aspects of erosion protection and flood protection and are able to apply the aspects to practical coastal protection problems. They are able to design and dimension important coastal protection measures from the functional and from the constructional point of view. |
Fertigkeiten |
The students are able to select design approaches for the functional and constructional design of erosion and flood protection measures and apply these approaches to practical design tasks. |
Personale Kompetenzen | |
Sozialkompetenz | The students are able to deploy their gained knowledge in applied problems such as the functional and constructive design of coastal and flood protection structures. Additionaly, they will be able to work in team with engineers of other disciplines. |
Selbstständigkeit | The students will be able to independently extend their knowledge and apply it to new problems. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 130 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0808: Coastal- and Flood Protection |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Protection of sandy coasts
Flood Protection
|
Literatur |
Vorlesungsumdruck Coastal Engineering Manual CEM |
Lehrveranstaltung L1415: Coastal- and Flood Protection |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1411: Maintenance and Defence of Flood Protection Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Olaf Müller |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Modul M2003: Biological Waste Treatment |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse | chemical and biological basics | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The module aims possess knowledge concerning the planning of biological waste treatment plants. Students are able to explain the design and layout of anaerobic and aerobic waste treatment plants in detail, describe different techniques for waste gas treatment plants for biological waste treatment plants and explain different methods for waste analytics. |
||||||||
Fertigkeiten |
The students are able to discuss the compilation of design and layout of plants. They can critically evaluate techniques and quality control measurements. The students can recherché and evaluate literature and date connected to the tasks given in der module and plan additional tests. They are capable of reflecting and evaluating findings in the group. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development in front of colleagues. Furthermore, they can give and accept professional constructive criticism. |
||||||||
Selbstständigkeit |
Students can independently tap knowledge from literature, business or test reports and transform it to the course projects. They are capable, in consultation with supervisors as well as in the interim presentation, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Referat | ||||||||
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (15-25 Minuten in Gruppen) | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemie- und Bioingenieurwesen: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L0328: Waste and Environmental Chemistry |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The participants are divided into groups. Each group prepares a transcript on the experiment performed, which is then used as basis for discussing the results and to evaluate the performance of the group and the individual student. In some experiments the test procedure and the results are presented in seminar form, accompanied by discussion and results evaluation. Experiments ar e.g. Screening and particle size determination Fos/Tac AAS Chalorific value |
Literatur | Scripte |
Lehrveranstaltung L0318: Biological Waste Treatment |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Modul M2025: Finite element modeling of structures |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of this module, students can express the
basic aspects of modelling of structures with finite elements. |
Fertigkeiten |
After successful completion of this module, the students will be
able to model structures with finite elements and to analyse structures using appropriate computational methods. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students are able to gain knowledge of the subject area from
given and other sources and apply it to new problems.
Furthermore, they are able to structure the solution process
for problems in the area of finite element modelling of structures. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schriftliche Ausarbeitung einer Projektarbeit (10-15 Seiten) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L3046: Finite element modeling of structures |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic phenomena and aspects of the finite element modelling of structures are discussed. Besides theoretical decription of the phenomena and methods, a strong focus is on the practical use a commercial finite element software within computer-based exercises. The covered topics are:
|
Literatur | Vorlesungsmanuskript, Vorlesungsfolien |
Lehrveranstaltung L3047: Finite element modeling of structures |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M2033: Subsurface Processes |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Nima Shokri |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic Mathematics, Hydrology |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Upon completion of this module, the students will understand the mechanisms controlling solute transport in soil and natural porous media and will be able to work with the equations that govern the fate and transport of solutes in porous media. Analytical, numerical and experimental tools and techniques will be used in this module. |
Fertigkeiten | In addition to the physical insights, the students will be exposed to analytical, experimental and numerical tools and techniques in this module. This provides them with an excellent opportunity to improve their skills on multiple fronts which will be useful in their future career. |
Personale Kompetenzen | |
Sozialkompetenz | Teamwork & problem solving |
Selbstständigkeit | The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Report |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Chemie- und Bioingenieurwesen: Technischer Ergänzungskurs: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L2731: Modeling of Subsurface Processes |
Typ | Gruppenübung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Milad Aminzadeh |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic usage and background of chosen computer software to calculate flow and transport in the saturated and unsaturated zone and to analyze field data like pumping test data |
Literatur |
Lehrveranstaltung L2728: Subsurface Solute Transport |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic physical properties of soil: Definition and quantification; Liquid flow in soils (Darcy’s law); Solute transport in soils; Practical analysis to measure dispersion coefficient in soil under different boundary conditions; Advanced topics (e.g. Application of Artificial Intelligence to predict soil salinization) |
Literatur |
- Environmental Soil Physics, by Daniel Hillel - Soil Physics, Sixth Edition, by William A. Jury and Robert Horton |
Lehrveranstaltung L2729: Subsurface Solute Transport |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Hannes Nevermann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule der Vertiefung Tragwerke
Modul M0699: Geotechnik III |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Geotechnik I und II, Mathematik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem erfolgreichen Absolvieren des Moduls sind die Studierenden in der Lage,
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0375: Numerische Methoden in der Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Hans Mathäus Stanford |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt:
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein
|
Literatur |
|
Lehrveranstaltung L0497: Spezialtiefbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0498: Spezialtiefbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0713: Betontragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | NN | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlagen der Baustatik, Entwurf und Bemessung von Tragwerken des Massivbaus Module: Massivbau I + II, Baustatik I + II, Mechanik I+II |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden erweitern ihre Kenntnisse in der Tragwerksplanung, speziell in Richtung Hochbau (Gebäude, Dächer, Hallen). Sie verfügen über das für den Entwurf und die Bemessung von Stahlbetonhochbauten bzw. häufig vorkommender Bauteile benötigte Wissen. |
||||||||
Fertigkeiten |
Die Studierenden können die Entwurfs- und Bemessungsverfahren auf praktische Fragestellungen des Stahlbetonhochbaus anwenden. Sie sind in der Lage, Tragwerke zu entwerfen und für allgemeine Beanspruchungen zu bemessen sowie hierfür die bauliche und konstruktive Umsetzung vorzusehen. Darüber hinaus können sie Entwurfs- und Konstruktionsskizzen anfertigen und die Ergebnisse von Berechnung und Bemessung sprachlich darlegen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppenarbeit hochwertige Arbeitsergebnissen zu erzielen. |
||||||||
Selbstständigkeit |
Die Studierenden sind fähig, angeleitet durch Lehrende komplexe Stahlbetontragwerke zu entwerfen und zu bemessen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0579: Betontragwerke |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Anhand einer semesterbegleitenden Gruppenarbeit werden die Inhalte der Lehrveranstaltung "Stahl- und Spannbetonbauteile" eingeübt, diskutiert und präsentiert. |
Literatur | - Projektbezogene Unterlagen werden abgegeben. |
Lehrveranstaltung L0577: Stahl- und Spannbetonbauteile |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Vorlesungsunterlagen können im STUDiP heruntergeladen werden
|
Lehrveranstaltung L0578: Stahl- und Spannbetonbauteile |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0963: Stahl- und Verbundtragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen des Stahlbaus (z.B. Stahlbau I und II, BUBC) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten können nach der Absolvierung des Moduls
|
Fertigkeiten |
Nach erfolgreicher Teilnahme an diesem Modul sind die Studenten in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz | -- |
Selbstständigkeit | -- |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1204: Stahl- und Verbundtragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag |
Lehrveranstaltung L1205: Stahl- und Verbundtragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1097: Stahlbrückenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Yves Freundt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
• Von der Ausschreibung bis zur Fertigstellung - der Weg einer Stahlbrücke • Aufbau einer Brückenstatik - konstruktive Details, Beispiele für Detailnachweise: ◦ mittragende Breite unter Berücksichtigung von Längssteifen ◦ Auflagerpunkt, Auflagersteifen ◦ Querträgerdurchbruch, Säumung ◦ Zinkennachweis (Querträgersteg zwischen Trapezsteifen) • Stahlsorten, -bezeichnungen, Prüfungen und Abnahmezeugnisse • Zerstörungsfreie Schweißnahtprüfverfahren • Korrosionsschutz • Brückenlager - Arten, Aufbau, Funktion, Berechnung, Einbau • Fahrbahnübergänge • Schwingungen von Rundhängern und Seilen - Schwingungsdämpfer • Bewegliche Brücken • Ausführliche Berichte von verschieden Montagevorgängen und -hilfsmitteln • Ausgewählte Schadensfälle |
Literatur |
|
Modul M1748: Construction Robotics |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basics of project-oriented programming |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Basics of robotics Applications in civil engineering Kinematics |
Fertigkeiten |
Use of specific hardware Development of software routines Python programming language Image processing Basics of localization (LIDAR, SLAM) |
Personale Kompetenzen | |
Sozialkompetenz |
Teamwork Communication skills |
Selbstständigkeit |
Independent work Independent decisions |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L2867: Construction Robotics |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | Prof. Kay Smarsly, Jan Stührenberg |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bock/Linner:
Construction Robotics |
Modul M1895: Digital Twinning im Bauingenieurwesen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Alexander Chmelnizkij |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | 20 min Vortrag und 5 Seiten Handout |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht |
Lehrveranstaltung L3136: Digital Twinning im Bauingenieurwesen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Alexander Chmelnizkij, Prof. Bastian Oesterle, Prof. Kay Smarsly |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L3137: Digital Twinning im Bauingenieurwesen |
Typ | Seminar |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Alexander Chmelnizkij, Prof. Bastian Oesterle, Prof. Kay Smarsly |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0723: Spannbeton- und Massivbrückenbau |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Vertiefte Kenntnisse der Bemessung und Konstruktion von Stahlbetontragwerken sowie Grundlagenwissen in der Berechnung von Stahlbetonkonstruktionen. Module: Massivbau I + II, Baustatik I + II, Mechanik I+II, Betontragwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die Einsatzgebiete der wesentlichen Brückentypen sowie die anzusetzenden Einwirkungen. Sie können die wesentlichen Berechnungsverfahren erläutern. Die Studierenden können die Bemessung einer Spannbetonkonstruktion erläutern. |
Fertigkeiten |
Die Studierenden können vorgespannte Massivbrücken nach den einschlägigen Vorschriften und Verfahren berechnen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppen eine reale Brücke zu entwerfen und zu bemessen. |
Selbstständigkeit |
Die Studierenden können eine Spannbetonbrücke eigenständig berechnen sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0603: Spannbeton- und Massivbrückenbau |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Spannbetonbau
Brückenbau
|
Literatur |
|
Lehrveranstaltung L0604: Spannbeton- und Massivbrückenbau |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0756: Bodenmechanik und -dynamik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Module: Mathematik I-III, Mechanik I-II, Geotechnik I Lehrveranstaltungen: Bodenmechanisches Praktikum, (Anwendungen der Baudynamik) |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden sind in der Lage,
|
||||||||
Fertigkeiten |
Die Studierenden können
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Die Studierenden können im Team zu Arbeitsergebnissen zu messtechnischen und experimentellen Grundlagen kommen und ihre Ergebnisse am Ende des Semsters gemeinsam präsentieren. | ||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 135 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L0374: Ausgewählte Themen der Bodenmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Hans Mathäus Stanford |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt: ausgewählte Themen aus den Bereichen
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein, je nach behandelten Themen
|
Literatur |
|
Lehrveranstaltung L0452: Bodendynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Anne Hagemann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
• die wesentlichen Gleichungen des Einmassenschwingers herleiten und anwenden, • die Wellenausbreitung im Boden unter dynamischer Anregung • Bodendynamische Parameter und deren Bedeutung • die wesentlichen Labor- und Feldversuche zur Ermittlung bodendynamischer Kennwerte und deren Auswertung, • Maschinenfundamente, • Zyklische Verformungsakkumulation • Grundlagen der Plastodynamik |
Literatur |
|
Lehrveranstaltung L0706: Experimentelle Forschung in der Geotechnik |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Hans Mathäus Stanford, Göta Bürkner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Studierenden sollen:
Ein wesentliches Lernziel ist die Einführung in wissenschaftliches Arbeiten für Studierende, die eine akademische Karriere anstreben, sowie für diejenigen, die in der Praxis tätig sein werden und entsprechende Versuche beauftragen und die Ergebnisse bewerten müssen. Für die praktische Laborarbeit gibt es eine jährlich wechselnde Fragestellung, die jedoch auf den Erkenntnissen und Ergebnissen des Vorgängerjahres aufbauen soll. |
Literatur |
- Grabe, J. (2004): Bodenmechanik und Grundbau, Band 3 der
Veröffentlichungsreihe des Instituts für Geotechnik und Baubetrieb,
Technische Universität Hamburg-Harburg.
|
Modul M0827: Modellierung in der Wasserwirtschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Klaus Johannsen |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundwassermodellierung
Leitungssysteme
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die softwaregestützte Modellierung von Grundwasserströmungen, zugehörigen Transportprozessen und städtischen Wasserinfrastrukturen beschreiben. In Fallstudien können sie System- und Schwachpunktanalysen durchführen. Zudem können sie die hydraulischen und schadstoffspezifischen Wirkungszusammenhänge auf dem Pfad Boden - Gewässer quantitativ analysieren. |
Fertigkeiten |
Die Studierenden können softwarebasiert Lösungen für bestehende wasserwirtschaftliche Probleme entwickeln und bewerten. Insbesondere sind sie in der Lage, Grundwassermodelle zur Nachbildung von Strömungen und Schadstoffausbreitungsprozessen eigenständig und wissenschaftlich aufzubauen und anzuwenden. Sie haben die Fähigkeit, Fallbeispiele mit den zur Modellierung von Leitungssystemen maßgeblichen Softwarelösungen (zB EPANET, EPA SWMM) abzubilden und zu untersuchen. |
Personale Kompetenzen | |
Sozialkompetenz |
Wird nicht vermittelt. |
Selbstständigkeit |
Wird nicht vermittelt. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0543: Grundwassermodellierung in der Praxis |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Sonja Götz |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Einführung und Anwendung der Grundwassersoftware MODFLOW (PMWIN), Theoretischer Hintergrund des Modells, Studierende bearbeiten unter intensiver Anleitung praktische Fragestellungen mit dem Modell PMWIN. |
Literatur |
MODFLOW-Handbuch Chiang, Wen Hsien: PMWIN |
Lehrveranstaltung L0544: Grundwassermodellierung in der Praxis |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Sonja Götz |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0875: Modellierung von Leitungssystemen |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Modellierung von Wasserversorgungssystemen:
Überblick über die Modellierung von Stadtentwässerungssystemen |
Literatur | Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014. |
Modul M0828: Urban Environmental Management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Dorothea Rechtenbach |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can
describe urban development corridors as well as current and future urban environmental
problems. They are able to explain the causes of environmental problems (like
noise).
Students can specify applications for various technical innovations and explain why these contribute to the improvement of urban life. They can, for example, derive and discuss measures for effective noise abatement. |
Fertigkeiten | Students are able to develop specific solutions for correcting existing or future environment-related problems of urban development. They can define a range of conceptual and technical solutions for environmental problems for different development paths. To solve specific urban environmental problems they can select technical innovations and integrate them into the urban context. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung plus Vortrag |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1109: Noise Protection |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Jäschke |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
1) Müller & Möser (2013): Handbook of Engineering Acoustics (also
available in German)
|
Lehrveranstaltung L0874: Urban Infrastructures |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Dr. Dorothea Rechtenbach |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Problem Based Learning Main topics are:
|
Literatur | Depends on chosen topic. |
Modul M0860: Hafenbau und Hafenplanung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
VL Grundlagen des Küstenwasserbaus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Aspekte der Hafenplanung zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Hafenbaus anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente eines Hafens entwerfen. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den funktionellen Entwurf eines Hafens auswählen und diese auf Bemessungsaufgaben anwenden.
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung für die funktionelle Entwurf eines Hafens einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten. |
Selbstständigkeit | Die studierenden können selbstständig deren Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 150 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0809: Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlagen des Hafenbaus
Elemente von Seehäfen
Anbindung von Hinterlandverkehren / Binnenverkehrswasserbau Schutz von Seehäfen
Fischereihäfen und andere kleine Häfen
|
Literatur | Brinkmann, B.: Seehäfen, Springer 2005 |
Lehrveranstaltung L1414: Hafenbau |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0378: Hafenplanung und Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Vorlesungsumdruck, s. www.tu-harburg.de/gbt |
Modul M0861: Modellieren im Wasserbau |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Küstenwasserbau I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Prozesse, die mit der Modellierung von Strömungen und Wellen / Seegang im Wasserbau und Küstenwasserbau verbunden sind, detailliert definieren. Daneben können sie wesentliche Aspekte der Modellierung benennen und die gängigen numerischen Modelle zur Simulation von Strömungen und Seegang beschreiben. |
Fertigkeiten |
Die Studierenden können numerische Modelle auf einfache Fragestellungen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden lernen die Fachkenntnisse in einfachen anwendungsorientierten Fragestellung einzusetzen und im Team mit anderen zusammen zu arbeiten. |
Selbstständigkeit | Die Studierenden können selbstständig ihr Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 3 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht |
Lehrveranstaltung L0813: Hydraulische Modelle |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Strobl, Zunic: Wasserbau, Kap. 11 Hydraulische Modelle, Springer |
Lehrveranstaltung L0812: Modellieren von Seegang |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Lehrveranstaltung L0810: Modelling of Flow in Rivers and Estuaries |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Edgar Nehlsen, Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Introduction to numerical flow modelling
|
Literatur |
Vorlesungsskript Literaturempfehlungen Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (1997): Hydraulische Berechnung von naturnahen Fließgewässern. Düsseldorf: BWK (BWK-Merkblatt). Chow, Ven-te (1959): Open-channel Hydraulics. New York usw.: McGraw-Hill (McGraw-Hill Civil Engineering Series). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019a): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 1: Geodaten in der Fließgewässermodellierung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-1). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019b): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 2: Bedarfsgerechte Datenerfassung und -aufbereitung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-2). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019c): Merkblatt DWA-M 543-3 Geodaten in der Fließgewässermodellierung - Teil 3: Aspekte der Strömungsmodellierung und Fallbeispiele. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-3). Hervouet, Jean-Michel (2007): Hydrodynamics of free surface flows. Modelling with the finite element method. Chichester: Wiley. Online verfügbar unter http://www.loc.gov/catdir/enhancements/fy0741/2007296953-b.html. IAHR (2015): Professional Specifications for Physical and Numerical Studies in Environmental Hydraulics. In: Hydrolink (3/2015), S. 90-92. Olsen, Nils Reidar B. (2012): Numerical Modelling and Hydraulics. 3. Aufl. Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology. Szymkiewicz, Romuald (2010): Numerical modeling in open channel hydraulics. Dordrecht: Springer (Water science and technology library, 83). van Waveren, Harold (1999-): Good modelling practice handbook. [Utrecht], Lelystad, Den Haag: STOWA; Rijkswaterstaat-RIZA; SDU, afd. SEO/RIZA [etc. distr.] (Nota, nr. 99.036). Zielke, Werner (Hg.) (1999): Numerische Modelle von Flüssen, Seen und Küstengewässern. Deutscher Verband für Wasserwirtschaft und Kulturbau. Bonn: Wirtschafts- und Verl.-Ges. Gas und Wasser (Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau, 127). |
Modul M0874: Abwassersysteme |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Joachim Behrendt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis abwasserwasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Abwasserwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die ganze Breite der Anlagentechniken bei siedlungswasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für einen nachhaltigen Gewässerschutz beschreiben. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. |
Fertigkeiten |
Studierende können verfügbare Abwasseraufbereitungsverfahren in der Breite der Anwendungen für Vorentwürfe auslegen und erklären, sowohl für kommunale als auch für einige industrielle Anlagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Im Rahmen dieses Moduls werden Sozialkompetenzen nicht gezielt angesprochen. |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig und planvoll ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0517: Biologische Abwasserreinigung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Charakterisierung von Abwasser |
Literatur |
Gujer, Willi |
Lehrveranstaltung L3122: Biologische Abwasserreinigung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0357: Advanced Wastewater Treatment |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Survey on advanced wastewater treatment reuse of reclaimed municipal wastewater Precipitation Flocculation Depth filtration Membrane Processes Activated carbon adsorption Ozonation "Advanced Oxidation Processes" Disinfection |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Lehrveranstaltung L0358: Advanced Wastewater Treatment |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Aggregate organic compounds (sum parameters) Industrial wastewater Processes for industrial wastewater treatment Precipitation Flocculation Activated carbon adsorption Recalcitrant organic compounds |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Modul M0922: Stadtplanung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Für die Lehrveranstaltung Grundlagen der Stadtplanung: Keine Für die Lehrveranstaltung Straßenraumgestaltung: Vorerfahrung in Verkehrsplanung, z. B. durch die Bachelorveranstaltung „Verkehrsplanung und Verkehrstechnik“ |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schritliche Ausarbeitung Grundlagenermittlung, zeichnerische Ausarbeitungen Entwürfe semesterbegleitend |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1066: Stadtplanung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
„Grundlagen der Stadtplanung“ behandelt die Determinanten städtebaulicher Entwicklung und ihre Zusammenhänge. Es geht um:
Ziel der Veranstaltung ist es, ein Grundverständnis städtebaulicher Probleme und Lösungsansätze zu erlangen und die Funktionsweise von Stadtplanung nachvollziehen zu können. Darüber befasst sich die Veranstaltung mit den vielfältigen funktionalen und gestalterischen Anforderungen an Stadtstraßen und Plätze als wichtigste Elemente des öffentlichen Raums In einem praxisorientierten Übungsprojekt werden für ein Planungsgebiet ein Rahmenplan, städtebaulicher Entwurf, Bebauungsplan sowie ein Straßenraumentwurf erstellt. |
Literatur |
Albers, Gerd; Wekel, Julian (2021) Stadtplanung: Eine illustrierte Einführung. 4. überarbeitete Auflage. Primus Verlag. Darmstadt. Frick, Dieter (2011) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. 3. veränderte Auflage. Wasmuth-Verlag. Tübingen Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York. |
Modul M0977: Baulogistik und Projektmanagement |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Heike Flämig |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können...
|
Fertigkeiten |
Studierende können...
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können...
|
Selbstständigkeit |
Studierende können...
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Zwei schriftliche Ausarbeitungen in Gruppen mit Ergebnispräsentationen |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht |
Lehrveranstaltung L1163: Baulogistik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung macht deutlich, wie die Logistik von Bauvorhaben inzwischen zu einem wichtigen Wettbewerbsfaktor geworden ist und was es dabei zu beachten gilt. Folgende Themenfelder werden behandelt:
|
Literatur |
Flämig, Heike: Produktionslogistik in Stadtregionen. In: Forschungsverbund Ökologische Mobilität (Hrsg.) Forschungsbericht Bd. 15.2. Wuppertal 2000. Krauss, Siri: Die Baulogistik in der schlüsselfertigen Ausführung, Bauwerk Verlag GmbH Berlin 2005. Lipsmeier, Klaus: Abfallkennzahlen für Neubauleistungen im Hochbau : Verlag Forum für Abfallwirtschaft und Altlasten, 2004. Schmidt, Norbert: Wettbewerbsfaktor Baulogistik. Neue Wertschöpfungspotenziale in der Baustoffversorgung. In: Klaus, Peter: Edition Logistik. Band 6. Deutscher Verkehrs-Verlag. Hamburg 2003. Seemann, Y.F. (2007): Logistikkoordination als Organisationseinheit bei der Bauausführung Wissenschaftsverlag Mainz in Aachen, Aachen. (Mitteilungen aus dem Fachgebiet Baubetrieb und Bauwirtschaft (Hrsg. Kuhne, V.): Heft 20) |
Lehrveranstaltung L1164: Baulogistik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1161: Projektentwicklung und -steuerung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig, Dr. Anton Worobei |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen dieser Vorlesung werden entlang einer Projektlebenszyklusbetrachtung die wesentlichen Aspekte der Projektentwicklung und –steuerung behandelt:
|
Literatur |
Projektmanagement-Fachmann. Band 1 und Band 2. RKW-Verlag, Eschborn, 2004. |
Lehrveranstaltung L1162: Projektentwicklung und -steuerung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig, Dr. Anton Worobei |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0998: Baustatik und Baudynamik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse der linearen Statik der statisch bestimmten und unbestimmten Stabtragwerke; Mechanik I/II, Mathematik I/II, Differentialgleichungen I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte der dynamischen Wirkungen auf Tragwerke und die entsprechenden Berechnungsverfahren erläutern. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, das Verhalten von Tragwerken unter dynamischer Belastung mittels rechnerischer Verfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich gegebene und fremde Quellen über das Fachgebiet erschließen sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen anwenden. Sie sind in der Lage , für die Lösung von Fragestellungen aus den Bereichen der Baustatik und Baudynamik die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 150 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1202: Baudynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1203: Baudynamik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0564: Bruchmechanik und Betriebsfestigkeit im Stahlbau |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
∙ Grundlagen von Ermüdungsbeanspruchung und Ermüdungsbeanspruchbarkeit sowie verschiedene Nachweisverfahren der Betriebsfestigkeit, ∙ Ermittlung und Anwendung von S-N-Kurven sowie Klassifikation von Kerbfällen ∙ Durchführung von Betriebsfestigkeitsnachweisen bei ein- und mehrstufigen Belastungen unter Anwendung der linearen Schadensakkumulation nach Palmgren-Miner ∙ Durchführung von Betriebsfestigkeitsberechnungen anhand verschiedener Beispiele ∙ Konstruktive Maßnahmen zur Verminderung der Ermüdungsbeanspruchung ∙ Grundlagen der linear-elastischen Bruchmechanik bei statischer und dynamischer Beanspruchung ∙ Praktische Anwendung der linear-elastischen Bruchmechanik zur Restlebensdauerberechnung anhand verschiedener Beispiele |
Literatur |
∙ Seeßelberg, C.; Kranbahnen - Bemessung und konstruktive Gestaltung; 3. Auflage; Bauwerk-Verlag; Berlin 2009 ∙ Kuhlmann, Dürr, Günther; Kranbahnen und Betriebsfestigkeit; in Stahlbau Kalender 2003; Verlag Ernst & Sohn; Berlin 2003 ∙ Deutscher Stahlbau-Verband (Hrsg.); Stahlbau Handbuch Band 1 Teil B; 3. Auflage; Stahlbau-Verlagsgesellschaft; Köln 1996 ∙ Petersen, C.; Stahlbau; 3. überarb. und erw. Auflage; Vieweg-Verlag; Braunschweig 1993 ∙ DIN V ENV 1993-1-1: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 1-1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau; 1993 ∙ DIN V ENV 1993-6: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 6: Kranbahnen; 2001 ∙ DIN-Fachbericht 126. Richtlinie zur Anwendung von DIN V ENV 1993-6; Nationales Anwendungsdokument (NAD); Berlin 2002 |
Lehrveranstaltung L0565: Bruchmechanik und Betriebsfestigkeit im Stahlbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0593: Baustoffe und Bauwerkserhaltung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde, Bauchemie und Bauphysik, z.B. über die Module Baustoffgrundlagen und Bauphysik sowie Baustoffe und Bauchemie |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können die Komponenten mineralischer Baustoffe und deren Funktion im Detail beschreiben und für die Herstellung von mineralischen Spezialbaustoffen einsetzen. Sie können die Charakteristika mineralischer Bindemittel darstellen. Die Herstellung, Eigenschaften und Anwendungsgebiete von Spezialmörteln und Spezialbetonen können Sie beschreiben und die werkstoffkundlichen Zusammenhänge darstellen. Die Grundlagen der Befestigungstechnik können sie darstellen. |
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage eine Granulometrieoptimierung eines mineralischen Baustoffs durchzuführen. Sie können die Rezeptur eines mineralischen Spezialmörtels entwerfen und diesen Mörtel herstellen. Die Studierenden sind in der Lage nachträgliche Bewehrungsanschlüsse herzustellen. Sie sind in der Lage, Bauschäden zu erkennen, die Ursachen einzugrenzen, die Grundzüge der Bauwerkserhaltung anzuwenden sowie Instandsetzungs- und Verstärkungsmaßnahmen auszuwählen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Die Studierenden sind in der Lage in einer Kleingruppe eine Spezialmörtelrezeptur zu entwickeln. Sie präsentieren ihr Arbeitsergebniss vor dem Dozenten und den anderen Studierenden und stellen sich einer kritischen Diskussion, in der sie ihre Ergebnisse verteidigen bzw. anpassen. Die Studierenden können auf der Basis dieses Feedbacks gemeinsam diesen Spezialbaustoff herstellen. | ||||||||
Selbstständigkeit | Die Studierenden sind in der Lage, die vorhandenen Resourcen an Materialien und Laborausstattung für ihr Projekt selbständig zu nutzen sowie fehlende Komponenten zu recherchieren und zu beschaffen. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht |
Lehrveranstaltung L0255: Instandsetzung von Bauteilen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bauwerkserhaltung, Instandsetzung und Verstärkung, nachträgliche Bauwerksabdichtung |
Literatur | BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen |
Lehrveranstaltung L0253: Mineralische Baustoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Komponenten mineralischer Baustoffe und deren Funktion, Bindemittel, Beton und Mörtel, Spezialmörtel, Spezialbetone |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0256: Technologie mineralischer Baustoffe |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Konzeption und Herstellung eines mineralischen Spezialbaustoffes |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0254: Transportprozesse in Baustoffen und Bauschäden |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Transportprozesse in Baustoffen und Schadensprozesse an Bauteilen |
Literatur | Blaich, J.: Bauschäden, Analyse und Vermeidung |
Modul M0999: Projekt des Stahlbaus |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Stahl- und Verbundtragwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage sich einen Teilbereich der Projektaufgabe detailliert zu erarbeiten und anderen zu erklären. |
Fertigkeiten |
Die Studierenden können für ihren Teilbereich der Gesamtaufgabe Skizzen und Berechnungen anfertigen. Dabei sind sie in der Lage bei sich verändernden Rahmenbedingungen durch andere Teilprojekte nachzusteuern. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können ihre eigenen Ergebnisse in der Gruppe vorstellen und vertreten. Sie sind in der Lage konsensorientiert zu arbeiten und berücksichtigen dabei gruppenübergreifende Abhängigkeiten. Sie können in einer Gruppe selbständig Aufgaben verteilen und ausführen. |
Selbstständigkeit |
Die Studierenden können ein Teilgebiet der Gesamtaufgabe eigenverantwortlich bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 15-20 Seiten (exklusive Anhang) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L1206: Projekt des Stahlbaus |
Typ | Projektseminar |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Bearbeitung eines großen Bauprojektes, wie z.B Hochhaus, Großbrücke, Stadiondach etc. in Kleingruppen |
Literatur |
Wird je nach Projekt individuell angegeben. |
Modul M0663: Marine Geotechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gesamte Module: Geotechnik I-III, Mathematik I-III Einzelne Lehrveranstaltungen: Bodenmechanisches Praktikum |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage, Marine Gründungsstrukturen und Aspekte des Hafenbaus zu erklären. Sie können im Einzelnen
Die Studierenden verfügen außerdem über die nötigen Kenntnisse alle Einzelbauteile von Spundwandkonstruktionen zu entwerfen und in Abhängigkeit von äußeren Randbedingungen die richtigen Einzelbauteile auszuwählen. |
Fertigkeiten |
Die Studierenden können für technische Fragestellungen im Hafenbau und für Offshore-Bauwerke lösungsorientiert Analysen und Planungen durchführen. Sie sind hierfür in der Lage,
Die Studierenden können außderdem Spundwände mit allen Einzelbauteilen konstruieren, sinnvolle Einzelbauteile in Abhängigkeit von gegebenen Randbedingungen wählen, alle Arten von Spundwandkonstruktionen (Wellenspundwand, gemischte Spundwand) bemessen und alle Einzelbauteile und Anschlusskonstruktionen bemessen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0548: Marine Geotechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0549: Marine Geotechnik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1146: Stahlkonstruktionen im Grund- und Wasserbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Bemessung einer Wellenwand, Bemessung einer kombinierten Spundwand, Pfähle, Gurtung, Anschlüsse, Ermüdung |
Literatur | EAU 2012, EA-Pfähle, EAB |
Modul M0858: Coastal Hydraulic Engineering I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Basics of hydraulic engineering, hydrology and hydromechanics |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students are able to define and explain the basic concepts of coastal engineering and port engineering. They are able to apply the concepts to selected practical problems of coastal engineering. Students can define and determine the basics for design and dimensioning of coastal engineering constructions. |
Fertigkeiten |
The students are capable to apply basic design approaches to selected and pre-defined design tasks in coastal engineering. |
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to deploy their gained knowledge in applied problems such as the design of coastal protection structures. Additionaly, they will be able to work in team with engineers of other disciplines, for instance designing of coastal breakwaters. |
Selbstständigkeit |
The students will be able to independently extend their knowledge and applyit to new problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 2 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0807: Basics of Coastal Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Coastal Engineering Manual, CEM Vorlesungsumdruck |
Lehrveranstaltung L1413: Basics of Coastal Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1724: Smart Monitoring |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge or interest in object-oriented modeling, programming, and sensor technologies are helpful. Interest in modern research and teaching areas, such as Internet of Things, Industry 4.0 and cyber-physical systems, as well as the will to deepen skills of scientific working, are required. Basic knowledge in scientific writing and good English skills. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will become familiar with the principles and practices of smart monitoring. The students will be able to design decentralized smart systems to be applied for continuous (remote) monitoring of systems in the built and in the natural environment. In addition, the students will learn to design and to implement intelligent sensor systems using state-of-the-art data analysis techniques, modern software design concepts, and embedded computing methodologies. Besides lectures, project work is also part of this module, which will be conducted throughout the semester and will contribute to the grade. In small groups, the students will design smart monitoring systems that integrate a number of “intelligent” sensors to be implemented by the students. Specific focus will be put on the application of machine learning techniques. The smart monitoring systems will be mounted on real-world (built or natural) systems, such as bridges or slopes, or on scaled lab structures for validation purposes. The outcome of every group will be documented in a paper. All students of this module will “automatically” participate with their smart monitoring system in the annual "Smart Monitoring" competition. The written papers and oral examinations form the final grades. The module will be taught in English. Limited enrollment. |
Fertigkeiten |
The students will gain insights into operating state-of-the-art smart sensor systems, used for monitoring a wide range of physical processes relevant to engineering, such as environmental, structural, or comfort monitoring. The students will be capable of devising monitoring strategies of physical processes as part of group projects, tailored to their knowledge backgrounds, and to implement the strategies in smart wireless sensor nodes, using embedded computing and programming. Finally, the students will be able to document the findings of their projects in short reports. |
Personale Kompetenzen | |
Sozialkompetenz |
The students will be able to work in groups, share parts of the work for their projects, and develop communication skills, towards achieving the common project goals. |
Selbstständigkeit |
The students will be able to gain a solid basis on approaching and solving problems in engineering, as well as on documenting results, through their involvement in their monitoring group projects. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten Ausarbeitung mit 15-minütigem Abgabegespräch |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2762: Smart Monitoring |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
In this course, principles of smart monitoring will be taught, focusing on modern concepts of data acquisition, data storage, and data analysis. Also, fundamentals of intelligent sensors and embedded computing will be illuminated. Autonomous software and decentralized data processing are further crucial parts of the course, including concepts of the Internet of Things, Industry 4.0 and cyber-physical systems. Furthermore, measuring principles, data acquisition systems, data management and data analysis algorithms will be discussed. Besides the theoretical background, numerous practical examples will be shown to demonstrate how smart monitoring may advantageously be used for assessing the condition of systems in the built or natural environment. |
Literatur | The course contents couples different fields, such as signal processing, sensing technologies, data analytics, environmental engineering, civil engineering, artificial intelligence, database systems, and many more. The basics will be taught in this course. However, specific literature that covers all these topics does not exist. Instead, literature will be referenced in the lectures, all of which are papers that are freely available online. |
Lehrveranstaltung L2763: Smart Monitoring |
Typ | Gruppenübung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | The contents of the exercises are based on the lecture contents. In addition to the exercises, project work will be conducted throughout the semester, which will consume the majority of the workload. As part of the project work, students will design smart monitoring systems that will be tested in the laboratory or in the field. As mentioned in the module description, the students will participate in the “Smart Monitoring” competition, hosted annually by the Institute of Digital and Autonomous Construction. Students are encouraged to contribute their own ideas. The tools required to implement the smart monitoring systems will be taught in the group exercises as well as through external sources, such as video tutorials and literature. |
Literatur |
The course contents couples different fields, such as signal processing, sensing technologies, data analytics, environmental engineering, civil engineering, artificial intelligence, database systems, and many more. The basics will be taught in this course. However, specific literature that covers all these topics does not exist. Instead, literature will be referenced in the lectures, all of which are papers that are freely available online. |
Modul M1878: Nachhaltige elektrische Energie aus Wind und Wasser |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Marvin Scherzinger |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul: Thermodynamik I, Modul: Thermodynamik II, Modul: Grundlagen der Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Des Weiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studierenden können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0067: Offshore-Geotechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jan Dührkop |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Achleitner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1845: Flächentragwerke |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte des Tragverhaltens von Flächentragwerken wiedergeben. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, Flächentragwerke zu Modellieren und deren Tragverhalten durch geeignete analytische und numerische Berechnungsverfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich gegebene und fremde Quellen über das Fachgebiet erschließen sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen anwenden. Sie sind in der Lage, die notwendigen Arbeitsschritte für die Lösung von Fragestellungen der Modellierung und Berechnung von Flächentragwerken zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L1199: Flächentragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Scheiben
Schalen
Stabilitätsprobleme (Übersicht)
|
Literatur |
|
Lehrveranstaltung L3045: Flächentragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1345: Metallic and Hybrid Light-weight Materials |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures. Theoretical Lectures:
Laboratory Exercises:
Course Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literatur |
|
Lehrveranstaltung L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Marcus Rutner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1660: Metallic Light-weight Materials |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Domonkos Tolnai |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Lightweight construction - Structural lightweight construction - Material lightweight construction - Choice criteria for metallic lightweight construction materials Steel as lightweight construction materials - Introduction to the fundamentals of steels - Modern steels for the lightweight construction - Fine grain steels - High-strength low-alloyed steels - Multi-phase steels (dual phase, TRIP) - Weldability - Applications Aluminium alloys: Introduction to the fundamentals of aluminium materials Alloy systems Non age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications Age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications
Magnesium alloys Introduction to the fundamental of magnesium materials Alloy systems Magnesium casting alloys, processing, microstructure and qualities Magnesium wrought alloys, processing, microstructure and qualities Examples of applications Titanium alloys Introduction to the fundamental of the titanium materials Alloy systems Processing, microstructure and properties Examples of applications
Exercises and excursions |
Literatur |
George Krauss, Steels: Processing, Structure, and Performance, 978-0-87170-817-5 , 2006, 613 S. Hans Berns, Werner Theisen, Ferrous Materials: Steel and Cast Iron, 2008. http://dx.doi.org/10.1007/978-3-540-71848-2 C. W. Wegst, Stahlschlüssel = Key to steel = La Clé des aciers = Chiave dell'acciaio = Liave del acero ISBN/ISSN: 3922599095 Bruno C., De Cooman / John G. Speer: Fundamentals of Steel Product Physical Metallurgy, 2011, 642 S. Harry Chandler, Steel Metallurgy for the Non-Metallurgist 0-87170-652-0 , 2006, 84 S. Catrin Kammer, Aluminium Taschenbuch 1, Grundlagen und Werkstoffe, Beuth,16. Auflage 2009. 784 S., ISBN 978-3-410-22028-2 Günter Drossel, Susanne Friedrich, Catrin Kammer und Wolfgang Lehnert, Aluminium Taschenbuch 2, Umformung von Aluminium-Werkstoffen, Gießen von Aluminiumteilen, Oberflächenbehandlung von Aluminium, Recycling und Ökologie, Beuth, 16. Auflage 2009. 768 S., ISBN 978-3-410-22029-9 Catrin Kammer, Aluminium Taschenbuch 3, Weiterverarbeitung und Anwendung, Beuith,17. Auflage 2014. 892 S., ISBN 978-3-410-22311-5 G. Lütjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 Magnesium - Alloys and Technologies, K. U. Kainer (Hrsg.), Wiley-VCH, Weinheim 2003, ISBN 3-527-30570-x Mihriban O. Pekguleryuz, Karl U. Kainer and Ali Kaya “Fundamentals of Magnesium Alloy Metallurgy”, Woodhead Publishing Ltd, 2013,ISBN 10: 0857090887 |
Modul M0581: Water Protection |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students can describe the basic principles of the regulatory framework related to the international and European water sector. They can explain limnological processes, substance cycles and water morphology in detail. They are able to assess complex problems related to water protection, such as ecosystem service and wastewater treatment with a special focus on innovative solutions, remediation measures as well as conceptual approaches. |
Fertigkeiten |
Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare presentations and discussions. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung plus Vortrag |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht |
Lehrveranstaltung L0226: Water Protection and Wastewater Management |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
The literature listed below is available in the library of the TUHH.
|
Lehrveranstaltung L2008: Water Protection and Wastewater Management |
Typ | Projektseminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Modul M0595: Materialprüfung, Bauzustands- und Schadensanalyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde oder Werkstoffkunde, z.B. über das Modul Baustoffe und Bauchemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die Regeln für das Handeln mit sowie die Anwendung und Kennzeichnung von Bauprodukten in Deutschland zu beschreiben. Sie wissen welche Methoden zur Ermittlung von Baustoffeigenschaften zur Verfügung stehen und welche Grenzen und Charakteristika die wichtigsten Methoden haben. |
Fertigkeiten | Die Studierenden können selbstständig die Regeln für das Handeln mit und die Verwendbarkeit von Bauprodukten in Deutschland ermitteln. Sie können geeignete Prüfmethoden für die Überwachung von Bauprodukten, die Untersuchung von Schadensprozessen sowie für die Bauzustandsanalyse auswählen. Sie können von Symptomen auf die Ursache von Bauschäden schließen. Sie sind in der Lage die Ergebnisse einer Materialprüfung in einem Untersuchungsbericht oder Gutachten zusammenzufassen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die unterschiedlichen Rollen von Herstellern sowie von Prüf-, Überwachungs- und Zertifizierungstellen beschreiben, die im Rahmen der Materialprüfung zum Tragen kommen. Das gleiche gilt für die unterschiedlichen Rollen der verschiedenen Beteiligten in gerichtlichen Auseinandersetzungen. |
Selbstständigkeit | Die Studierenden sind in der Lage sich das Fachwissen eines sehr umfangreichen Fachgebietes anzueignen und die dafür notwendige terminliche Planung und notwendigen Arbeitsschritte durchzuführen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht |
Lehrveranstaltung L0260: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Materialprüfung und Kennzeichnung von Bauprodukten, Untersuchungsmethoden für Baustoffe und Bauteile, Untersuchungsberichte und Gutachten, Bauzustandbeschreibung, vom Symptom zur Schadensursache |
Literatur |
Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013. |
Lehrveranstaltung L0261: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0603: Nonlinear Structural Analysis |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Düster |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Knowledge of partial differential equations is recommended. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to |
Fertigkeiten |
Students are able to |
Personale Kompetenzen | |
Sozialkompetenz |
Students
are able to + solve problems in heterogeneous groups. + present and discuss their results in front of others. + give and accept professional constructive criticism. |
Selbstständigkeit |
Students
are able to |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Ship and Offshore Technology: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0277: Nonlinear Structural Analysis |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
1. Introduction |
Literatur |
[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014. |
Lehrveranstaltung L0279: Nonlinear Structural Analysis |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0801: Wasserressourcen und -versorgung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Mathias Ernst |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis wasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Trinkwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Konfliktfelder wasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für eine nachhaltige Wasserversorgung skizzieren. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. Die Studierenden können Organisationsstrukturen von Wasserversorgungsunternehmen erläutern und einordnen. Sie können verfügbare Trinkwasseraufbereitungsverfahren in der Breite der Anwendungen erklären. |
Fertigkeiten |
Die Studierende können komplexe Problemfelder aus Sicht der Trinkwassergewinnung einordnen und Lösungsansätze für wasserwirtschaftliche sowie technische Maßnahmen aufstellen. Sie können hierfür anwendbare Bewertungsmethoden einordnen. Die Studierenden sind in der Lage wasserchemische Berechnungen für ausgewählte Aufbereitungsprozessen durchzuführen. Sie können ausgewählte allgemein anerkannte Regeln der Technik auf Prozesse der Trinkwasseraufbereitung anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in einer fachlich heterogenen Gruppe gemeinsam komplexe Lösungen für das Management sowie die Aufbereitung von Trinkwasser erarbeiten und dokumentieren. Sie können professionell z.B. als Vertreter/in von Nutzungsinteressen angemessen Stellung beziehen. Sie können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Chemie) + Referat (WRM) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Chemie- und Bioingenieurwesen: Technischer Ergänzungskurs: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0311: Chemie der Trinkwasseraufbereitung |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Vorlesung wird das für die Praxis relevante wasserchemische Wissen mit Bezug auf die Wassergewinnung, -aufbereitung und -verteilung vermittelt. Die Themenschwerpunkte sind Löslichkeit von Gasen, Kohlensäure-Gleichgewicht, Kalk-Kohlensäure-Gleichgewicht, Entsäuerung, Mischung von Wässern, Enthärtung, Redoxprozesse, Werkstoffe sowie gesetzliche Anforderungen an die Aufbereitung. Alle Themen werden vor dem Hintergrund der allgemein anerkannten Regeln der Technik (DVGW-Regelwerk, DIN-Normen) praxisnah behandelt. Ein wesentlicher Teil der Veranstaltung sind Berechnungen anhand realer Analysendaten (z.B. Berechnung des pH-Wertes und der Calcitlösekapazität ). Zu jeder Einheit gibt es Übungen und Hausaufgaben. Durch das Lösen der Hausaufgaben erhalten die Studierenden ein Feedback und können Bonuspunkte für die Klausur erwerben. Da Kenntnisse der Wasseraufbereitungsprozesse von großer Bedeutung sind, werden diese in Abstimmung mit der Vorlesung „Wasserressourcenmanagement“ zu Beginn des Semesters erklärt. |
Literatur |
MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003. |
Lehrveranstaltung L0312: Chemie der Trinkwasseraufbereitung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0402: Wasserressourcenmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung vermittelt weitergehende Kenntnisse zur den Abhängigkeiten des Wasserressourcenmanagements mit Blick auf die Trinkwasserversorgung. Die aktuelle Situation der globalen Wasserressourcen wird dargestellt, Abhängigkeiten zwischen Nutzungsinteressen erarbeitet und internationale Beispiele für „Best-Pratice“ sowie unzureichenden Wasserressourcenmanagements präsentiert und diskutiert. Entsprechend werden den Studierenden notwendige Voraussetzungen und Rahmenbedingungen für ein „integriertes Wasserressourcenmanagement“ vermittelt. Mit Bezug zum EU Raum und insbesondere Deutschland werden weiterhin Aspekte relevanter Rechtsnormen, administrative Strukture der Wasserversorgung sowie Fragen der Organisation von Trinkwasserversorgungsunternehmen (kommunal, privat, public privat partnership) vermittelt. Managementinstrumente wie das Life-Cycle Assessment, Modelle des Benchmarkings sowie der Wasserdargebotserfassungwerden für die Trinkwasserversorgung präsentiert und diskutiert. Die Inhalte der Vorlesung schließen wo möglich und sinnvoll, regionale Bezüge mit ein. |
Literatur |
|
Lehrveranstaltung L0403: Wasserressourcenmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0923: Integrierte Verkehrsplanung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Verkehrsplanung, z. B. aus dem Modul Verkehrsplanung und Verkehrstechnik im Bachelor |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schriftliche Ausarbeitung mit Präsentation, semesterbegleitend in Teilschritten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1068: Integrierte Verkehrsplanung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz, Dr. Philine Gaffron, Jacqueline Bianca Maaß |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Lehrveranstaltung wird ein Verständnis für die Interdependenzen zwischen Siedlungsstruktur und Verkehrsentwicklung vermittelt. Behandelt werden u. a.:
|
Literatur |
Kutter, Eckhard (2019) Stadtstruktur und Erreichbarkeit in der postfossilen Zukunft. Erich Schmidt Verlag. Berlin. Gies, Huber u. a. (Hrsg.) (93. Ergänzung 2022) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen) |
Modul M0964: Unterirdisches Bauen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Module aus dem Bachelorstudiengang Bau- und Umweltingenieurwesen:
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Kenntnis verschiederner Tunnelbauweisen sowie spezieller Methoden und Verfahren des unterirdischen Bauens. |
||||||||
Fertigkeiten |
Grundkenntnisse beim Entwurf von Tunneln sowie praktische Fertigkeiten in der Tunnelstatik. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Teamfähigkeit in der Projektplanung und beim Entwurf von Tunnelbauwerken. | ||||||||
Selbstständigkeit | Förderung des selbstständigen und kreativen Arbeitens im Rahmen einer Entwurfsübung. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L2407: Angewandter Tunnelbau |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe, Tim Babendererde |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0707: Einführung in den Tunnelbau |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Julian Bubel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1811: Einführung in den Tunnelbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Julian Bubel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0969: Ausgewählte Themen des Bauingenieurwesens |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | --- |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L3092: Bemessung von Verbundbrücken |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalte dieser Vorlesung ist der Entwurf, die Konstruktion, die Nachweisführung nach der aktuellen Norm, die Bewertung und die Ertüchtigung von Verbundbrücken. |
Literatur |
Lehrveranstaltung L1867: Berechnung von Offshore-Tragwerken |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Said Fawad Mohammadi |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Topic 1: Types of Offshore Structures, Fixed and floating structures for Oil & Gas and Offshore Wind industry Topic 2: Wave Forces, Morisons equation Topic 3: Irregular Seastates, Power spectrum and application of FFT Topic 4: Additional Environmental Forces, wind spectra, current forces Topic 5: Linear-Time-Invariant Systems, response of an LTI-system in frequency domain Topic 6: Tubular Welded Connections, stress concentration factors, weld geometry Topic 7: Introduction to Fracture Mechanics, criteria for fracture initiation and crack growth Topic 8: Time and Frequency Domain Fatigue Analyses, rainflow counting, application of LTI-systems for frequency domain fatigue Topic 9: Offshore Installation and Exam, installation of structures, pile driving, pipe laying techniques |
Literatur |
Chakrabarti, Handbook of Offshore Engineering, 2005 Sarpkaya, Wave Forces on Offshore Structures, 2010 Faltinsen, Sea Loads on Ships and Offshore Structures, 1998 Sorensen, Basic Coastal Engineering, 2006 Dowling, Mechanical Behavior of Materials, 2007 Haibach, Betriebsfestigkeit, 2006 Marshall, Design of Welded Tubular Connections, 1992 Newland, Random vibrations, spectral and wavelet analysis, 1993 |
Lehrveranstaltung L3227: Energie-Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung (laut FPrO) |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Pauline Kaminski |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Energie-Geotechnik ist ein junges Fachgebiet im Bereich der Geotechnik mit dem Ziel nachhaltige geotechnische Lösungen für zukunftsrelevante Fragestellungen bezüglich Produktion, Transport, Betrieb, Rückbau und Abfallverwertung verschiedener Energieträger zu entwickeln. Beispiele möglicher Betätigungsfelder der Energie-Geotechnik sind die Geothermie und thermische aktivierte Gründungsbauteile, Gründungen von Windenergieanlagen on- und offshore, der Rückbau von Förderanlagen sowie der Umgang mit Abfallprodukten fossiler Energieträger wie bspw. Kippenböden und die geologische Speicherung von CO2. Relevante bodenmechanische Prozesse in diesen Anwendungen sind u.a. das thermo-hydro-mechanisch-gekoppelte Verhalten von Böden, Mehrphasenströmung in porösen Medien und teilgesättigte Böden. Die Lehrveranstaltung gibt einen Überblick über verschiedene Aspekte der Energie-Geotechnik und vermittelt vertieftes Wissen zu den einhergehenden bodenmechanischen Prozessen. Ergänzend werden CO2-arme geotechnische Verfahren besprochen und Emissionsabschätzungen sowie die Optimierung von geotechnischen Strukturen nach Nachhaltigkeitsaspekten thematisiert. |
Literatur |
Lehrveranstaltung L0052: Feststoffverfahrenstechnik für Biomassen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Werner Sitzmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Die großtechnische Anwendung verfahrenstechnischer Grundoperationen wird an aktuellen Beispielen der Verarbeitung fester Biomassen demonstriert. Hierzu gehören unter anderem: Zerkleinern, Fördern und Dosieren, Trocknen und Agglomerieren nachwachsender Rohstoffe im Rahmen der Herstellung von Brennnstoffen, der Bioethanolerzeugung, der Gewinnung und Veredelung von Pflanzenölen, von Biomass-to-liquid-Prozessen sowie der Herstellung von wood-plasic-composites. Aspekte zum Explosionsschutz und zur Anlagenplanung ergänzen die Vorlesung. |
Literatur |
Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe, Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175 |
Lehrveranstaltung L1634: Forum I - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Vorträge zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur | -- |
Lehrveranstaltung L1635: Forum II - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Vortrage zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur | -- |
Lehrveranstaltung L1151: Holzbau |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Torsten Faber |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2666: Innovativer Holzbau |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 45 Minuten |
Dozenten | Dr. Andreas Meisel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Holz ist DER nachhaltige Baustoff schlechthin, seine Anwendung
feiert auch im norddeutschen Raum seit einigen Jahren eine Renaissance.
Neben gewöhnlichen Hochbauten werden unter anderem auch weitgespannte
Hallentragwerke und Hochhäuser immer häufig in Holzbauweise errichtet.
In der Ausbildung angehender BauingenieurInnen sind daher mehr als nur
Grundlagenkenntnisse erforderlich, um tragsichere, wirtschaftliche,
ästhetische und nicht zuletzt dauerhafte Tragwerke aus Holz konstruieren
und bemessen zu können.
|
Literatur |
- Blass, J.: "Ingenieurholzbau"
|
Lehrveranstaltung L1152: Konstruktiver Glasbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Konstruktiver Glasbau - Einführung in den Baustoff Glas (Herstellung, Veredelung, Materialverhalten) - Konstruktion von Fassaden - Fassadentypen - Statische Berechnung von Verglasungen - Statische Berechnung von Fassaden - Unterschiede Plattentragwirkung / Membranwirkung bei Verglasungen - Vertikal- / Horizontalverglasungen mit sicherheitsrelevanten Anforderungen (begehbare, betretbare und absturzsichernde Verglasungen) - Glastragwerke - Brandschutz bei Glasfassaden - Bauphysik bei Fassaden bzw. Verglasungen |
Literatur |
Lehrveranstaltung L1447: Konstruktiver Glasbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L3270: Sustainable landfill design and operation |
Typ | Integrierte Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The course introduces the development of modern waste resource management and demonstrates the importance of landfills in the context of recycling processes. Based on international (EU) and national legislation, the current landfill situation is presented and the future significance of landfills will be discussed. A central element of the course deals with the main transformation processes in the landfilled waste, the emission of gases and leachate, the long-term behaviour of landfills as well as aftercare and after-utilisation measures. Further focal points of the course are measures for the sustainable reduction of environmentally and climate-damaging emissions and aspects of landfill technology in an international context. |
Literatur |
1) Waste
Management. Bernd Bilitewski; Georg Härdtle; Klaus Marek (Eds.), ISBN:
9783540592105 , Springer Verlag 3) Solid Waste Landfilling - Concepts, Processes, Technologies. Cossu, R. and Stegmann, R. (Eds.), ISBN: 978-0-12-818336-6 PDF (Volltext) über TUB |
Lehrveranstaltung L3091: Spezialthemen des Stahlbaus |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Marcus Rutner, Nikolay Lalkovski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel dieser Lehrveranstaltung ist es, auf einige in der Praxis wichtige Themen des Stahlbaus näher einzugehen, die im Rahmen der Bachelor-Fächer „Stahlbau I“ und „Stahlbau II“ nicht oder nur einleitend behandelt werden können. Im Folgenden sind diese Themen mit kurzer Beschreibung der Inhalte aufgezählt: 1. Nachweisverfahren Plastisch-Plastisch: Eine Einleitung in das Verfahren wird bereits im Rahmen der Lehrveranstaltung „Stahlbau II“ gegeben. Nach kurzer Wiederholung der Grundlagen fällt der Fokus auf folgende bei der praktischen Anwendung potentiell wichtigen Aspekte des Verfahrens: Einfluss der Theorie 2. Ordnung auf die Traglast - besonders wichtig bei verschieblichen Rahmentragwerken Einfluss von Normal- und Querkräften auf die Momente in den plastischen Gelenken und damit auf die Traglast Unterdrückung von lokalen Instabilitäten als Bedingung für die Anwendung des Verfahrens Plastisch-Plastisch Inkrementeller plastischer Kollaps und Shakedown 2. Plattenbeulen: Differentialgleichung des Verzweigungsproblems Nachweis von unausgesteiften und ausgesteiften Beulfeldern; überkritische Tragreserven 3. Seilkonstruktionen: Wesentliche Unterschiede zu Tragwerken aus biegesteifen Gliedern Herleitung der Seilgleichung für einige typische Belastungsfälle Grundlagen der Berechnung von Hängedächern und seilabgespannten Dächern; Diskussion der jeweils verwandten Probleme bei Hänge- und Schrägseilbrücken 4. Ermüdung und Betriebsfestigkeit: Wöhlerlinie Kerbfälle Vorstellung der gängigen Verfahren zum Nachweis der Betriebsfestigkeit, z. B. Reservoirmethode |
Literatur |
Lehrveranstaltung L2378: Spezielle Themen des Bauingenieurwesens 1LP |
Typ | |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt | Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur | Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2379: Spezielle Themen des Bauingenieurwesens 2LP |
Typ | |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur |
Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2380: Spezielle Themen des Bauingenieurwesens 3LP |
Typ | |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur |
Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2789: Tragwerksentwurf |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Dr. Jan Mittelstädt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Das Seminar Tragwerksentwurf beschäftigt sich mit dem Zusammenhang zwischen Architektur und Struktur. Die |
Literatur |
[1] Structure Systems by Heino Engel, Hantje Cantz, 3rd edition (Feb 2007), ISBN-10: 3775718761 |
Modul M0965: Studienarbeit Tragwerke |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Dozenten des SD B |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Lehrinhalte der Vertiefung Tragwerke. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ihre Detailkenntnisse im Gebiet der Tragwerksplanung und des Tragwerksbaus demonstrieren. Sie können zum Stand von Entwicklung und Anwendung Beispiele geben und diese kritisch unter Berücksichtigung aktueller Probleme und Rahmenbedingungen in Wissenschaft und Gesellschaft diskutieren. Die Studierenden sind in der Lage, für eine grundlagenorientierte, praktische Fragestellung aus dem Bereich der Tragwerksplanung und des Tragwerksbaus eigenständig eine Lösungsstrategie zu definieren und einzelne Lösungsansätze zu skizzieren. Dabei können sie theorieorientiert vorgehen und aktuelle sicherheitstechnische, ökologische, ethische und wirtschaftliche Gesichtspunkte nach dem Stand der Wissenschaft und zugehöriger gesellschaftlicher Diskussionen einbeziehen. Wissenschaftliche Arbeitstechniken, die sie zur eigenen Projektbearbeitung gewählt haben, können sie detailliert darlegen und kritisch erörtern. |
Fertigkeiten |
Die Studierenden sind in der Lage, zur Projektbearbeitung selbständig Methoden auszuwählen und diese Auswahl zu begründen. Sie können darlegen, wie sie die Methoden auf das spezifische Anwendungsfeld beziehen und hierfür an den Anwendungskontext anpassen. Über das Projekt hinaus weisende Ergebnisse sowie Weiterentwicklungen können sie in Grundzügen skizzieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und Kolleginnen und Kollegen Rückmeldung zu ihren Projekten geben. |
Selbstständigkeit |
Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erreichen. |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Studienarbeit |
Prüfungsdauer und -umfang | laut FSPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht |
Modul M1779: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Anfertigung einer schriftliche Ausarbeitung zu einer komplexen Fragestellung mit Referat und anschließender Diskussion. Die Bearbeitung der Fragestellung erfolgt parallel zur Lehrveranstaltung. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2926: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1505: Anpassung an den Klimawandel in der wasserbaulichen Praxis (AKWAS) |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Anfertigung einer schriftliche Ausarbeitung zu einer komplexen Fragestellung mit Referat und anschließender Diskussion. Die Bearbeitung der Fragestellung erfolgt parallel zur Lehrveranstaltung. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2291: Anpassung an den Klimawandel in der wasserbaulichen Praxis |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1844: Modern discretization methods in structural mechanics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of this module, students can express the
basic aspects of modern discretization methods in structural mechanics. |
Fertigkeiten |
After successful completion of this module, the students will be
able to use and further improve modern discretization methods for problems in structural mechanics. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of modern discretization methods. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L3043: Modern discretization methods in structural mechanics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The course covers variational formulations, various locking phenomena and alternative formulations for finite elements and modern discretization schemes in the context of structural mechanics, like isogeometric analysis.
|
Literatur |
|
Lehrveranstaltung L3044: Modern discretization methods in structural mechanics |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1725: Scientific Working in Computational Engineering |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge in scientific writing. String interest in topics related to computing in civil engineering. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will learn to apply concepts and methods of scientific working in computational engineering. In interaction with the course instructors and in collaboration with each other, the students will also learn to understand the complex process of scientific thinking, being able to accurately plan, implement and analyze scientific projects, such as prospective master theses. A project will be conducted throughout the semester, which will contribute to the grade. Since scientific writing is of particular importance in this course, a scientific paper will be developed based, which is a prerequisite for the final examination. The paper will be written based on the project conducted within this course. Project meetings in small groups, presentations, and critical discussions of scientific publications are further key activities. |
Fertigkeiten |
The students will be capable (i) of solving a scientific problem following a scientific methodology, (ii) of documenting their work effectively in the form of a paper, and (iii) of sharing their work in a presentation. |
Personale Kompetenzen | |
Sozialkompetenz |
The students will be able to work in a multidisciplinary team and develop communication skills necessary for problem solving. |
Selbstständigkeit |
The students will be able to extend their knowledge and apply it to solve scientific problems by working independently in a project. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten Ausarbeitung mit 15-minütigem Abgabegespräch |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht |
Lehrveranstaltung L2764: Scientific Working in Computational Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
In the course, a scientific problem of practical relevance will first be defined, taking into account the interests of the students participating in the course. The scientific problem will then systematically be solved within the framework of a comprehensive project. The principles of scientific working will be taught based on the scientific problem defined previously. As an integral part of scientific working, fundamentals of scientific writing will be presented and applied to a scientific paper to be written during the course. Topics related to scientific writing include structuring in scientific writing (structuring the abstract, the introduction, the main part, the summary and conclusions, and the acknowledgments and references) and recommendations on effective scientific writing (principles of composition, use of English in scientific writing, useful tips, creating figures, writing in mathematics, referencing, and formal email correspondence). A final paper and a final presentation will be assembled by the students. |
Literatur |
Smarsly, K. & Dragos, K., 2019. Scientific Writing in Engineering. Tredition, Hamburg, Germany. |
Modul M1956: Bau- und Tiefbaurecht |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gesamte Module: Geotechnik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erhalten Kenntnisse über
|
Fertigkeiten |
Studierende lernen juristische Aspekte in der Planung und im Bau rechtlich ausgewogen anwenden zu können. Studierende lernen, wie sie rechtliche und baubetriebliche Aspekte in der Praxis (Planen und Bauen) auf der Baustelle gezielt einsetzen und das Bauvorhaben optimal managen können. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L3182: Baurecht BGB und VOB - Recht in der (Tiefbau-)Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Günther Schalk |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt: |
Literatur |
Literatur: |
Lehrveranstaltung L3181: Baustreitigkeiten aus der baubetrieblichen (Tiefbau-)Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Ingo Junker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel ist es, den Studierenden aus der baubetrieblichen Praxis einen Einblick in die vielfältigen Inhalte: |
Literatur |
Modul M0859: Coastal Hydraulic Engineering II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Coastal Engineering I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students have the capability to define and explain in detail the important aspects of erosion protection and flood protection and are able to apply the aspects to practical coastal protection problems. They are able to design and dimension important coastal protection measures from the functional and from the constructional point of view. |
Fertigkeiten |
The students are able to select design approaches for the functional and constructional design of erosion and flood protection measures and apply these approaches to practical design tasks. |
Personale Kompetenzen | |
Sozialkompetenz | The students are able to deploy their gained knowledge in applied problems such as the functional and constructive design of coastal and flood protection structures. Additionaly, they will be able to work in team with engineers of other disciplines. |
Selbstständigkeit | The students will be able to independently extend their knowledge and apply it to new problems. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 130 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0808: Coastal- and Flood Protection |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Protection of sandy coasts
Flood Protection
|
Literatur |
Vorlesungsumdruck Coastal Engineering Manual CEM |
Lehrveranstaltung L1415: Coastal- and Flood Protection |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1411: Maintenance and Defence of Flood Protection Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Olaf Müller |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Modul M2003: Biological Waste Treatment |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse | chemical and biological basics | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The module aims possess knowledge concerning the planning of biological waste treatment plants. Students are able to explain the design and layout of anaerobic and aerobic waste treatment plants in detail, describe different techniques for waste gas treatment plants for biological waste treatment plants and explain different methods for waste analytics. |
||||||||
Fertigkeiten |
The students are able to discuss the compilation of design and layout of plants. They can critically evaluate techniques and quality control measurements. The students can recherché and evaluate literature and date connected to the tasks given in der module and plan additional tests. They are capable of reflecting and evaluating findings in the group. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development in front of colleagues. Furthermore, they can give and accept professional constructive criticism. |
||||||||
Selbstständigkeit |
Students can independently tap knowledge from literature, business or test reports and transform it to the course projects. They are capable, in consultation with supervisors as well as in the interim presentation, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Referat | ||||||||
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (15-25 Minuten in Gruppen) | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemie- und Bioingenieurwesen: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L0328: Waste and Environmental Chemistry |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The participants are divided into groups. Each group prepares a transcript on the experiment performed, which is then used as basis for discussing the results and to evaluate the performance of the group and the individual student. In some experiments the test procedure and the results are presented in seminar form, accompanied by discussion and results evaluation. Experiments ar e.g. Screening and particle size determination Fos/Tac AAS Chalorific value |
Literatur | Scripte |
Lehrveranstaltung L0318: Biological Waste Treatment |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Modul M2025: Finite element modeling of structures |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of this module, students can express the
basic aspects of modelling of structures with finite elements. |
Fertigkeiten |
After successful completion of this module, the students will be
able to model structures with finite elements and to analyse structures using appropriate computational methods. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students are able to gain knowledge of the subject area from
given and other sources and apply it to new problems.
Furthermore, they are able to structure the solution process
for problems in the area of finite element modelling of structures. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schriftliche Ausarbeitung einer Projektarbeit (10-15 Seiten) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L3046: Finite element modeling of structures |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic phenomena and aspects of the finite element modelling of structures are discussed. Besides theoretical decription of the phenomena and methods, a strong focus is on the practical use a commercial finite element software within computer-based exercises. The covered topics are:
|
Literatur | Vorlesungsmanuskript, Vorlesungsfolien |
Lehrveranstaltung L3047: Finite element modeling of structures |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M2033: Subsurface Processes |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Nima Shokri |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic Mathematics, Hydrology |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Upon completion of this module, the students will understand the mechanisms controlling solute transport in soil and natural porous media and will be able to work with the equations that govern the fate and transport of solutes in porous media. Analytical, numerical and experimental tools and techniques will be used in this module. |
Fertigkeiten | In addition to the physical insights, the students will be exposed to analytical, experimental and numerical tools and techniques in this module. This provides them with an excellent opportunity to improve their skills on multiple fronts which will be useful in their future career. |
Personale Kompetenzen | |
Sozialkompetenz | Teamwork & problem solving |
Selbstständigkeit | The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Report |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Chemie- und Bioingenieurwesen: Technischer Ergänzungskurs: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L2731: Modeling of Subsurface Processes |
Typ | Gruppenübung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Milad Aminzadeh |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic usage and background of chosen computer software to calculate flow and transport in the saturated and unsaturated zone and to analyze field data like pumping test data |
Literatur |
Lehrveranstaltung L2728: Subsurface Solute Transport |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic physical properties of soil: Definition and quantification; Liquid flow in soils (Darcy’s law); Solute transport in soils; Practical analysis to measure dispersion coefficient in soil under different boundary conditions; Advanced topics (e.g. Application of Artificial Intelligence to predict soil salinization) |
Literatur |
- Environmental Soil Physics, by Daniel Hillel - Soil Physics, Sixth Edition, by William A. Jury and Robert Horton |
Lehrveranstaltung L2729: Subsurface Solute Transport |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Hannes Nevermann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule der Vertiefung Modellierung und Simulation
Modul M0963: Stahl- und Verbundtragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen des Stahlbaus (z.B. Stahlbau I und II, BUBC) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten können nach der Absolvierung des Moduls
|
Fertigkeiten |
Nach erfolgreicher Teilnahme an diesem Modul sind die Studenten in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz | -- |
Selbstständigkeit | -- |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1204: Stahl- und Verbundtragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag |
Lehrveranstaltung L1205: Stahl- und Verbundtragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1097: Stahlbrückenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Yves Freundt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
• Von der Ausschreibung bis zur Fertigstellung - der Weg einer Stahlbrücke • Aufbau einer Brückenstatik - konstruktive Details, Beispiele für Detailnachweise: ◦ mittragende Breite unter Berücksichtigung von Längssteifen ◦ Auflagerpunkt, Auflagersteifen ◦ Querträgerdurchbruch, Säumung ◦ Zinkennachweis (Querträgersteg zwischen Trapezsteifen) • Stahlsorten, -bezeichnungen, Prüfungen und Abnahmezeugnisse • Zerstörungsfreie Schweißnahtprüfverfahren • Korrosionsschutz • Brückenlager - Arten, Aufbau, Funktion, Berechnung, Einbau • Fahrbahnübergänge • Schwingungen von Rundhängern und Seilen - Schwingungsdämpfer • Bewegliche Brücken • Ausführliche Berichte von verschieden Montagevorgängen und -hilfsmitteln • Ausgewählte Schadensfälle |
Literatur |
|
Modul M0699: Geotechnik III |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Geotechnik I und II, Mathematik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem erfolgreichen Absolvieren des Moduls sind die Studierenden in der Lage,
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0375: Numerische Methoden in der Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Hans Mathäus Stanford |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt:
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein
|
Literatur |
|
Lehrveranstaltung L0497: Spezialtiefbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0498: Spezialtiefbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0713: Betontragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | NN | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlagen der Baustatik, Entwurf und Bemessung von Tragwerken des Massivbaus Module: Massivbau I + II, Baustatik I + II, Mechanik I+II |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden erweitern ihre Kenntnisse in der Tragwerksplanung, speziell in Richtung Hochbau (Gebäude, Dächer, Hallen). Sie verfügen über das für den Entwurf und die Bemessung von Stahlbetonhochbauten bzw. häufig vorkommender Bauteile benötigte Wissen. |
||||||||
Fertigkeiten |
Die Studierenden können die Entwurfs- und Bemessungsverfahren auf praktische Fragestellungen des Stahlbetonhochbaus anwenden. Sie sind in der Lage, Tragwerke zu entwerfen und für allgemeine Beanspruchungen zu bemessen sowie hierfür die bauliche und konstruktive Umsetzung vorzusehen. Darüber hinaus können sie Entwurfs- und Konstruktionsskizzen anfertigen und die Ergebnisse von Berechnung und Bemessung sprachlich darlegen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppenarbeit hochwertige Arbeitsergebnissen zu erzielen. |
||||||||
Selbstständigkeit |
Die Studierenden sind fähig, angeleitet durch Lehrende komplexe Stahlbetontragwerke zu entwerfen und zu bemessen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0579: Betontragwerke |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Anhand einer semesterbegleitenden Gruppenarbeit werden die Inhalte der Lehrveranstaltung "Stahl- und Spannbetonbauteile" eingeübt, diskutiert und präsentiert. |
Literatur | - Projektbezogene Unterlagen werden abgegeben. |
Lehrveranstaltung L0577: Stahl- und Spannbetonbauteile |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Vorlesungsunterlagen können im STUDiP heruntergeladen werden
|
Lehrveranstaltung L0578: Stahl- und Spannbetonbauteile |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1748: Construction Robotics |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basics of project-oriented programming |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Basics of robotics Applications in civil engineering Kinematics |
Fertigkeiten |
Use of specific hardware Development of software routines Python programming language Image processing Basics of localization (LIDAR, SLAM) |
Personale Kompetenzen | |
Sozialkompetenz |
Teamwork Communication skills |
Selbstständigkeit |
Independent work Independent decisions |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L2867: Construction Robotics |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | Prof. Kay Smarsly, Jan Stührenberg |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bock/Linner:
Construction Robotics |
Modul M2033: Subsurface Processes |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Nima Shokri |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic Mathematics, Hydrology |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Upon completion of this module, the students will understand the mechanisms controlling solute transport in soil and natural porous media and will be able to work with the equations that govern the fate and transport of solutes in porous media. Analytical, numerical and experimental tools and techniques will be used in this module. |
Fertigkeiten | In addition to the physical insights, the students will be exposed to analytical, experimental and numerical tools and techniques in this module. This provides them with an excellent opportunity to improve their skills on multiple fronts which will be useful in their future career. |
Personale Kompetenzen | |
Sozialkompetenz | Teamwork & problem solving |
Selbstständigkeit | The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Report |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Chemie- und Bioingenieurwesen: Technischer Ergänzungskurs: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L2731: Modeling of Subsurface Processes |
Typ | Gruppenübung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Milad Aminzadeh |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic usage and background of chosen computer software to calculate flow and transport in the saturated and unsaturated zone and to analyze field data like pumping test data |
Literatur |
Lehrveranstaltung L2728: Subsurface Solute Transport |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic physical properties of soil: Definition and quantification; Liquid flow in soils (Darcy’s law); Solute transport in soils; Practical analysis to measure dispersion coefficient in soil under different boundary conditions; Advanced topics (e.g. Application of Artificial Intelligence to predict soil salinization) |
Literatur |
- Environmental Soil Physics, by Daniel Hillel - Soil Physics, Sixth Edition, by William A. Jury and Robert Horton |
Lehrveranstaltung L2729: Subsurface Solute Transport |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Hannes Nevermann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1845: Flächentragwerke |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte des Tragverhaltens von Flächentragwerken wiedergeben. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, Flächentragwerke zu Modellieren und deren Tragverhalten durch geeignete analytische und numerische Berechnungsverfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich gegebene und fremde Quellen über das Fachgebiet erschließen sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen anwenden. Sie sind in der Lage, die notwendigen Arbeitsschritte für die Lösung von Fragestellungen der Modellierung und Berechnung von Flächentragwerken zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L1199: Flächentragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Scheiben
Schalen
Stabilitätsprobleme (Übersicht)
|
Literatur |
|
Lehrveranstaltung L3045: Flächentragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0861: Modellieren im Wasserbau |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Küstenwasserbau I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Prozesse, die mit der Modellierung von Strömungen und Wellen / Seegang im Wasserbau und Küstenwasserbau verbunden sind, detailliert definieren. Daneben können sie wesentliche Aspekte der Modellierung benennen und die gängigen numerischen Modelle zur Simulation von Strömungen und Seegang beschreiben. |
Fertigkeiten |
Die Studierenden können numerische Modelle auf einfache Fragestellungen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden lernen die Fachkenntnisse in einfachen anwendungsorientierten Fragestellung einzusetzen und im Team mit anderen zusammen zu arbeiten. |
Selbstständigkeit | Die Studierenden können selbstständig ihr Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 3 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht |
Lehrveranstaltung L0813: Hydraulische Modelle |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Strobl, Zunic: Wasserbau, Kap. 11 Hydraulische Modelle, Springer |
Lehrveranstaltung L0812: Modellieren von Seegang |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Lehrveranstaltung L0810: Modelling of Flow in Rivers and Estuaries |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Edgar Nehlsen, Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Introduction to numerical flow modelling
|
Literatur |
Vorlesungsskript Literaturempfehlungen Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (1997): Hydraulische Berechnung von naturnahen Fließgewässern. Düsseldorf: BWK (BWK-Merkblatt). Chow, Ven-te (1959): Open-channel Hydraulics. New York usw.: McGraw-Hill (McGraw-Hill Civil Engineering Series). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019a): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 1: Geodaten in der Fließgewässermodellierung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-1). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019b): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 2: Bedarfsgerechte Datenerfassung und -aufbereitung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-2). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019c): Merkblatt DWA-M 543-3 Geodaten in der Fließgewässermodellierung - Teil 3: Aspekte der Strömungsmodellierung und Fallbeispiele. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-3). Hervouet, Jean-Michel (2007): Hydrodynamics of free surface flows. Modelling with the finite element method. Chichester: Wiley. Online verfügbar unter http://www.loc.gov/catdir/enhancements/fy0741/2007296953-b.html. IAHR (2015): Professional Specifications for Physical and Numerical Studies in Environmental Hydraulics. In: Hydrolink (3/2015), S. 90-92. Olsen, Nils Reidar B. (2012): Numerical Modelling and Hydraulics. 3. Aufl. Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology. Szymkiewicz, Romuald (2010): Numerical modeling in open channel hydraulics. Dordrecht: Springer (Water science and technology library, 83). van Waveren, Harold (1999-): Good modelling practice handbook. [Utrecht], Lelystad, Den Haag: STOWA; Rijkswaterstaat-RIZA; SDU, afd. SEO/RIZA [etc. distr.] (Nota, nr. 99.036). Zielke, Werner (Hg.) (1999): Numerische Modelle von Flüssen, Seen und Küstengewässern. Deutscher Verband für Wasserwirtschaft und Kulturbau. Bonn: Wirtschafts- und Verl.-Ges. Gas und Wasser (Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau, 127). |
Modul M1895: Digital Twinning im Bauingenieurwesen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Alexander Chmelnizkij |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | 20 min Vortrag und 5 Seiten Handout |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht |
Lehrveranstaltung L3136: Digital Twinning im Bauingenieurwesen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Alexander Chmelnizkij, Prof. Bastian Oesterle, Prof. Kay Smarsly |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L3137: Digital Twinning im Bauingenieurwesen |
Typ | Seminar |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Alexander Chmelnizkij, Prof. Bastian Oesterle, Prof. Kay Smarsly |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0663: Marine Geotechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gesamte Module: Geotechnik I-III, Mathematik I-III Einzelne Lehrveranstaltungen: Bodenmechanisches Praktikum |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage, Marine Gründungsstrukturen und Aspekte des Hafenbaus zu erklären. Sie können im Einzelnen
Die Studierenden verfügen außerdem über die nötigen Kenntnisse alle Einzelbauteile von Spundwandkonstruktionen zu entwerfen und in Abhängigkeit von äußeren Randbedingungen die richtigen Einzelbauteile auszuwählen. |
Fertigkeiten |
Die Studierenden können für technische Fragestellungen im Hafenbau und für Offshore-Bauwerke lösungsorientiert Analysen und Planungen durchführen. Sie sind hierfür in der Lage,
Die Studierenden können außderdem Spundwände mit allen Einzelbauteilen konstruieren, sinnvolle Einzelbauteile in Abhängigkeit von gegebenen Randbedingungen wählen, alle Arten von Spundwandkonstruktionen (Wellenspundwand, gemischte Spundwand) bemessen und alle Einzelbauteile und Anschlusskonstruktionen bemessen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0548: Marine Geotechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0549: Marine Geotechnik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1146: Stahlkonstruktionen im Grund- und Wasserbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Bemessung einer Wellenwand, Bemessung einer kombinierten Spundwand, Pfähle, Gurtung, Anschlüsse, Ermüdung |
Literatur | EAU 2012, EA-Pfähle, EAB |
Modul M0999: Projekt des Stahlbaus |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Stahl- und Verbundtragwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage sich einen Teilbereich der Projektaufgabe detailliert zu erarbeiten und anderen zu erklären. |
Fertigkeiten |
Die Studierenden können für ihren Teilbereich der Gesamtaufgabe Skizzen und Berechnungen anfertigen. Dabei sind sie in der Lage bei sich verändernden Rahmenbedingungen durch andere Teilprojekte nachzusteuern. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können ihre eigenen Ergebnisse in der Gruppe vorstellen und vertreten. Sie sind in der Lage konsensorientiert zu arbeiten und berücksichtigen dabei gruppenübergreifende Abhängigkeiten. Sie können in einer Gruppe selbständig Aufgaben verteilen und ausführen. |
Selbstständigkeit |
Die Studierenden können ein Teilgebiet der Gesamtaufgabe eigenverantwortlich bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 15-20 Seiten (exklusive Anhang) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L1206: Projekt des Stahlbaus |
Typ | Projektseminar |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Bearbeitung eines großen Bauprojektes, wie z.B Hochhaus, Großbrücke, Stadiondach etc. in Kleingruppen |
Literatur |
Wird je nach Projekt individuell angegeben. |
Modul M0606: Numerical Algorithms in Structural Mechanics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Düster |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Knowledge of partial differential equations is recommended. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to |
Fertigkeiten |
Students are able to |
Personale Kompetenzen | |
Sozialkompetenz |
Students
are able to + solve problems in heterogeneous groups. + present and discuss their results in front of others. + give and accept professional constructive criticism. |
Selbstständigkeit |
Students
are able to + assess their knowledge by means of exercises and E-Learning. + acquaint themselves with the necessary knowledge to solve research oriented tasks. + to transform the acquired knowledge to similar problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2h |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0284: Numerical Algorithms in Structural Mechanics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
1. Motivation |
Literatur |
[1] D. Yang, C++ and object-oriented numeric computing, Springer, 2001. |
Lehrveranstaltung L0285: Numerical Algorithms in Structural Mechanics |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0605: Computational Structural Dynamics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Düster |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Knowledge of partial differential equations is recommended. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to |
Fertigkeiten |
Students are able to |
Personale Kompetenzen | |
Sozialkompetenz |
Students
are able to + solve problems in heterogeneous groups. + present and discuss their results in front of others. + give and accept professional constructive criticism. |
Selbstständigkeit |
Students
are able to |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2h |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0282: Computational Structural Dynamics |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
1. Motivation |
Literatur |
[1] K.-J. Bathe, Finite-Elemente-Methoden, Springer, 2002. |
Lehrveranstaltung L0283: Computational Structural Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0604: High-Order FEM |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Düster | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Knowledge of partial differential equations is recommended. |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students are able to |
||||||||
Fertigkeiten |
Students are able to |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students
are able to + solve problems in heterogeneous groups. + present and discuss their results in front of others. + give and accept professional constructive criticism. |
||||||||
Selbstständigkeit |
Students
are able to + assess their knowledge by means of exercises and E-Learning. + acquaint themselves with the necessary knowledge to solve research oriented tasks. + to transform the acquired knowledge to similar problems. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechanical Engineering and Management: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0280: High-Order FEM |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
1. Introduction |
Literatur |
[1] Alexander Düster, High-Order FEM, Lecture Notes, Technische Universität Hamburg-Harburg, 164 pages, 2014 |
Lehrveranstaltung L0281: High-Order FEM |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0998: Baustatik und Baudynamik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse der linearen Statik der statisch bestimmten und unbestimmten Stabtragwerke; Mechanik I/II, Mathematik I/II, Differentialgleichungen I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte der dynamischen Wirkungen auf Tragwerke und die entsprechenden Berechnungsverfahren erläutern. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, das Verhalten von Tragwerken unter dynamischer Belastung mittels rechnerischer Verfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich gegebene und fremde Quellen über das Fachgebiet erschließen sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen anwenden. Sie sind in der Lage , für die Lösung von Fragestellungen aus den Bereichen der Baustatik und Baudynamik die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 150 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1202: Baudynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1203: Baudynamik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0564: Bruchmechanik und Betriebsfestigkeit im Stahlbau |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
∙ Grundlagen von Ermüdungsbeanspruchung und Ermüdungsbeanspruchbarkeit sowie verschiedene Nachweisverfahren der Betriebsfestigkeit, ∙ Ermittlung und Anwendung von S-N-Kurven sowie Klassifikation von Kerbfällen ∙ Durchführung von Betriebsfestigkeitsnachweisen bei ein- und mehrstufigen Belastungen unter Anwendung der linearen Schadensakkumulation nach Palmgren-Miner ∙ Durchführung von Betriebsfestigkeitsberechnungen anhand verschiedener Beispiele ∙ Konstruktive Maßnahmen zur Verminderung der Ermüdungsbeanspruchung ∙ Grundlagen der linear-elastischen Bruchmechanik bei statischer und dynamischer Beanspruchung ∙ Praktische Anwendung der linear-elastischen Bruchmechanik zur Restlebensdauerberechnung anhand verschiedener Beispiele |
Literatur |
∙ Seeßelberg, C.; Kranbahnen - Bemessung und konstruktive Gestaltung; 3. Auflage; Bauwerk-Verlag; Berlin 2009 ∙ Kuhlmann, Dürr, Günther; Kranbahnen und Betriebsfestigkeit; in Stahlbau Kalender 2003; Verlag Ernst & Sohn; Berlin 2003 ∙ Deutscher Stahlbau-Verband (Hrsg.); Stahlbau Handbuch Band 1 Teil B; 3. Auflage; Stahlbau-Verlagsgesellschaft; Köln 1996 ∙ Petersen, C.; Stahlbau; 3. überarb. und erw. Auflage; Vieweg-Verlag; Braunschweig 1993 ∙ DIN V ENV 1993-1-1: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 1-1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau; 1993 ∙ DIN V ENV 1993-6: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 6: Kranbahnen; 2001 ∙ DIN-Fachbericht 126. Richtlinie zur Anwendung von DIN V ENV 1993-6; Nationales Anwendungsdokument (NAD); Berlin 2002 |
Lehrveranstaltung L0565: Bruchmechanik und Betriebsfestigkeit im Stahlbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0827: Modellierung in der Wasserwirtschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Klaus Johannsen |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundwassermodellierung
Leitungssysteme
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die softwaregestützte Modellierung von Grundwasserströmungen, zugehörigen Transportprozessen und städtischen Wasserinfrastrukturen beschreiben. In Fallstudien können sie System- und Schwachpunktanalysen durchführen. Zudem können sie die hydraulischen und schadstoffspezifischen Wirkungszusammenhänge auf dem Pfad Boden - Gewässer quantitativ analysieren. |
Fertigkeiten |
Die Studierenden können softwarebasiert Lösungen für bestehende wasserwirtschaftliche Probleme entwickeln und bewerten. Insbesondere sind sie in der Lage, Grundwassermodelle zur Nachbildung von Strömungen und Schadstoffausbreitungsprozessen eigenständig und wissenschaftlich aufzubauen und anzuwenden. Sie haben die Fähigkeit, Fallbeispiele mit den zur Modellierung von Leitungssystemen maßgeblichen Softwarelösungen (zB EPANET, EPA SWMM) abzubilden und zu untersuchen. |
Personale Kompetenzen | |
Sozialkompetenz |
Wird nicht vermittelt. |
Selbstständigkeit |
Wird nicht vermittelt. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0543: Grundwassermodellierung in der Praxis |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Sonja Götz |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Einführung und Anwendung der Grundwassersoftware MODFLOW (PMWIN), Theoretischer Hintergrund des Modells, Studierende bearbeiten unter intensiver Anleitung praktische Fragestellungen mit dem Modell PMWIN. |
Literatur |
MODFLOW-Handbuch Chiang, Wen Hsien: PMWIN |
Lehrveranstaltung L0544: Grundwassermodellierung in der Praxis |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Sonja Götz |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0875: Modellierung von Leitungssystemen |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Modellierung von Wasserversorgungssystemen:
Überblick über die Modellierung von Stadtentwässerungssystemen |
Literatur | Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014. |
Modul M0871: Hydrologische Systeme |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen des Wasserbau und der Hydromechanik; Wasserbau I u. Wasserbau II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Begriffe der Hydrologie und der Wasserwirtschaft detailliert definieren. Sie sind in der Lage die relevanten Prozesse des Wasserkreislaufes zu beschreiben und zu quantifizieren. Daneben kennen die Studierenden die wesentlichen Aspekte der Niederschlags-Abfluss-Modellierung und können beispielsweise die gängigen Speichermodelle und eine Einheitsganglinie auf theoretischem Wege ableiten. |
Fertigkeiten |
Die Studierenden sind in der Lage die in der Hydrologie gängigen Ansätze und Methoden anzuwenden und können als Grundlage für Niederschlags-Abflussmodelle exemplarisch die gängigen Speichermodelle oder eine Einheitsganglinie auf theoretischem Wege ableiten. Die Studierenden sind fähig, Grundkonzepte von Messungen hydrologischer und hydrodynamischer Größen in der Natur zu erläutern und entsprechende Messungen durchführen, statistisch auszuwerten und zu bewerten. Sie können ein hydrologisches Modell auf einfache Fragestellungen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung der Hydrologie und der Wasserwirtschaft einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten. |
Selbstständigkeit | Die Studierenden können selbstständig ihr Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 90 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0289: Angewandte Oberflächenhydrologie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Grundlagen der Hydrologie und der Gewässerkunde:
|
Literatur |
http://de.wikipedia.org/wiki/Kalypso_(Software) http://kalypso.bjoernsen.de/ http://sourceforge.net/projects/kalypso/ |
Lehrveranstaltung L1412: Angewandte Oberflächenhydrologie |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0295: Interaktion Umwelt / Wasser in Flußgebieten |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Es handelt sich hier um eine Veranstaltung, bei der wir die Lehrmethodik des "Problem-Based Learnings" umsetzen. Ein Problem steht im Vordergrund und wird von den Lernenden weitgehend selbständig gelöst. Die Studenten können in der Veranstaltung zwischen verschiedenen Themen wählen, die im Laufe des Semesters vorgestellt und dann ausgearbeitet werden. |
Literatur | - |
Modul M0723: Spannbeton- und Massivbrückenbau |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Vertiefte Kenntnisse der Bemessung und Konstruktion von Stahlbetontragwerken sowie Grundlagenwissen in der Berechnung von Stahlbetonkonstruktionen. Module: Massivbau I + II, Baustatik I + II, Mechanik I+II, Betontragwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die Einsatzgebiete der wesentlichen Brückentypen sowie die anzusetzenden Einwirkungen. Sie können die wesentlichen Berechnungsverfahren erläutern. Die Studierenden können die Bemessung einer Spannbetonkonstruktion erläutern. |
Fertigkeiten |
Die Studierenden können vorgespannte Massivbrücken nach den einschlägigen Vorschriften und Verfahren berechnen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppen eine reale Brücke zu entwerfen und zu bemessen. |
Selbstständigkeit |
Die Studierenden können eine Spannbetonbrücke eigenständig berechnen sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0603: Spannbeton- und Massivbrückenbau |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Spannbetonbau
Brückenbau
|
Literatur |
|
Lehrveranstaltung L0604: Spannbeton- und Massivbrückenbau |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M2032: Advanced Vadose Zone Hydrology |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Nima Shokri |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge in water and soil Comfortable with math and physics, critical thinking, creative problem solving Analytic skills |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will learn about soil characterization (solid and liquid phase), the energy state of soil water, the soil water characteristic curve, flow in saturated and unsaturated soil as well as about solute transport in soil |
Fertigkeiten |
Students will work on practical examples modelling transport processes
in soil using different quantitative tools including computer simulations and
analytical tools. This will help them to apply knowledge in order to solve problems and tasks. |
Personale Kompetenzen | |
Sozialkompetenz |
The module aims at raising awareness and enthusiasm for new knowledge related to water, soil and environment. This will positively contribute to shape their work and life environment. |
Selbstständigkeit |
The students will be involved in many problem solving exercises. This will contribute toward their willingness to work independently and responsibly. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Report und Präsentation |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L2735: Modeling Processes in Vadose Zone |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Mohammad Aziz Zarif |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Numerical tools will be introduced and used to quantify flow and transport processes in soil |
Literatur | NA |
Lehrveranstaltung L2732: Vadose Zone Hydrology |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Soil solid phase characterization, Soil liquid phase characterization, The energy state of soil water, Soil Water Characteristic Curve, Flow in saturated soil, Flow in unsaturated soil, Solute transport in porous media |
Literatur |
- Environmental Soil Physics, by Daniel Hillel - Soil Physics, Sixth Edition, by William A. Jury and Robert Horton - Physical Hydrology, Second Edition, by S. Lawrence Dingman - Introduction to Physical Hydrology, by Martin R. Hendriks |
Lehrveranstaltung L2733: Vadose Zone Hydrology |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0756: Bodenmechanik und -dynamik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Module: Mathematik I-III, Mechanik I-II, Geotechnik I Lehrveranstaltungen: Bodenmechanisches Praktikum, (Anwendungen der Baudynamik) |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden sind in der Lage,
|
||||||||
Fertigkeiten |
Die Studierenden können
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Die Studierenden können im Team zu Arbeitsergebnissen zu messtechnischen und experimentellen Grundlagen kommen und ihre Ergebnisse am Ende des Semsters gemeinsam präsentieren. | ||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 135 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L0374: Ausgewählte Themen der Bodenmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Hans Mathäus Stanford |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt: ausgewählte Themen aus den Bereichen
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein, je nach behandelten Themen
|
Literatur |
|
Lehrveranstaltung L0452: Bodendynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Anne Hagemann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
• die wesentlichen Gleichungen des Einmassenschwingers herleiten und anwenden, • die Wellenausbreitung im Boden unter dynamischer Anregung • Bodendynamische Parameter und deren Bedeutung • die wesentlichen Labor- und Feldversuche zur Ermittlung bodendynamischer Kennwerte und deren Auswertung, • Maschinenfundamente, • Zyklische Verformungsakkumulation • Grundlagen der Plastodynamik |
Literatur |
|
Lehrveranstaltung L0706: Experimentelle Forschung in der Geotechnik |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Hans Mathäus Stanford, Göta Bürkner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Studierenden sollen:
Ein wesentliches Lernziel ist die Einführung in wissenschaftliches Arbeiten für Studierende, die eine akademische Karriere anstreben, sowie für diejenigen, die in der Praxis tätig sein werden und entsprechende Versuche beauftragen und die Ergebnisse bewerten müssen. Für die praktische Laborarbeit gibt es eine jährlich wechselnde Fragestellung, die jedoch auf den Erkenntnissen und Ergebnissen des Vorgängerjahres aufbauen soll. |
Literatur |
- Grabe, J. (2004): Bodenmechanik und Grundbau, Band 3 der
Veröffentlichungsreihe des Instituts für Geotechnik und Baubetrieb,
Technische Universität Hamburg-Harburg.
|
Modul M0854: Mathematik IV |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Marko Lindner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I - III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 68, Präsenzstudium 112 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Komplexe Funktionen) + 60 min (Differentialgleichungen 2) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Vertiefung Theoretischer Maschinenbau: Wahlpflicht Maschinenbau: Vertiefung Mechatronik: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht |
Lehrveranstaltung L1043: Differentialgleichungen 2 (Partielle Differentialgleichungen) |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundzüge der Theorie und Numerik partieller Differentialgleichungen
|
Literatur |
|
Lehrveranstaltung L1044: Differentialgleichungen 2 (Partielle Differentialgleichungen) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1045: Differentialgleichungen 2 (Partielle Differentialgleichungen) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1038: Komplexe Funktionen |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundzüge der Funktionentheorie
|
Literatur |
|
Lehrveranstaltung L1041: Komplexe Funktionen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Hanna Peywand Kiani |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1042: Komplexe Funktionen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0603: Nonlinear Structural Analysis |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Düster |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Knowledge of partial differential equations is recommended. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to |
Fertigkeiten |
Students are able to |
Personale Kompetenzen | |
Sozialkompetenz |
Students
are able to + solve problems in heterogeneous groups. + present and discuss their results in front of others. + give and accept professional constructive criticism. |
Selbstständigkeit |
Students
are able to |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Ship and Offshore Technology: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0277: Nonlinear Structural Analysis |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
1. Introduction |
Literatur |
[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014. |
Lehrveranstaltung L0279: Nonlinear Structural Analysis |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0964: Unterirdisches Bauen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Module aus dem Bachelorstudiengang Bau- und Umweltingenieurwesen:
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Kenntnis verschiederner Tunnelbauweisen sowie spezieller Methoden und Verfahren des unterirdischen Bauens. |
||||||||
Fertigkeiten |
Grundkenntnisse beim Entwurf von Tunneln sowie praktische Fertigkeiten in der Tunnelstatik. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Teamfähigkeit in der Projektplanung und beim Entwurf von Tunnelbauwerken. | ||||||||
Selbstständigkeit | Förderung des selbstständigen und kreativen Arbeitens im Rahmen einer Entwurfsübung. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L2407: Angewandter Tunnelbau |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe, Tim Babendererde |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0707: Einführung in den Tunnelbau |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Julian Bubel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1811: Einführung in den Tunnelbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Julian Bubel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1844: Modern discretization methods in structural mechanics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of this module, students can express the
basic aspects of modern discretization methods in structural mechanics. |
Fertigkeiten |
After successful completion of this module, the students will be
able to use and further improve modern discretization methods for problems in structural mechanics. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of modern discretization methods. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L3043: Modern discretization methods in structural mechanics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The course covers variational formulations, various locking phenomena and alternative formulations for finite elements and modern discretization schemes in the context of structural mechanics, like isogeometric analysis.
|
Literatur |
|
Lehrveranstaltung L3044: Modern discretization methods in structural mechanics |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1725: Scientific Working in Computational Engineering |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge in scientific writing. String interest in topics related to computing in civil engineering. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will learn to apply concepts and methods of scientific working in computational engineering. In interaction with the course instructors and in collaboration with each other, the students will also learn to understand the complex process of scientific thinking, being able to accurately plan, implement and analyze scientific projects, such as prospective master theses. A project will be conducted throughout the semester, which will contribute to the grade. Since scientific writing is of particular importance in this course, a scientific paper will be developed based, which is a prerequisite for the final examination. The paper will be written based on the project conducted within this course. Project meetings in small groups, presentations, and critical discussions of scientific publications are further key activities. |
Fertigkeiten |
The students will be capable (i) of solving a scientific problem following a scientific methodology, (ii) of documenting their work effectively in the form of a paper, and (iii) of sharing their work in a presentation. |
Personale Kompetenzen | |
Sozialkompetenz |
The students will be able to work in a multidisciplinary team and develop communication skills necessary for problem solving. |
Selbstständigkeit |
The students will be able to extend their knowledge and apply it to solve scientific problems by working independently in a project. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten Ausarbeitung mit 15-minütigem Abgabegespräch |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht |
Lehrveranstaltung L2764: Scientific Working in Computational Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
In the course, a scientific problem of practical relevance will first be defined, taking into account the interests of the students participating in the course. The scientific problem will then systematically be solved within the framework of a comprehensive project. The principles of scientific working will be taught based on the scientific problem defined previously. As an integral part of scientific working, fundamentals of scientific writing will be presented and applied to a scientific paper to be written during the course. Topics related to scientific writing include structuring in scientific writing (structuring the abstract, the introduction, the main part, the summary and conclusions, and the acknowledgments and references) and recommendations on effective scientific writing (principles of composition, use of English in scientific writing, useful tips, creating figures, writing in mathematics, referencing, and formal email correspondence). A final paper and a final presentation will be assembled by the students. |
Literatur |
Smarsly, K. & Dragos, K., 2019. Scientific Writing in Engineering. Tredition, Hamburg, Germany. |
Modul M0969: Ausgewählte Themen des Bauingenieurwesens |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | --- |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L3092: Bemessung von Verbundbrücken |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalte dieser Vorlesung ist der Entwurf, die Konstruktion, die Nachweisführung nach der aktuellen Norm, die Bewertung und die Ertüchtigung von Verbundbrücken. |
Literatur |
Lehrveranstaltung L1867: Berechnung von Offshore-Tragwerken |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Said Fawad Mohammadi |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Topic 1: Types of Offshore Structures, Fixed and floating structures for Oil & Gas and Offshore Wind industry Topic 2: Wave Forces, Morisons equation Topic 3: Irregular Seastates, Power spectrum and application of FFT Topic 4: Additional Environmental Forces, wind spectra, current forces Topic 5: Linear-Time-Invariant Systems, response of an LTI-system in frequency domain Topic 6: Tubular Welded Connections, stress concentration factors, weld geometry Topic 7: Introduction to Fracture Mechanics, criteria for fracture initiation and crack growth Topic 8: Time and Frequency Domain Fatigue Analyses, rainflow counting, application of LTI-systems for frequency domain fatigue Topic 9: Offshore Installation and Exam, installation of structures, pile driving, pipe laying techniques |
Literatur |
Chakrabarti, Handbook of Offshore Engineering, 2005 Sarpkaya, Wave Forces on Offshore Structures, 2010 Faltinsen, Sea Loads on Ships and Offshore Structures, 1998 Sorensen, Basic Coastal Engineering, 2006 Dowling, Mechanical Behavior of Materials, 2007 Haibach, Betriebsfestigkeit, 2006 Marshall, Design of Welded Tubular Connections, 1992 Newland, Random vibrations, spectral and wavelet analysis, 1993 |
Lehrveranstaltung L3227: Energie-Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung (laut FPrO) |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Pauline Kaminski |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Energie-Geotechnik ist ein junges Fachgebiet im Bereich der Geotechnik mit dem Ziel nachhaltige geotechnische Lösungen für zukunftsrelevante Fragestellungen bezüglich Produktion, Transport, Betrieb, Rückbau und Abfallverwertung verschiedener Energieträger zu entwickeln. Beispiele möglicher Betätigungsfelder der Energie-Geotechnik sind die Geothermie und thermische aktivierte Gründungsbauteile, Gründungen von Windenergieanlagen on- und offshore, der Rückbau von Förderanlagen sowie der Umgang mit Abfallprodukten fossiler Energieträger wie bspw. Kippenböden und die geologische Speicherung von CO2. Relevante bodenmechanische Prozesse in diesen Anwendungen sind u.a. das thermo-hydro-mechanisch-gekoppelte Verhalten von Böden, Mehrphasenströmung in porösen Medien und teilgesättigte Böden. Die Lehrveranstaltung gibt einen Überblick über verschiedene Aspekte der Energie-Geotechnik und vermittelt vertieftes Wissen zu den einhergehenden bodenmechanischen Prozessen. Ergänzend werden CO2-arme geotechnische Verfahren besprochen und Emissionsabschätzungen sowie die Optimierung von geotechnischen Strukturen nach Nachhaltigkeitsaspekten thematisiert. |
Literatur |
Lehrveranstaltung L0052: Feststoffverfahrenstechnik für Biomassen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Werner Sitzmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Die großtechnische Anwendung verfahrenstechnischer Grundoperationen wird an aktuellen Beispielen der Verarbeitung fester Biomassen demonstriert. Hierzu gehören unter anderem: Zerkleinern, Fördern und Dosieren, Trocknen und Agglomerieren nachwachsender Rohstoffe im Rahmen der Herstellung von Brennnstoffen, der Bioethanolerzeugung, der Gewinnung und Veredelung von Pflanzenölen, von Biomass-to-liquid-Prozessen sowie der Herstellung von wood-plasic-composites. Aspekte zum Explosionsschutz und zur Anlagenplanung ergänzen die Vorlesung. |
Literatur |
Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe, Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175 |
Lehrveranstaltung L1634: Forum I - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Vorträge zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur | -- |
Lehrveranstaltung L1635: Forum II - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Vortrage zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur | -- |
Lehrveranstaltung L1151: Holzbau |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Torsten Faber |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2666: Innovativer Holzbau |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 45 Minuten |
Dozenten | Dr. Andreas Meisel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Holz ist DER nachhaltige Baustoff schlechthin, seine Anwendung
feiert auch im norddeutschen Raum seit einigen Jahren eine Renaissance.
Neben gewöhnlichen Hochbauten werden unter anderem auch weitgespannte
Hallentragwerke und Hochhäuser immer häufig in Holzbauweise errichtet.
In der Ausbildung angehender BauingenieurInnen sind daher mehr als nur
Grundlagenkenntnisse erforderlich, um tragsichere, wirtschaftliche,
ästhetische und nicht zuletzt dauerhafte Tragwerke aus Holz konstruieren
und bemessen zu können.
|
Literatur |
- Blass, J.: "Ingenieurholzbau"
|
Lehrveranstaltung L1152: Konstruktiver Glasbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Konstruktiver Glasbau - Einführung in den Baustoff Glas (Herstellung, Veredelung, Materialverhalten) - Konstruktion von Fassaden - Fassadentypen - Statische Berechnung von Verglasungen - Statische Berechnung von Fassaden - Unterschiede Plattentragwirkung / Membranwirkung bei Verglasungen - Vertikal- / Horizontalverglasungen mit sicherheitsrelevanten Anforderungen (begehbare, betretbare und absturzsichernde Verglasungen) - Glastragwerke - Brandschutz bei Glasfassaden - Bauphysik bei Fassaden bzw. Verglasungen |
Literatur |
Lehrveranstaltung L1447: Konstruktiver Glasbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L3270: Sustainable landfill design and operation |
Typ | Integrierte Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The course introduces the development of modern waste resource management and demonstrates the importance of landfills in the context of recycling processes. Based on international (EU) and national legislation, the current landfill situation is presented and the future significance of landfills will be discussed. A central element of the course deals with the main transformation processes in the landfilled waste, the emission of gases and leachate, the long-term behaviour of landfills as well as aftercare and after-utilisation measures. Further focal points of the course are measures for the sustainable reduction of environmentally and climate-damaging emissions and aspects of landfill technology in an international context. |
Literatur |
1) Waste
Management. Bernd Bilitewski; Georg Härdtle; Klaus Marek (Eds.), ISBN:
9783540592105 , Springer Verlag 3) Solid Waste Landfilling - Concepts, Processes, Technologies. Cossu, R. and Stegmann, R. (Eds.), ISBN: 978-0-12-818336-6 PDF (Volltext) über TUB |
Lehrveranstaltung L3091: Spezialthemen des Stahlbaus |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Marcus Rutner, Nikolay Lalkovski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel dieser Lehrveranstaltung ist es, auf einige in der Praxis wichtige Themen des Stahlbaus näher einzugehen, die im Rahmen der Bachelor-Fächer „Stahlbau I“ und „Stahlbau II“ nicht oder nur einleitend behandelt werden können. Im Folgenden sind diese Themen mit kurzer Beschreibung der Inhalte aufgezählt: 1. Nachweisverfahren Plastisch-Plastisch: Eine Einleitung in das Verfahren wird bereits im Rahmen der Lehrveranstaltung „Stahlbau II“ gegeben. Nach kurzer Wiederholung der Grundlagen fällt der Fokus auf folgende bei der praktischen Anwendung potentiell wichtigen Aspekte des Verfahrens: Einfluss der Theorie 2. Ordnung auf die Traglast - besonders wichtig bei verschieblichen Rahmentragwerken Einfluss von Normal- und Querkräften auf die Momente in den plastischen Gelenken und damit auf die Traglast Unterdrückung von lokalen Instabilitäten als Bedingung für die Anwendung des Verfahrens Plastisch-Plastisch Inkrementeller plastischer Kollaps und Shakedown 2. Plattenbeulen: Differentialgleichung des Verzweigungsproblems Nachweis von unausgesteiften und ausgesteiften Beulfeldern; überkritische Tragreserven 3. Seilkonstruktionen: Wesentliche Unterschiede zu Tragwerken aus biegesteifen Gliedern Herleitung der Seilgleichung für einige typische Belastungsfälle Grundlagen der Berechnung von Hängedächern und seilabgespannten Dächern; Diskussion der jeweils verwandten Probleme bei Hänge- und Schrägseilbrücken 4. Ermüdung und Betriebsfestigkeit: Wöhlerlinie Kerbfälle Vorstellung der gängigen Verfahren zum Nachweis der Betriebsfestigkeit, z. B. Reservoirmethode |
Literatur |
Lehrveranstaltung L2378: Spezielle Themen des Bauingenieurwesens 1LP |
Typ | |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt | Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur | Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2379: Spezielle Themen des Bauingenieurwesens 2LP |
Typ | |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur |
Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2380: Spezielle Themen des Bauingenieurwesens 3LP |
Typ | |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur |
Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2789: Tragwerksentwurf |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Dr. Jan Mittelstädt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Das Seminar Tragwerksentwurf beschäftigt sich mit dem Zusammenhang zwischen Architektur und Struktur. Die |
Literatur |
[1] Structure Systems by Heino Engel, Hantje Cantz, 3rd edition (Feb 2007), ISBN-10: 3775718761 |
Modul M1906: Studienarbeit Modellierung und Simulation |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Dozenten des SD B |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Lehrinhalte der Vertiefung Modellierung und Simulation. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ihre Detailkenntnisse im Gebiet der Modellierung und Simulation demonstrieren. Sie können zum Stand von Entwicklung und Anwendung Beispiele geben und diese kritisch unter Berücksichtigung aktueller Probleme und Rahmenbedingungen in Wissenschaft und Gesellschaft diskutieren. Die Studierenden sind in der Lage, für eine grundlagenorientierte, praktische Fragestellung aus dem Bereich der Modellierung und Simulation eigenständig eine Lösungsstrategie zu definieren und einzelne Lösungsansätze zu skizzieren. Dabei können sie theorieorientiert vorgehen und aktuelle sicherheitstechnische, ökologische, ethische und wirtschaftliche Gesichtspunkte nach dem Stand der Wissenschaft und zugehöriger gesellschaftlicher Diskussionen einbeziehen. Wissenschaftliche Arbeitstechniken, die sie zur eigenen Projektbearbeitung gewählt haben, können sie detailliert darlegen und kritisch erörtern. |
Fertigkeiten |
Die Studierenden sind in der Lage, zur Projektbearbeitung selbständig Methoden auszuwählen und diese Auswahl zu begründen. Sie können darlegen, wie sie die Methoden auf das spezifische Anwendungsfeld beziehen und hierfür an den Anwendungskontext anpassen. Über das Projekt hinaus weisende Ergebnisse sowie Weiterentwicklungen können sie in Grundzügen skizzieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und Kolleginnen und Kollegen Rückmeldung zu ihren Projekten geben. |
Selbstständigkeit |
Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erreichen. |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Studienarbeit |
Prüfungsdauer und -umfang | nach FSPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht |
Modul M1956: Bau- und Tiefbaurecht |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gesamte Module: Geotechnik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erhalten Kenntnisse über
|
Fertigkeiten |
Studierende lernen juristische Aspekte in der Planung und im Bau rechtlich ausgewogen anwenden zu können. Studierende lernen, wie sie rechtliche und baubetriebliche Aspekte in der Praxis (Planen und Bauen) auf der Baustelle gezielt einsetzen und das Bauvorhaben optimal managen können. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L3182: Baurecht BGB und VOB - Recht in der (Tiefbau-)Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Günther Schalk |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt: |
Literatur |
Literatur: |
Lehrveranstaltung L3181: Baustreitigkeiten aus der baubetrieblichen (Tiefbau-)Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Ingo Junker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel ist es, den Studierenden aus der baubetrieblichen Praxis einen Einblick in die vielfältigen Inhalte: |
Literatur |
Modul M2025: Finite element modeling of structures |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of this module, students can express the
basic aspects of modelling of structures with finite elements. |
Fertigkeiten |
After successful completion of this module, the students will be
able to model structures with finite elements and to analyse structures using appropriate computational methods. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students are able to gain knowledge of the subject area from
given and other sources and apply it to new problems.
Furthermore, they are able to structure the solution process
for problems in the area of finite element modelling of structures. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schriftliche Ausarbeitung einer Projektarbeit (10-15 Seiten) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L3046: Finite element modeling of structures |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic phenomena and aspects of the finite element modelling of structures are discussed. Besides theoretical decription of the phenomena and methods, a strong focus is on the practical use a commercial finite element software within computer-based exercises. The covered topics are:
|
Literatur | Vorlesungsmanuskript, Vorlesungsfolien |
Lehrveranstaltung L3047: Finite element modeling of structures |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule der Vertiefung Wasser und Verkehr
Modul M0964: Unterirdisches Bauen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Module aus dem Bachelorstudiengang Bau- und Umweltingenieurwesen:
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Kenntnis verschiederner Tunnelbauweisen sowie spezieller Methoden und Verfahren des unterirdischen Bauens. |
||||||||
Fertigkeiten |
Grundkenntnisse beim Entwurf von Tunneln sowie praktische Fertigkeiten in der Tunnelstatik. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Teamfähigkeit in der Projektplanung und beim Entwurf von Tunnelbauwerken. | ||||||||
Selbstständigkeit | Förderung des selbstständigen und kreativen Arbeitens im Rahmen einer Entwurfsübung. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L2407: Angewandter Tunnelbau |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe, Tim Babendererde |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0707: Einführung in den Tunnelbau |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Julian Bubel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1811: Einführung in den Tunnelbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Julian Bubel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0595: Materialprüfung, Bauzustands- und Schadensanalyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde oder Werkstoffkunde, z.B. über das Modul Baustoffe und Bauchemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die Regeln für das Handeln mit sowie die Anwendung und Kennzeichnung von Bauprodukten in Deutschland zu beschreiben. Sie wissen welche Methoden zur Ermittlung von Baustoffeigenschaften zur Verfügung stehen und welche Grenzen und Charakteristika die wichtigsten Methoden haben. |
Fertigkeiten | Die Studierenden können selbstständig die Regeln für das Handeln mit und die Verwendbarkeit von Bauprodukten in Deutschland ermitteln. Sie können geeignete Prüfmethoden für die Überwachung von Bauprodukten, die Untersuchung von Schadensprozessen sowie für die Bauzustandsanalyse auswählen. Sie können von Symptomen auf die Ursache von Bauschäden schließen. Sie sind in der Lage die Ergebnisse einer Materialprüfung in einem Untersuchungsbericht oder Gutachten zusammenzufassen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die unterschiedlichen Rollen von Herstellern sowie von Prüf-, Überwachungs- und Zertifizierungstellen beschreiben, die im Rahmen der Materialprüfung zum Tragen kommen. Das gleiche gilt für die unterschiedlichen Rollen der verschiedenen Beteiligten in gerichtlichen Auseinandersetzungen. |
Selbstständigkeit | Die Studierenden sind in der Lage sich das Fachwissen eines sehr umfangreichen Fachgebietes anzueignen und die dafür notwendige terminliche Planung und notwendigen Arbeitsschritte durchzuführen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht |
Lehrveranstaltung L0260: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Materialprüfung und Kennzeichnung von Bauprodukten, Untersuchungsmethoden für Baustoffe und Bauteile, Untersuchungsberichte und Gutachten, Bauzustandbeschreibung, vom Symptom zur Schadensursache |
Literatur |
Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013. |
Lehrveranstaltung L0261: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0923: Integrierte Verkehrsplanung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Verkehrsplanung, z. B. aus dem Modul Verkehrsplanung und Verkehrstechnik im Bachelor |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schriftliche Ausarbeitung mit Präsentation, semesterbegleitend in Teilschritten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1068: Integrierte Verkehrsplanung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz, Dr. Philine Gaffron, Jacqueline Bianca Maaß |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Lehrveranstaltung wird ein Verständnis für die Interdependenzen zwischen Siedlungsstruktur und Verkehrsentwicklung vermittelt. Behandelt werden u. a.:
|
Literatur |
Kutter, Eckhard (2019) Stadtstruktur und Erreichbarkeit in der postfossilen Zukunft. Erich Schmidt Verlag. Berlin. Gies, Huber u. a. (Hrsg.) (93. Ergänzung 2022) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen) |
Modul M0801: Wasserressourcen und -versorgung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Mathias Ernst |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis wasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Trinkwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Konfliktfelder wasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für eine nachhaltige Wasserversorgung skizzieren. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. Die Studierenden können Organisationsstrukturen von Wasserversorgungsunternehmen erläutern und einordnen. Sie können verfügbare Trinkwasseraufbereitungsverfahren in der Breite der Anwendungen erklären. |
Fertigkeiten |
Die Studierende können komplexe Problemfelder aus Sicht der Trinkwassergewinnung einordnen und Lösungsansätze für wasserwirtschaftliche sowie technische Maßnahmen aufstellen. Sie können hierfür anwendbare Bewertungsmethoden einordnen. Die Studierenden sind in der Lage wasserchemische Berechnungen für ausgewählte Aufbereitungsprozessen durchzuführen. Sie können ausgewählte allgemein anerkannte Regeln der Technik auf Prozesse der Trinkwasseraufbereitung anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in einer fachlich heterogenen Gruppe gemeinsam komplexe Lösungen für das Management sowie die Aufbereitung von Trinkwasser erarbeiten und dokumentieren. Sie können professionell z.B. als Vertreter/in von Nutzungsinteressen angemessen Stellung beziehen. Sie können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Chemie) + Referat (WRM) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Chemie- und Bioingenieurwesen: Technischer Ergänzungskurs: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0311: Chemie der Trinkwasseraufbereitung |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Vorlesung wird das für die Praxis relevante wasserchemische Wissen mit Bezug auf die Wassergewinnung, -aufbereitung und -verteilung vermittelt. Die Themenschwerpunkte sind Löslichkeit von Gasen, Kohlensäure-Gleichgewicht, Kalk-Kohlensäure-Gleichgewicht, Entsäuerung, Mischung von Wässern, Enthärtung, Redoxprozesse, Werkstoffe sowie gesetzliche Anforderungen an die Aufbereitung. Alle Themen werden vor dem Hintergrund der allgemein anerkannten Regeln der Technik (DVGW-Regelwerk, DIN-Normen) praxisnah behandelt. Ein wesentlicher Teil der Veranstaltung sind Berechnungen anhand realer Analysendaten (z.B. Berechnung des pH-Wertes und der Calcitlösekapazität ). Zu jeder Einheit gibt es Übungen und Hausaufgaben. Durch das Lösen der Hausaufgaben erhalten die Studierenden ein Feedback und können Bonuspunkte für die Klausur erwerben. Da Kenntnisse der Wasseraufbereitungsprozesse von großer Bedeutung sind, werden diese in Abstimmung mit der Vorlesung „Wasserressourcenmanagement“ zu Beginn des Semesters erklärt. |
Literatur |
MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003. |
Lehrveranstaltung L0312: Chemie der Trinkwasseraufbereitung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0402: Wasserressourcenmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung vermittelt weitergehende Kenntnisse zur den Abhängigkeiten des Wasserressourcenmanagements mit Blick auf die Trinkwasserversorgung. Die aktuelle Situation der globalen Wasserressourcen wird dargestellt, Abhängigkeiten zwischen Nutzungsinteressen erarbeitet und internationale Beispiele für „Best-Pratice“ sowie unzureichenden Wasserressourcenmanagements präsentiert und diskutiert. Entsprechend werden den Studierenden notwendige Voraussetzungen und Rahmenbedingungen für ein „integriertes Wasserressourcenmanagement“ vermittelt. Mit Bezug zum EU Raum und insbesondere Deutschland werden weiterhin Aspekte relevanter Rechtsnormen, administrative Strukture der Wasserversorgung sowie Fragen der Organisation von Trinkwasserversorgungsunternehmen (kommunal, privat, public privat partnership) vermittelt. Managementinstrumente wie das Life-Cycle Assessment, Modelle des Benchmarkings sowie der Wasserdargebotserfassungwerden für die Trinkwasserversorgung präsentiert und diskutiert. Die Inhalte der Vorlesung schließen wo möglich und sinnvoll, regionale Bezüge mit ein. |
Literatur |
|
Lehrveranstaltung L0403: Wasserressourcenmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1748: Construction Robotics |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basics of project-oriented programming |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Basics of robotics Applications in civil engineering Kinematics |
Fertigkeiten |
Use of specific hardware Development of software routines Python programming language Image processing Basics of localization (LIDAR, SLAM) |
Personale Kompetenzen | |
Sozialkompetenz |
Teamwork Communication skills |
Selbstständigkeit |
Independent work Independent decisions |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L2867: Construction Robotics |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | Prof. Kay Smarsly, Jan Stührenberg |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bock/Linner:
Construction Robotics |
Modul M1974: Environmental microbiology and analytics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Dorothea Rechtenbach |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Fundamentals of inorganic/organic chemistry and biology (knowledge acquired at school). |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
On completion of this module, students will be able to describe the mechanisms of biological systems. They will know the main biological metabolic routes and can categorise their influence on global metabolic routes. They will be familiar with the basic analytical methods for investigating and
assessing the quality of various environmental compartments. |
Fertigkeiten |
On completion of this module, students will be able to categorise which
metabolism will predominate under which environmental conditions. |
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to organize working processes within a team in a targeted way and based on the divison of labour. |
Selbstständigkeit |
Students can independently exploit sources, acquire the particular knowledge of the subject and apply it to new problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L0354: Environmental Analysis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Dorothea Rechtenbach, Dr. Henning Mangels |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Introduction Sampling in different environmental compartments, sample transportation, sample storage Sample preparation Photometry Wastewater analysis Introduction into chromatography Gas chromatography HPLC Mass spectrometry Optical emission spectrometry Atom absorption spectrometry Quality assurance in environmental analysis |
Literatur |
Roger Reeve, Introduction to Environmental Analysis, John Wiley & Sons Ltd., 2002 (TUB: USD-728) Pradyot Patnaik, Handbook of environmental analysis: chemical pollutants in air, water, soil, and solid wastes, CRC Press, Boca Raton, 2010 (TUB: USD-716) Chunlong Zhang, Fundamentals of Environmental Sampling and Analysis, John Wiley & Sons Ltd., Hoboken, New Jersey, 2007 (TUB: USD-741) Miroslav Radojević, Vladimir N. Bashkin, Practical Environmental Analysis Werner Funk, Vera Dammann, Gerhild Donnevert, Sarah Iannelli (Translator), Eric Iannelli (Translator), Quality Assurance in Analytical Chemistry: Applications in Environmental, Food and Materials Analysis, Biotechnology, and Medical Engineering, 2nd Edition, WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim, 2007 (TUB: CHF-350) STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 21st Edition, Andrew D. Eaton, Leonore S. Clesceri, Eugene W. Rice, and Arnold E. Greenberg, editors, 2005 (TUB:CHF-428) K. Robards, P. R. Haddad, P. E. Jackson, Principles and Practice of H. M. McNair, J. M. Miller, Basic Gas Chromatography, Wiley B. A. Bidlingmeyer, Practical HPLC Methodology and Applications, Wiley Charles B. Boss and Kenneth J. Fredeen, Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry Atomic absorption spectrometry: theory, design and applications, ed. by S. J. Haswell 1991 (TUB: 2727-5614) Royal Society of Chemistry, Atomic absorption spectometry (http://www.kau.edu.sa/Files/130002/Files/6785_AAs.pdf) |
Lehrveranstaltung L3223: Environmental microbiology |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Johannes Gescher |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
This lecture deals with the importance of microorganisms for biological material cycles and the health of water and soil. After the development of biochemical and cell biological basics, methods are presented that are necessary to investigate microbial communities and their activity. In addition, the role of microorganisms in the biogas process and in the biorefinery is discussed. The third part presents methods for purifying air, water and soil as well as environmentally friendly production processes involving microorganisms. |
Literatur |
Umweltmikrobiologie; Reineke, W. und Schlömann, M. (2015) 2. Aufl., Springer Spektrum Verlag Brock Mikrobiologie; Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley, W. Matthew Sattley, David A. Stahl (2020) 15. Aufl., Pearson Studium Verlag |
Modul M0874: Abwassersysteme |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Joachim Behrendt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis abwasserwasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Abwasserwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die ganze Breite der Anlagentechniken bei siedlungswasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für einen nachhaltigen Gewässerschutz beschreiben. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. |
Fertigkeiten |
Studierende können verfügbare Abwasseraufbereitungsverfahren in der Breite der Anwendungen für Vorentwürfe auslegen und erklären, sowohl für kommunale als auch für einige industrielle Anlagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Im Rahmen dieses Moduls werden Sozialkompetenzen nicht gezielt angesprochen. |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig und planvoll ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0517: Biologische Abwasserreinigung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Charakterisierung von Abwasser |
Literatur |
Gujer, Willi |
Lehrveranstaltung L3122: Biologische Abwasserreinigung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0357: Advanced Wastewater Treatment |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Survey on advanced wastewater treatment reuse of reclaimed municipal wastewater Precipitation Flocculation Depth filtration Membrane Processes Activated carbon adsorption Ozonation "Advanced Oxidation Processes" Disinfection |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Lehrveranstaltung L0358: Advanced Wastewater Treatment |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Aggregate organic compounds (sum parameters) Industrial wastewater Processes for industrial wastewater treatment Precipitation Flocculation Activated carbon adsorption Recalcitrant organic compounds |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Modul M0828: Urban Environmental Management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Dorothea Rechtenbach |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can
describe urban development corridors as well as current and future urban environmental
problems. They are able to explain the causes of environmental problems (like
noise).
Students can specify applications for various technical innovations and explain why these contribute to the improvement of urban life. They can, for example, derive and discuss measures for effective noise abatement. |
Fertigkeiten | Students are able to develop specific solutions for correcting existing or future environment-related problems of urban development. They can define a range of conceptual and technical solutions for environmental problems for different development paths. To solve specific urban environmental problems they can select technical innovations and integrate them into the urban context. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung plus Vortrag |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1109: Noise Protection |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Jäschke |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
1) Müller & Möser (2013): Handbook of Engineering Acoustics (also
available in German)
|
Lehrveranstaltung L0874: Urban Infrastructures |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Dr. Dorothea Rechtenbach |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Problem Based Learning Main topics are:
|
Literatur | Depends on chosen topic. |
Modul M0875: Nexus Engineering - Water, Soil, Food and Energy |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge of the global situation with rising poverty, soil degradation, migration to cities, lack of water resources and sanitation |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can describe the facets of the global water situation. Students can judge the enormous potential of the implementation of synergistic systems in Water, Soil, Food and Energy supply. |
Fertigkeiten |
Students are able to design ecological settlements for different geographic and socio-economic conditions for the main climates around the world. |
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to develop a specific topic in a team and to work out milestones according to a given plan. |
Selbstständigkeit |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Semesterbegleitend werden Meilensteine erarbeitet, vorgetragen und schrfitlich festgehalten. Genaueres findet man ab jeweiligem Semesterbeginn im Stud Ip Kurs im herunterladbarem Modulhandbuch. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L1229: Ecological Town Design - Water, Energy, Soil and Food Nexus |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0939: Water & Wastewater Systems in a Global Context |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0922: Stadtplanung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Für die Lehrveranstaltung Grundlagen der Stadtplanung: Keine Für die Lehrveranstaltung Straßenraumgestaltung: Vorerfahrung in Verkehrsplanung, z. B. durch die Bachelorveranstaltung „Verkehrsplanung und Verkehrstechnik“ |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schritliche Ausarbeitung Grundlagenermittlung, zeichnerische Ausarbeitungen Entwürfe semesterbegleitend |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1066: Stadtplanung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
„Grundlagen der Stadtplanung“ behandelt die Determinanten städtebaulicher Entwicklung und ihre Zusammenhänge. Es geht um:
Ziel der Veranstaltung ist es, ein Grundverständnis städtebaulicher Probleme und Lösungsansätze zu erlangen und die Funktionsweise von Stadtplanung nachvollziehen zu können. Darüber befasst sich die Veranstaltung mit den vielfältigen funktionalen und gestalterischen Anforderungen an Stadtstraßen und Plätze als wichtigste Elemente des öffentlichen Raums In einem praxisorientierten Übungsprojekt werden für ein Planungsgebiet ein Rahmenplan, städtebaulicher Entwurf, Bebauungsplan sowie ein Straßenraumentwurf erstellt. |
Literatur |
Albers, Gerd; Wekel, Julian (2021) Stadtplanung: Eine illustrierte Einführung. 4. überarbeitete Auflage. Primus Verlag. Darmstadt. Frick, Dieter (2011) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. 3. veränderte Auflage. Wasmuth-Verlag. Tübingen Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York. |
Modul M0977: Baulogistik und Projektmanagement |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Heike Flämig |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können...
|
Fertigkeiten |
Studierende können...
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können...
|
Selbstständigkeit |
Studierende können...
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Zwei schriftliche Ausarbeitungen in Gruppen mit Ergebnispräsentationen |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht |
Lehrveranstaltung L1163: Baulogistik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung macht deutlich, wie die Logistik von Bauvorhaben inzwischen zu einem wichtigen Wettbewerbsfaktor geworden ist und was es dabei zu beachten gilt. Folgende Themenfelder werden behandelt:
|
Literatur |
Flämig, Heike: Produktionslogistik in Stadtregionen. In: Forschungsverbund Ökologische Mobilität (Hrsg.) Forschungsbericht Bd. 15.2. Wuppertal 2000. Krauss, Siri: Die Baulogistik in der schlüsselfertigen Ausführung, Bauwerk Verlag GmbH Berlin 2005. Lipsmeier, Klaus: Abfallkennzahlen für Neubauleistungen im Hochbau : Verlag Forum für Abfallwirtschaft und Altlasten, 2004. Schmidt, Norbert: Wettbewerbsfaktor Baulogistik. Neue Wertschöpfungspotenziale in der Baustoffversorgung. In: Klaus, Peter: Edition Logistik. Band 6. Deutscher Verkehrs-Verlag. Hamburg 2003. Seemann, Y.F. (2007): Logistikkoordination als Organisationseinheit bei der Bauausführung Wissenschaftsverlag Mainz in Aachen, Aachen. (Mitteilungen aus dem Fachgebiet Baubetrieb und Bauwirtschaft (Hrsg. Kuhne, V.): Heft 20) |
Lehrveranstaltung L1164: Baulogistik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1161: Projektentwicklung und -steuerung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig, Dr. Anton Worobei |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen dieser Vorlesung werden entlang einer Projektlebenszyklusbetrachtung die wesentlichen Aspekte der Projektentwicklung und –steuerung behandelt:
|
Literatur |
Projektmanagement-Fachmann. Band 1 und Band 2. RKW-Verlag, Eschborn, 2004. |
Lehrveranstaltung L1162: Projektentwicklung und -steuerung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig, Dr. Anton Worobei |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0593: Baustoffe und Bauwerkserhaltung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde, Bauchemie und Bauphysik, z.B. über die Module Baustoffgrundlagen und Bauphysik sowie Baustoffe und Bauchemie |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können die Komponenten mineralischer Baustoffe und deren Funktion im Detail beschreiben und für die Herstellung von mineralischen Spezialbaustoffen einsetzen. Sie können die Charakteristika mineralischer Bindemittel darstellen. Die Herstellung, Eigenschaften und Anwendungsgebiete von Spezialmörteln und Spezialbetonen können Sie beschreiben und die werkstoffkundlichen Zusammenhänge darstellen. Die Grundlagen der Befestigungstechnik können sie darstellen. |
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage eine Granulometrieoptimierung eines mineralischen Baustoffs durchzuführen. Sie können die Rezeptur eines mineralischen Spezialmörtels entwerfen und diesen Mörtel herstellen. Die Studierenden sind in der Lage nachträgliche Bewehrungsanschlüsse herzustellen. Sie sind in der Lage, Bauschäden zu erkennen, die Ursachen einzugrenzen, die Grundzüge der Bauwerkserhaltung anzuwenden sowie Instandsetzungs- und Verstärkungsmaßnahmen auszuwählen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Die Studierenden sind in der Lage in einer Kleingruppe eine Spezialmörtelrezeptur zu entwickeln. Sie präsentieren ihr Arbeitsergebniss vor dem Dozenten und den anderen Studierenden und stellen sich einer kritischen Diskussion, in der sie ihre Ergebnisse verteidigen bzw. anpassen. Die Studierenden können auf der Basis dieses Feedbacks gemeinsam diesen Spezialbaustoff herstellen. | ||||||||
Selbstständigkeit | Die Studierenden sind in der Lage, die vorhandenen Resourcen an Materialien und Laborausstattung für ihr Projekt selbständig zu nutzen sowie fehlende Komponenten zu recherchieren und zu beschaffen. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht |
Lehrveranstaltung L0255: Instandsetzung von Bauteilen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bauwerkserhaltung, Instandsetzung und Verstärkung, nachträgliche Bauwerksabdichtung |
Literatur | BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen |
Lehrveranstaltung L0253: Mineralische Baustoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Komponenten mineralischer Baustoffe und deren Funktion, Bindemittel, Beton und Mörtel, Spezialmörtel, Spezialbetone |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0256: Technologie mineralischer Baustoffe |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Konzeption und Herstellung eines mineralischen Spezialbaustoffes |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0254: Transportprozesse in Baustoffen und Bauschäden |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Transportprozesse in Baustoffen und Schadensprozesse an Bauteilen |
Literatur | Blaich, J.: Bauschäden, Analyse und Vermeidung |
Modul M0998: Baustatik und Baudynamik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Bastian Oesterle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse der linearen Statik der statisch bestimmten und unbestimmten Stabtragwerke; Mechanik I/II, Mathematik I/II, Differentialgleichungen I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte der dynamischen Wirkungen auf Tragwerke und die entsprechenden Berechnungsverfahren erläutern. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, das Verhalten von Tragwerken unter dynamischer Belastung mittels rechnerischer Verfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich gegebene und fremde Quellen über das Fachgebiet erschließen sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen anwenden. Sie sind in der Lage , für die Lösung von Fragestellungen aus den Bereichen der Baustatik und Baudynamik die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 150 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1202: Baudynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1203: Baudynamik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bastian Oesterle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0564: Bruchmechanik und Betriebsfestigkeit im Stahlbau |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
∙ Grundlagen von Ermüdungsbeanspruchung und Ermüdungsbeanspruchbarkeit sowie verschiedene Nachweisverfahren der Betriebsfestigkeit, ∙ Ermittlung und Anwendung von S-N-Kurven sowie Klassifikation von Kerbfällen ∙ Durchführung von Betriebsfestigkeitsnachweisen bei ein- und mehrstufigen Belastungen unter Anwendung der linearen Schadensakkumulation nach Palmgren-Miner ∙ Durchführung von Betriebsfestigkeitsberechnungen anhand verschiedener Beispiele ∙ Konstruktive Maßnahmen zur Verminderung der Ermüdungsbeanspruchung ∙ Grundlagen der linear-elastischen Bruchmechanik bei statischer und dynamischer Beanspruchung ∙ Praktische Anwendung der linear-elastischen Bruchmechanik zur Restlebensdauerberechnung anhand verschiedener Beispiele |
Literatur |
∙ Seeßelberg, C.; Kranbahnen - Bemessung und konstruktive Gestaltung; 3. Auflage; Bauwerk-Verlag; Berlin 2009 ∙ Kuhlmann, Dürr, Günther; Kranbahnen und Betriebsfestigkeit; in Stahlbau Kalender 2003; Verlag Ernst & Sohn; Berlin 2003 ∙ Deutscher Stahlbau-Verband (Hrsg.); Stahlbau Handbuch Band 1 Teil B; 3. Auflage; Stahlbau-Verlagsgesellschaft; Köln 1996 ∙ Petersen, C.; Stahlbau; 3. überarb. und erw. Auflage; Vieweg-Verlag; Braunschweig 1993 ∙ DIN V ENV 1993-1-1: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 1-1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau; 1993 ∙ DIN V ENV 1993-6: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 6: Kranbahnen; 2001 ∙ DIN-Fachbericht 126. Richtlinie zur Anwendung von DIN V ENV 1993-6; Nationales Anwendungsdokument (NAD); Berlin 2002 |
Lehrveranstaltung L0565: Bruchmechanik und Betriebsfestigkeit im Stahlbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0982: Verkehrsmodellierung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Verkehrsplanung, z. B. durch die Veranstaltung Verkehrsplanung und Verkehrstechnik im Bachelor |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die Funktionsweise und Anwendungsmöglichkeit von Verkehrsmodellen erklären |
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können selbständig zu Lösungen kommen und diese dokumentieren. |
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | schriftliche Ausarbeitung mit Präsentation, semesterbegleitend in Teilschritten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L1180: Verkehrsmodellierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Lohse, Dieter und Schnabel, Werner (2011): Grundlagen der Straßenverkehrstechnik und der Verkehrsplanung – Band 2. 3. Auflage. Beuth. Ortúzar, Juan de Dios und Willumsen, Luis G. (2011): Modelling Transport. 4. Auflage. John Wiley & Sons. |
Modul M0827: Modellierung in der Wasserwirtschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Klaus Johannsen |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundwassermodellierung
Leitungssysteme
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die softwaregestützte Modellierung von Grundwasserströmungen, zugehörigen Transportprozessen und städtischen Wasserinfrastrukturen beschreiben. In Fallstudien können sie System- und Schwachpunktanalysen durchführen. Zudem können sie die hydraulischen und schadstoffspezifischen Wirkungszusammenhänge auf dem Pfad Boden - Gewässer quantitativ analysieren. |
Fertigkeiten |
Die Studierenden können softwarebasiert Lösungen für bestehende wasserwirtschaftliche Probleme entwickeln und bewerten. Insbesondere sind sie in der Lage, Grundwassermodelle zur Nachbildung von Strömungen und Schadstoffausbreitungsprozessen eigenständig und wissenschaftlich aufzubauen und anzuwenden. Sie haben die Fähigkeit, Fallbeispiele mit den zur Modellierung von Leitungssystemen maßgeblichen Softwarelösungen (zB EPANET, EPA SWMM) abzubilden und zu untersuchen. |
Personale Kompetenzen | |
Sozialkompetenz |
Wird nicht vermittelt. |
Selbstständigkeit |
Wird nicht vermittelt. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0543: Grundwassermodellierung in der Praxis |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Sonja Götz |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Einführung und Anwendung der Grundwassersoftware MODFLOW (PMWIN), Theoretischer Hintergrund des Modells, Studierende bearbeiten unter intensiver Anleitung praktische Fragestellungen mit dem Modell PMWIN. |
Literatur |
MODFLOW-Handbuch Chiang, Wen Hsien: PMWIN |
Lehrveranstaltung L0544: Grundwassermodellierung in der Praxis |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Sonja Götz |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0875: Modellierung von Leitungssystemen |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Modellierung von Wasserversorgungssystemen:
Überblick über die Modellierung von Stadtentwässerungssystemen |
Literatur | Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014. |
Modul M0870: Management von Oberflächenwasser |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Hydromechanik und Hydraulik sowie der Hydrologie und des Wasserbaus; Wasserbau I u. Wasserbau II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Prozesse, die mit der Modellierung von Strömungen im Wasserbau verbunden sind, detailliert definieren. Daneben können sie die wesentlichen Aspekte der Modellierung, die gängigen numerischen Modelle zur Simulation von Strömungen und Seegang und die Konzepte des naturnahen Wasserbaus sowie des Risikomanagements im Wasserbau beschreiben. |
Fertigkeiten |
Die Studierenden können hydrodynamisch - numerische Modelle auf praktische Fragestellungen anwenden. Daneben können die Studierenden Hochwasserrisiko-Managementkonzepte für gefährdete Gebiete aufstellen. Sie können Konzepte zur Renaturierung von Gewässern auf praktische Fragestellungen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung des naturnahen Wasserbaus einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten. |
Selbstständigkeit | Die studierenden können selbstständig deren Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 150 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0810: Modelling of Flow in Rivers and Estuaries |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Edgar Nehlsen, Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Introduction to numerical flow modelling
|
Literatur |
Vorlesungsskript Literaturempfehlungen Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (1997): Hydraulische Berechnung von naturnahen Fließgewässern. Düsseldorf: BWK (BWK-Merkblatt). Chow, Ven-te (1959): Open-channel Hydraulics. New York usw.: McGraw-Hill (McGraw-Hill Civil Engineering Series). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019a): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 1: Geodaten in der Fließgewässermodellierung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-1). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019b): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 2: Bedarfsgerechte Datenerfassung und -aufbereitung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-2). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019c): Merkblatt DWA-M 543-3 Geodaten in der Fließgewässermodellierung - Teil 3: Aspekte der Strömungsmodellierung und Fallbeispiele. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-3). Hervouet, Jean-Michel (2007): Hydrodynamics of free surface flows. Modelling with the finite element method. Chichester: Wiley. Online verfügbar unter http://www.loc.gov/catdir/enhancements/fy0741/2007296953-b.html. IAHR (2015): Professional Specifications for Physical and Numerical Studies in Environmental Hydraulics. In: Hydrolink (3/2015), S. 90-92. Olsen, Nils Reidar B. (2012): Numerical Modelling and Hydraulics. 3. Aufl. Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology. Szymkiewicz, Romuald (2010): Numerical modeling in open channel hydraulics. Dordrecht: Springer (Water science and technology library, 83). van Waveren, Harold (1999-): Good modelling practice handbook. [Utrecht], Lelystad, Den Haag: STOWA; Rijkswaterstaat-RIZA; SDU, afd. SEO/RIZA [etc. distr.] (Nota, nr. 99.036). Zielke, Werner (Hg.) (1999): Numerische Modelle von Flüssen, Seen und Küstengewässern. Deutscher Verband für Wasserwirtschaft und Kulturbau. Bonn: Wirtschafts- und Verl.-Ges. Gas und Wasser (Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau, 127). |
Lehrveranstaltung L0961: Naturnaher Wasserbau / Integrierter Hochwasserschutz |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Natasa Manojlovic, Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Modul M0860: Hafenbau und Hafenplanung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
VL Grundlagen des Küstenwasserbaus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Aspekte der Hafenplanung zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Hafenbaus anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente eines Hafens entwerfen. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den funktionellen Entwurf eines Hafens auswählen und diese auf Bemessungsaufgaben anwenden.
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung für die funktionelle Entwurf eines Hafens einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten. |
Selbstständigkeit | Die studierenden können selbstständig deren Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 150 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0809: Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlagen des Hafenbaus
Elemente von Seehäfen
Anbindung von Hinterlandverkehren / Binnenverkehrswasserbau Schutz von Seehäfen
Fischereihäfen und andere kleine Häfen
|
Literatur | Brinkmann, B.: Seehäfen, Springer 2005 |
Lehrveranstaltung L1414: Hafenbau |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0378: Hafenplanung und Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Vorlesungsumdruck, s. www.tu-harburg.de/gbt |
Modul M1721: Water and Environment: Theory and Application |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Nima Shokri |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Basic knowledge in water and environmental research, Hydrology |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Common research tools and techniques together with the fundamental knowledge relevant to multi-scale and multi-phase challenges present in water and environmental research will be discussed in this module. Both theory and application will be considered. |
Fertigkeiten |
In addition to the fundamental knowledge, the students will be exposed to several analytical, experimental and numerical tools and techniques relevant to water and environmental research at different scales. This will provide the students with an excellent opportunity to improve their skills on multiple fronts which will be useful in their future career. |
Personale Kompetenzen | |
Sozialkompetenz |
Developing teamwork and problem solving skills through Research-Based Teaching approaches will be at the core of this module. |
Selbstständigkeit |
The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Report und Präsentation |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht |
Lehrveranstaltung L2754: Water and Environment |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Salome Shokri-Kuehni |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2753: Water and Environment |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Research based learning: The students will be engaged in active research focused on water and environmental related challenges. The required knowledge and tools will be discussed during the semester. |
Literatur | NA |
Modul M1724: Smart Monitoring |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge or interest in object-oriented modeling, programming, and sensor technologies are helpful. Interest in modern research and teaching areas, such as Internet of Things, Industry 4.0 and cyber-physical systems, as well as the will to deepen skills of scientific working, are required. Basic knowledge in scientific writing and good English skills. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will become familiar with the principles and practices of smart monitoring. The students will be able to design decentralized smart systems to be applied for continuous (remote) monitoring of systems in the built and in the natural environment. In addition, the students will learn to design and to implement intelligent sensor systems using state-of-the-art data analysis techniques, modern software design concepts, and embedded computing methodologies. Besides lectures, project work is also part of this module, which will be conducted throughout the semester and will contribute to the grade. In small groups, the students will design smart monitoring systems that integrate a number of “intelligent” sensors to be implemented by the students. Specific focus will be put on the application of machine learning techniques. The smart monitoring systems will be mounted on real-world (built or natural) systems, such as bridges or slopes, or on scaled lab structures for validation purposes. The outcome of every group will be documented in a paper. All students of this module will “automatically” participate with their smart monitoring system in the annual "Smart Monitoring" competition. The written papers and oral examinations form the final grades. The module will be taught in English. Limited enrollment. |
Fertigkeiten |
The students will gain insights into operating state-of-the-art smart sensor systems, used for monitoring a wide range of physical processes relevant to engineering, such as environmental, structural, or comfort monitoring. The students will be capable of devising monitoring strategies of physical processes as part of group projects, tailored to their knowledge backgrounds, and to implement the strategies in smart wireless sensor nodes, using embedded computing and programming. Finally, the students will be able to document the findings of their projects in short reports. |
Personale Kompetenzen | |
Sozialkompetenz |
The students will be able to work in groups, share parts of the work for their projects, and develop communication skills, towards achieving the common project goals. |
Selbstständigkeit |
The students will be able to gain a solid basis on approaching and solving problems in engineering, as well as on documenting results, through their involvement in their monitoring group projects. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten Ausarbeitung mit 15-minütigem Abgabegespräch |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2762: Smart Monitoring |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
In this course, principles of smart monitoring will be taught, focusing on modern concepts of data acquisition, data storage, and data analysis. Also, fundamentals of intelligent sensors and embedded computing will be illuminated. Autonomous software and decentralized data processing are further crucial parts of the course, including concepts of the Internet of Things, Industry 4.0 and cyber-physical systems. Furthermore, measuring principles, data acquisition systems, data management and data analysis algorithms will be discussed. Besides the theoretical background, numerous practical examples will be shown to demonstrate how smart monitoring may advantageously be used for assessing the condition of systems in the built or natural environment. |
Literatur | The course contents couples different fields, such as signal processing, sensing technologies, data analytics, environmental engineering, civil engineering, artificial intelligence, database systems, and many more. The basics will be taught in this course. However, specific literature that covers all these topics does not exist. Instead, literature will be referenced in the lectures, all of which are papers that are freely available online. |
Lehrveranstaltung L2763: Smart Monitoring |
Typ | Gruppenübung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | The contents of the exercises are based on the lecture contents. In addition to the exercises, project work will be conducted throughout the semester, which will consume the majority of the workload. As part of the project work, students will design smart monitoring systems that will be tested in the laboratory or in the field. As mentioned in the module description, the students will participate in the “Smart Monitoring” competition, hosted annually by the Institute of Digital and Autonomous Construction. Students are encouraged to contribute their own ideas. The tools required to implement the smart monitoring systems will be taught in the group exercises as well as through external sources, such as video tutorials and literature. |
Literatur |
The course contents couples different fields, such as signal processing, sensing technologies, data analytics, environmental engineering, civil engineering, artificial intelligence, database systems, and many more. The basics will be taught in this course. However, specific literature that covers all these topics does not exist. Instead, literature will be referenced in the lectures, all of which are papers that are freely available online. |
Modul M2002: Waste and Resource Management |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Basics in process engineering |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The students are able to describe waste as a resource as well as advanced technologies for recycling and recovery of resources from waste in detail. This covers collection, transport, treatment and disposal in national and international contexts. |
||||||||
Fertigkeiten |
Students are able to select suitable processes for the treatment with respect to the national or cultural and developmental context. They can evaluate the ecological impact and the technical effort of different technologies and management systems. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students can work together as a team of 2-5 persons, participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of colleagues. Furthermore, they can give and accept professional constructive criticisms. |
||||||||
Selbstständigkeit |
Students can independently gain additional knowledge of the subject area and apply it in solving the given course tasks and projects. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Referat | ||||||||
Prüfungsdauer und -umfang | Vortrag mithilfe von Powerpoint-Folien (10-15 Minuten) | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemie- und Bioingenieurwesen: Wahlpflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Wahlpflicht Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L3261: Waste management |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Rüdiger Siechau |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Einführung in die Abfallwirtschaft; Martin Kranert, Klaus Cord-Landwehr (Hrsg.); Vieweg + Teubner Verlag; 2010 Powerpoint-Folien in Stud IP |
Lehrveranstaltung L3259: International waste concepts |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Waste avoidance and recycling are the focus of this lecture. Additionally, waste logistics ( Collection, transport, export, fees and taxes) as well as international waste shipment solutions are presented. Other specific wastes, e.g. industrial waste, treatment concepts will be presented and developed by students themselves Waste composition and production on international level, wast eulogistic, collection and treatment in emerging and developing countries. Single national projects and studies will be prepared and presented by students |
Literatur |
Basel convention |
Lehrveranstaltung L3260: International waste concepts |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0871: Hydrologische Systeme |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen des Wasserbau und der Hydromechanik; Wasserbau I u. Wasserbau II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Begriffe der Hydrologie und der Wasserwirtschaft detailliert definieren. Sie sind in der Lage die relevanten Prozesse des Wasserkreislaufes zu beschreiben und zu quantifizieren. Daneben kennen die Studierenden die wesentlichen Aspekte der Niederschlags-Abfluss-Modellierung und können beispielsweise die gängigen Speichermodelle und eine Einheitsganglinie auf theoretischem Wege ableiten. |
Fertigkeiten |
Die Studierenden sind in der Lage die in der Hydrologie gängigen Ansätze und Methoden anzuwenden und können als Grundlage für Niederschlags-Abflussmodelle exemplarisch die gängigen Speichermodelle oder eine Einheitsganglinie auf theoretischem Wege ableiten. Die Studierenden sind fähig, Grundkonzepte von Messungen hydrologischer und hydrodynamischer Größen in der Natur zu erläutern und entsprechende Messungen durchführen, statistisch auszuwerten und zu bewerten. Sie können ein hydrologisches Modell auf einfache Fragestellungen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung der Hydrologie und der Wasserwirtschaft einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten. |
Selbstständigkeit | Die Studierenden können selbstständig ihr Wissen erweitern und auf neue Fragestellungen anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 90 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L0289: Angewandte Oberflächenhydrologie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Grundlagen der Hydrologie und der Gewässerkunde:
|
Literatur |
http://de.wikipedia.org/wiki/Kalypso_(Software) http://kalypso.bjoernsen.de/ http://sourceforge.net/projects/kalypso/ |
Lehrveranstaltung L1412: Angewandte Oberflächenhydrologie |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0295: Interaktion Umwelt / Wasser in Flußgebieten |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Es handelt sich hier um eine Veranstaltung, bei der wir die Lehrmethodik des "Problem-Based Learnings" umsetzen. Ein Problem steht im Vordergrund und wird von den Lernenden weitgehend selbständig gelöst. Die Studenten können in der Veranstaltung zwischen verschiedenen Themen wählen, die im Laufe des Semesters vorgestellt und dann ausgearbeitet werden. |
Literatur | - |
Modul M2032: Advanced Vadose Zone Hydrology |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Nima Shokri |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge in water and soil Comfortable with math and physics, critical thinking, creative problem solving Analytic skills |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will learn about soil characterization (solid and liquid phase), the energy state of soil water, the soil water characteristic curve, flow in saturated and unsaturated soil as well as about solute transport in soil |
Fertigkeiten |
Students will work on practical examples modelling transport processes
in soil using different quantitative tools including computer simulations and
analytical tools. This will help them to apply knowledge in order to solve problems and tasks. |
Personale Kompetenzen | |
Sozialkompetenz |
The module aims at raising awareness and enthusiasm for new knowledge related to water, soil and environment. This will positively contribute to shape their work and life environment. |
Selbstständigkeit |
The students will be involved in many problem solving exercises. This will contribute toward their willingness to work independently and responsibly. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Report und Präsentation |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L2735: Modeling Processes in Vadose Zone |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Mohammad Aziz Zarif |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Numerical tools will be introduced and used to quantify flow and transport processes in soil |
Literatur | NA |
Lehrveranstaltung L2732: Vadose Zone Hydrology |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Soil solid phase characterization, Soil liquid phase characterization, The energy state of soil water, Soil Water Characteristic Curve, Flow in saturated soil, Flow in unsaturated soil, Solute transport in porous media |
Literatur |
- Environmental Soil Physics, by Daniel Hillel - Soil Physics, Sixth Edition, by William A. Jury and Robert Horton - Physical Hydrology, Second Edition, by S. Lawrence Dingman - Introduction to Physical Hydrology, by Martin R. Hendriks |
Lehrveranstaltung L2733: Vadose Zone Hydrology |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0949: Rural Development and Resources Oriented Sanitation for different Climate Zones |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge of the global situation with rising poverty, soil degradation, lack of water resources and sanitation |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can describe resources oriented wastewater systems mainly based on source control in detail. They can comment on techniques designed for reuse of water, nutrients and soil conditioners. Students are able to discuss a wide range of proven approaches in Rural Development from and for many regions of the world. |
Fertigkeiten |
Students are able to design low-tech/low-cost sanitation, rural water supply, rainwater harvesting systems, measures for the rehabilitation of top soil quality combined with food and water security. Students can consult on the basics of soil building through “Holisitc Planned Grazing” as developed by Allan Savory. |
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to develop a specific topic in a team and to work out milestones according to a given plan. |
Selbstständigkeit |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Semesterbegleitend werden Meilensteine erarbeitet, vorgetragen und schriftlich festgehalten. Genaueres zum jeweiligen Semesterbeginn. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0942: Rural Development and Resources Oriented Sanitation for different Climate Zones |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0941: Rural Development and Resources Oriented Sanitation for different Climate Zones |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M0822: Modellierung von Prozessen in der Wassertechnologie |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Klaus Johannsen |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Verständnis der wichtigsten Prozesse in der Trinkwasseraufbereitung und der Abwasserbehandlung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ausgewählte Prozesse der Trinkwasseraufbereitung und Abwasserbehandlung detailliert beschreiben. Sie können die Grundlagen sowie die Möglichkeiten und Grenzen der dynamischen Modellierung erklären. |
Fertigkeiten |
Studierende können die wichtigsten Funktionen der Programmiersprache Modelica anwenden. Sie können ausgewählte Prozesse der Trinkwasseraufbereitung und Abwasserbehandlung detailliert im Hinblick auf Gleichgewicht, Kinetik und Stoffbilanzen in ein mathematisches Modell umsetzen und in OpenModelica realisieren. Studierende können Modelle selbst erstellen, anwenden und die Möglichkeiten und Grenzen einschätzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in einer fachlich heterogenen Gruppe Problemstellungen lösen und diese dokumentieren. Sie können angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Die Studierenden sind in der Lage eigenständig ein Problem zu definieren, sich das erforderliche Wissen anzueignen und daraus ein Modell zuerstellen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Chemie- und Bioingenieurwesen: Technischer Ergänzungskurs: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0522: Modellierung der Prozesse der Abwasserbehandlung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Massen- und Energiebilanzen Tracer Modellierung Belebtschlammverfahren Kläranlage (kontinuierlich und als SBR) Schlammbehandlung (ADM, aerob autotherm) Biofilmmodellierung |
Literatur |
Henze, Mogens (Seminar on Activated Sludge Modelling, ; Kollekolle Seminar on Activated Sludge Modelling, ;) |
Lehrveranstaltung L0314: Process Modeling in Drinking Water Treatment |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In this course selected drinking water treatment processes (e.g. aeration or activated carbon adsorption) are modeled dynamically using the programming language Modelica, that is increasingly used in industry. In this course OpenModelica is used, an free access frontend of the programming language Modelica. In the beginning of the course the use of OpenModelica is explainded by means of simple examples. Together required elements and structure of the model are developed. The implementation in OpenModelica and the application of the model is done individually or in groups respectively. Students get feedback and can gain extra points for the exam. |
Literatur |
OpenModelica: https://openmodelica.org/index.php/download/download-windows OpenModelica - Modelica Tutorial: https://openmodelica.org/index.php/useresresources/userdocumentation OpenModelica - Users Guide: https://openmodelica.org/index.php/useresresources/userdocumentation Peter Fritzson: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,Wiley-IEEE Press, ISBN 0-471-471631. MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. |
Modul M0713: Betontragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | NN | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlagen der Baustatik, Entwurf und Bemessung von Tragwerken des Massivbaus Module: Massivbau I + II, Baustatik I + II, Mechanik I+II |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden erweitern ihre Kenntnisse in der Tragwerksplanung, speziell in Richtung Hochbau (Gebäude, Dächer, Hallen). Sie verfügen über das für den Entwurf und die Bemessung von Stahlbetonhochbauten bzw. häufig vorkommender Bauteile benötigte Wissen. |
||||||||
Fertigkeiten |
Die Studierenden können die Entwurfs- und Bemessungsverfahren auf praktische Fragestellungen des Stahlbetonhochbaus anwenden. Sie sind in der Lage, Tragwerke zu entwerfen und für allgemeine Beanspruchungen zu bemessen sowie hierfür die bauliche und konstruktive Umsetzung vorzusehen. Darüber hinaus können sie Entwurfs- und Konstruktionsskizzen anfertigen und die Ergebnisse von Berechnung und Bemessung sprachlich darlegen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppenarbeit hochwertige Arbeitsergebnissen zu erzielen. |
||||||||
Selbstständigkeit |
Die Studierenden sind fähig, angeleitet durch Lehrende komplexe Stahlbetontragwerke zu entwerfen und zu bemessen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0579: Betontragwerke |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Anhand einer semesterbegleitenden Gruppenarbeit werden die Inhalte der Lehrveranstaltung "Stahl- und Spannbetonbauteile" eingeübt, diskutiert und präsentiert. |
Literatur | - Projektbezogene Unterlagen werden abgegeben. |
Lehrveranstaltung L0577: Stahl- und Spannbetonbauteile |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Vorlesungsunterlagen können im STUDiP heruntergeladen werden
|
Lehrveranstaltung L0578: Stahl- und Spannbetonbauteile |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0963: Stahl- und Verbundtragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Marcus Rutner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen des Stahlbaus (z.B. Stahlbau I und II, BUBC) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten können nach der Absolvierung des Moduls
|
Fertigkeiten |
Nach erfolgreicher Teilnahme an diesem Modul sind die Studenten in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz | -- |
Selbstständigkeit | -- |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1204: Stahl- und Verbundtragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag |
Lehrveranstaltung L1205: Stahl- und Verbundtragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1097: Stahlbrückenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Yves Freundt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
• Von der Ausschreibung bis zur Fertigstellung - der Weg einer Stahlbrücke • Aufbau einer Brückenstatik - konstruktive Details, Beispiele für Detailnachweise: ◦ mittragende Breite unter Berücksichtigung von Längssteifen ◦ Auflagerpunkt, Auflagersteifen ◦ Querträgerdurchbruch, Säumung ◦ Zinkennachweis (Querträgersteg zwischen Trapezsteifen) • Stahlsorten, -bezeichnungen, Prüfungen und Abnahmezeugnisse • Zerstörungsfreie Schweißnahtprüfverfahren • Korrosionsschutz • Brückenlager - Arten, Aufbau, Funktion, Berechnung, Einbau • Fahrbahnübergänge • Schwingungen von Rundhängern und Seilen - Schwingungsdämpfer • Bewegliche Brücken • Ausführliche Berichte von verschieden Montagevorgängen und -hilfsmitteln • Ausgewählte Schadensfälle |
Literatur |
|
Modul M0581: Water Protection |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students can describe the basic principles of the regulatory framework related to the international and European water sector. They can explain limnological processes, substance cycles and water morphology in detail. They are able to assess complex problems related to water protection, such as ecosystem service and wastewater treatment with a special focus on innovative solutions, remediation measures as well as conceptual approaches. |
Fertigkeiten |
Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare presentations and discussions. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung plus Vortrag |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht |
Lehrveranstaltung L0226: Water Protection and Wastewater Management |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
The literature listed below is available in the library of the TUHH.
|
Lehrveranstaltung L2008: Water Protection and Wastewater Management |
Typ | Projektseminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Modul M0699: Geotechnik III |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Geotechnik I und II, Mathematik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem erfolgreichen Absolvieren des Moduls sind die Studierenden in der Lage,
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0375: Numerische Methoden in der Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Hans Mathäus Stanford |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt:
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein
|
Literatur |
|
Lehrveranstaltung L0497: Spezialtiefbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0498: Spezialtiefbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1720: Emerging Trends in Environmental Engineering |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Nima Shokri |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge on water, soil and environmental research. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will be exposed to up-to-date research topics focused on soil, water and climate related challenges with a particular focus on the effects of microplastics in environment. Data analysis, data measurement, curation and presentation will be other skills that the students will develop in this module. |
Fertigkeiten |
Students' research skills will be improved in this module. How to prepare and deliver an effective presentation, how to write an abstract, research paper and proposal will be discussed in this module. Moreover, through Research-Based Learning approaches, the students will be exposed to current research trends in environmental engineering. |
Personale Kompetenzen | |
Sozialkompetenz |
Developing teamwork and problem solving skills through Research-Based Teaching approaches will be at the core of this module. |
Selbstständigkeit |
The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Report und Präsentation |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2752: Environmental Research Trends |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Salome Shokri-Kuehni |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Introduction - course objectives, expectations and format Analyzing the Audience, purpose and occasion Constructing and delivering effective technical presentations How to write an abstract How to write a scientific paper Developing competitive and persuasive research proposals Databases and resources available for water and environmental research Individual proposal on water and environmental research Individual project on water and environmental research Presentation on water and environmental research |
Literatur |
|
Lehrveranstaltung L2750: Microplastics in Environment |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Introduction, objectives, expectations, format, importance - Sources of microplastics in environment - Microplastics sampling; Characterization of microplastics - Distribution of microplastics in terrestrial environments - Fate of microplastics in terrestrial environments - Project discussion - Effects of microplastics on terrestrial environments - Health risks of microplastics in environments - Project presentations by all students |
Literatur |
- Microplastics in Terrestrial Environments (2021), Edited by Defu He and Yongming Luo - Particulate Plastics in Terrestrial and Aquatic Environments (2020), Edited by Nanthi S. Bolan et al. - Microplastic Pollutants (2017), by Christopher B. Crawford and Brian Quinn |
Lehrveranstaltung L2751: Scientific Communication and Methods |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Introduction - course objectives, expectations and format Analyzing the Audience, purpose and occasion Constructing and delivering effective technical presentations How to write an abstract How to create a scientific poster How to write a scientific paper Developing competitive and persuasive research proposals Individual project (report and presentation) related to soil, water and environmental research |
Literatur |
|
Modul M1401: Studienarbeit Wasser und Verkehr |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Dozenten des SD B |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Studieninhalte der Vertiefung Wasserwirtschaft und Abfall |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ihre Detailkenntnisse auf dem Gebiet Wasserwirtschaft und Abfall demonstrieren. Die Studierenden sind qualifiziert (siedlungs)wasserwirtschaftliche und umweltschutzorientierte Vorhaben zu projektieren und dabei selbstständig Forschungsaufgaben zur theoretischen und experimentellen Untersuchung von Umweltproblemen und wasserwirtschaftlichen Fragestellungen zu definieren. Sie können zum Stand von Entwicklung und Anwendung Beispiele geben und diese kritisch unter Berücksichtigung aktueller Probleme und Rahmenbedingungen in Wissenschaft und Gesellschaft diskutieren. Die Studierenden sind in der Lage, für eine grundlagenorientierte, anwendungsorientierte oder praktische Fragestellung aus dem Bereich Wasserwirtschaft und Abfall eigenständig eine Lösungsstrategie zu definieren und einzelne Lösungsansätze zu skizzieren. Dabei können sie theorieorientiert vorgehen und aktuelle sicherheitstechnische, ökologische, ethische und wirtschaftliche Gesichtspunkte nach dem Stand der Wissenschaft und zugehöriger gesellschaftlicher Diskussionen einbeziehen. Wissenschaftliche Arbeitstechniken, die sie zur eigenen Projektbearbeitung gewählt haben, können sie detailliert darlegen und kritisch erörtern. |
Fertigkeiten |
Die Studierenden sind in der Lage, zur Projektbearbeitung selbständig Methoden oder Planungsansätze auszuwählen und diese Auswahl zu begründen. Sie können darlegen, wie sie Ansätze oder Methoden lösungsorientiert auf das spezifische Anwendungsfeld beziehen und hierfür an den Anwendungskontext anpassen. Über das Projekt hinaus weisende Eckpunkte sowie Weiterentwicklungen können sie in Grundzügen skizzieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und Kolleginnen und Kollegen Rückmeldung zu ihren Projekten geben. |
Selbstständigkeit |
Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erzielen. |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Studienarbeit |
Prüfungsdauer und -umfang | Laut FSPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht |
Modul M0969: Ausgewählte Themen des Bauingenieurwesens |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | --- |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L3092: Bemessung von Verbundbrücken |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Marcus Rutner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalte dieser Vorlesung ist der Entwurf, die Konstruktion, die Nachweisführung nach der aktuellen Norm, die Bewertung und die Ertüchtigung von Verbundbrücken. |
Literatur |
Lehrveranstaltung L1867: Berechnung von Offshore-Tragwerken |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Said Fawad Mohammadi |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Topic 1: Types of Offshore Structures, Fixed and floating structures for Oil & Gas and Offshore Wind industry Topic 2: Wave Forces, Morisons equation Topic 3: Irregular Seastates, Power spectrum and application of FFT Topic 4: Additional Environmental Forces, wind spectra, current forces Topic 5: Linear-Time-Invariant Systems, response of an LTI-system in frequency domain Topic 6: Tubular Welded Connections, stress concentration factors, weld geometry Topic 7: Introduction to Fracture Mechanics, criteria for fracture initiation and crack growth Topic 8: Time and Frequency Domain Fatigue Analyses, rainflow counting, application of LTI-systems for frequency domain fatigue Topic 9: Offshore Installation and Exam, installation of structures, pile driving, pipe laying techniques |
Literatur |
Chakrabarti, Handbook of Offshore Engineering, 2005 Sarpkaya, Wave Forces on Offshore Structures, 2010 Faltinsen, Sea Loads on Ships and Offshore Structures, 1998 Sorensen, Basic Coastal Engineering, 2006 Dowling, Mechanical Behavior of Materials, 2007 Haibach, Betriebsfestigkeit, 2006 Marshall, Design of Welded Tubular Connections, 1992 Newland, Random vibrations, spectral and wavelet analysis, 1993 |
Lehrveranstaltung L3227: Energie-Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung (laut FPrO) |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Pauline Kaminski |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Energie-Geotechnik ist ein junges Fachgebiet im Bereich der Geotechnik mit dem Ziel nachhaltige geotechnische Lösungen für zukunftsrelevante Fragestellungen bezüglich Produktion, Transport, Betrieb, Rückbau und Abfallverwertung verschiedener Energieträger zu entwickeln. Beispiele möglicher Betätigungsfelder der Energie-Geotechnik sind die Geothermie und thermische aktivierte Gründungsbauteile, Gründungen von Windenergieanlagen on- und offshore, der Rückbau von Förderanlagen sowie der Umgang mit Abfallprodukten fossiler Energieträger wie bspw. Kippenböden und die geologische Speicherung von CO2. Relevante bodenmechanische Prozesse in diesen Anwendungen sind u.a. das thermo-hydro-mechanisch-gekoppelte Verhalten von Böden, Mehrphasenströmung in porösen Medien und teilgesättigte Böden. Die Lehrveranstaltung gibt einen Überblick über verschiedene Aspekte der Energie-Geotechnik und vermittelt vertieftes Wissen zu den einhergehenden bodenmechanischen Prozessen. Ergänzend werden CO2-arme geotechnische Verfahren besprochen und Emissionsabschätzungen sowie die Optimierung von geotechnischen Strukturen nach Nachhaltigkeitsaspekten thematisiert. |
Literatur |
Lehrveranstaltung L0052: Feststoffverfahrenstechnik für Biomassen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Werner Sitzmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Die großtechnische Anwendung verfahrenstechnischer Grundoperationen wird an aktuellen Beispielen der Verarbeitung fester Biomassen demonstriert. Hierzu gehören unter anderem: Zerkleinern, Fördern und Dosieren, Trocknen und Agglomerieren nachwachsender Rohstoffe im Rahmen der Herstellung von Brennnstoffen, der Bioethanolerzeugung, der Gewinnung und Veredelung von Pflanzenölen, von Biomass-to-liquid-Prozessen sowie der Herstellung von wood-plasic-composites. Aspekte zum Explosionsschutz und zur Anlagenplanung ergänzen die Vorlesung. |
Literatur |
Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe, Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175 |
Lehrveranstaltung L1634: Forum I - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Vorträge zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur | -- |
Lehrveranstaltung L1635: Forum II - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Vortrage zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur | -- |
Lehrveranstaltung L1151: Holzbau |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Torsten Faber |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2666: Innovativer Holzbau |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 45 Minuten |
Dozenten | Dr. Andreas Meisel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Holz ist DER nachhaltige Baustoff schlechthin, seine Anwendung
feiert auch im norddeutschen Raum seit einigen Jahren eine Renaissance.
Neben gewöhnlichen Hochbauten werden unter anderem auch weitgespannte
Hallentragwerke und Hochhäuser immer häufig in Holzbauweise errichtet.
In der Ausbildung angehender BauingenieurInnen sind daher mehr als nur
Grundlagenkenntnisse erforderlich, um tragsichere, wirtschaftliche,
ästhetische und nicht zuletzt dauerhafte Tragwerke aus Holz konstruieren
und bemessen zu können.
|
Literatur |
- Blass, J.: "Ingenieurholzbau"
|
Lehrveranstaltung L1152: Konstruktiver Glasbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Konstruktiver Glasbau - Einführung in den Baustoff Glas (Herstellung, Veredelung, Materialverhalten) - Konstruktion von Fassaden - Fassadentypen - Statische Berechnung von Verglasungen - Statische Berechnung von Fassaden - Unterschiede Plattentragwirkung / Membranwirkung bei Verglasungen - Vertikal- / Horizontalverglasungen mit sicherheitsrelevanten Anforderungen (begehbare, betretbare und absturzsichernde Verglasungen) - Glastragwerke - Brandschutz bei Glasfassaden - Bauphysik bei Fassaden bzw. Verglasungen |
Literatur |
Lehrveranstaltung L1447: Konstruktiver Glasbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L3270: Sustainable landfill design and operation |
Typ | Integrierte Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The course introduces the development of modern waste resource management and demonstrates the importance of landfills in the context of recycling processes. Based on international (EU) and national legislation, the current landfill situation is presented and the future significance of landfills will be discussed. A central element of the course deals with the main transformation processes in the landfilled waste, the emission of gases and leachate, the long-term behaviour of landfills as well as aftercare and after-utilisation measures. Further focal points of the course are measures for the sustainable reduction of environmentally and climate-damaging emissions and aspects of landfill technology in an international context. |
Literatur |
1) Waste
Management. Bernd Bilitewski; Georg Härdtle; Klaus Marek (Eds.), ISBN:
9783540592105 , Springer Verlag 3) Solid Waste Landfilling - Concepts, Processes, Technologies. Cossu, R. and Stegmann, R. (Eds.), ISBN: 978-0-12-818336-6 PDF (Volltext) über TUB |
Lehrveranstaltung L3091: Spezialthemen des Stahlbaus |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Marcus Rutner, Nikolay Lalkovski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel dieser Lehrveranstaltung ist es, auf einige in der Praxis wichtige Themen des Stahlbaus näher einzugehen, die im Rahmen der Bachelor-Fächer „Stahlbau I“ und „Stahlbau II“ nicht oder nur einleitend behandelt werden können. Im Folgenden sind diese Themen mit kurzer Beschreibung der Inhalte aufgezählt: 1. Nachweisverfahren Plastisch-Plastisch: Eine Einleitung in das Verfahren wird bereits im Rahmen der Lehrveranstaltung „Stahlbau II“ gegeben. Nach kurzer Wiederholung der Grundlagen fällt der Fokus auf folgende bei der praktischen Anwendung potentiell wichtigen Aspekte des Verfahrens: Einfluss der Theorie 2. Ordnung auf die Traglast - besonders wichtig bei verschieblichen Rahmentragwerken Einfluss von Normal- und Querkräften auf die Momente in den plastischen Gelenken und damit auf die Traglast Unterdrückung von lokalen Instabilitäten als Bedingung für die Anwendung des Verfahrens Plastisch-Plastisch Inkrementeller plastischer Kollaps und Shakedown 2. Plattenbeulen: Differentialgleichung des Verzweigungsproblems Nachweis von unausgesteiften und ausgesteiften Beulfeldern; überkritische Tragreserven 3. Seilkonstruktionen: Wesentliche Unterschiede zu Tragwerken aus biegesteifen Gliedern Herleitung der Seilgleichung für einige typische Belastungsfälle Grundlagen der Berechnung von Hängedächern und seilabgespannten Dächern; Diskussion der jeweils verwandten Probleme bei Hänge- und Schrägseilbrücken 4. Ermüdung und Betriebsfestigkeit: Wöhlerlinie Kerbfälle Vorstellung der gängigen Verfahren zum Nachweis der Betriebsfestigkeit, z. B. Reservoirmethode |
Literatur |
Lehrveranstaltung L2378: Spezielle Themen des Bauingenieurwesens 1LP |
Typ | |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt | Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur | Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2379: Spezielle Themen des Bauingenieurwesens 2LP |
Typ | |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur |
Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2380: Spezielle Themen des Bauingenieurwesens 3LP |
Typ | |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | wird zu Beginn der Lehrveranstaltung festgelegt |
Dozenten | Dozenten des SD B |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Die Lehrveranstaltung findet nur bei Bedarf statt. Der Inhalt der Lehrveranstaltung wird kurzfristig festgelegt. |
Literatur |
Die Literatur wird kurzfristig festgelegt. |
Lehrveranstaltung L2789: Tragwerksentwurf |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Dr. Jan Mittelstädt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Das Seminar Tragwerksentwurf beschäftigt sich mit dem Zusammenhang zwischen Architektur und Struktur. Die |
Literatur |
[1] Structure Systems by Heino Engel, Hantje Cantz, 3rd edition (Feb 2007), ISBN-10: 3775718761 |
Modul M0802: Membrane Technology |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Mathias Ernst |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge of water chemistry. Knowledge of the core processes involved in water, gas and steam treatment |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students will be able to rank the technical applications of industrially important membrane processes. They will be able to explain the different driving forces behind existing membrane separation processes. Students will be able to name materials used in membrane filtration and their advantages and disadvantages. Students will be able to explain the key differences in the use of membranes in water, other liquid media, gases and in liquid/gas mixtures. |
Fertigkeiten |
Students will be able to prepare mathematical equations for material transport in porous and solution-diffusion membranes and calculate key parameters in the membrane separation process. They will be able to handle technical membrane processes using available boundary data and provide recommendations for the sequence of different treatment processes. Through their own experiments, students will be able to classify the separation efficiency, filtration characteristics and application of different membrane materials. Students will be able to characterise the formation of the fouling layer in different waters and apply technical measures to control this. |
Personale Kompetenzen | |
Sozialkompetenz |
Students will be able to work in diverse teams on tasks in the field of membrane technology. They will be able to make decisions within their group on laboratory experiments to be undertaken jointly and present these to others. |
Selbstständigkeit |
Students will be in a position to solve homework on the topic of membrane technology independently. They will be capable of finding creative solutions to technical questions. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemie- und Bioingenieurwesen: Technischer Ergänzungskurs: Wahlpflicht Environmental Engineering: Vertiefung Water Quality and Water Engineering: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0399: Membrane Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mathias Ernst |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture on membrane technology supply provides students with a broad understanding of existing membrane treatment processes, encompassing pressure driven membrane processes, membrane application in electrodialyis, pervaporation as well as membrane distillation. The lectures main focus is the industrial production of drinking water like particle separation or desalination; however gas separation processes as well as specific wastewater oriented applications such as membrane bioreactor systems will be discussed as well. Initially, basics in low pressure and high pressure membrane applications are presented (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). Students learn about essential water quality parameter, transport equations and key parameter for pore membrane as well as solution diffusion membrane systems. The lecture sets a specific focus on fouling and scaling issues and provides knowledge on methods how to tackle with these phenomena in real water treatment application. A further part of the lecture deals with the character and manufacturing of different membrane materials and the characterization of membrane material by simple methods and advanced analysis. The functions, advantages and drawbacks of different membrane housings and modules are explained. Students learn how an industrial membrane application is designed in the succession of treatment steps like pre-treatment, water conditioning, membrane integration and post-treatment of water. Besides theory, the students will be provided with knowledge on membrane demo-site examples and insights in industrial practice. |
Literatur |
|
Lehrveranstaltung L0400: Membrane Technology |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Mathias Ernst |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0401: Membrane Technology |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Mathias Ernst |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1779: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Anfertigung einer schriftliche Ausarbeitung zu einer komplexen Fragestellung mit Referat und anschließender Diskussion. Die Bearbeitung der Fragestellung erfolgt parallel zur Lehrveranstaltung. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Environmental Engineering: Vertiefung Environment and Climate: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2926: Sustainable Nature-based Coastal Protection in a Changing Climate (SeaPiaC) |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Peter Fröhle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1505: Anpassung an den Klimawandel in der wasserbaulichen Praxis (AKWAS) |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Anfertigung einer schriftliche Ausarbeitung zu einer komplexen Fragestellung mit Referat und anschließender Diskussion. Die Bearbeitung der Fragestellung erfolgt parallel zur Lehrveranstaltung. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2291: Anpassung an den Klimawandel in der wasserbaulichen Praxis |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1956: Bau- und Tiefbaurecht |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gesamte Module: Geotechnik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erhalten Kenntnisse über
|
Fertigkeiten |
Studierende lernen juristische Aspekte in der Planung und im Bau rechtlich ausgewogen anwenden zu können. Studierende lernen, wie sie rechtliche und baubetriebliche Aspekte in der Praxis (Planen und Bauen) auf der Baustelle gezielt einsetzen und das Bauvorhaben optimal managen können. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht |
Lehrveranstaltung L3182: Baurecht BGB und VOB - Recht in der (Tiefbau-)Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Günther Schalk |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt: |
Literatur |
Literatur: |
Lehrveranstaltung L3181: Baustreitigkeiten aus der baubetrieblichen (Tiefbau-)Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Ingo Junker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel ist es, den Studierenden aus der baubetrieblichen Praxis einen Einblick in die vielfältigen Inhalte: |
Literatur |
Modul M1725: Scientific Working in Computational Engineering |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Kay Smarsly |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge in scientific writing. String interest in topics related to computing in civil engineering. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students will learn to apply concepts and methods of scientific working in computational engineering. In interaction with the course instructors and in collaboration with each other, the students will also learn to understand the complex process of scientific thinking, being able to accurately plan, implement and analyze scientific projects, such as prospective master theses. A project will be conducted throughout the semester, which will contribute to the grade. Since scientific writing is of particular importance in this course, a scientific paper will be developed based, which is a prerequisite for the final examination. The paper will be written based on the project conducted within this course. Project meetings in small groups, presentations, and critical discussions of scientific publications are further key activities. |
Fertigkeiten |
The students will be capable (i) of solving a scientific problem following a scientific methodology, (ii) of documenting their work effectively in the form of a paper, and (iii) of sharing their work in a presentation. |
Personale Kompetenzen | |
Sozialkompetenz |
The students will be able to work in a multidisciplinary team and develop communication skills necessary for problem solving. |
Selbstständigkeit |
The students will be able to extend their knowledge and apply it to solve scientific problems by working independently in a project. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten Ausarbeitung mit 15-minütigem Abgabegespräch |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht |
Lehrveranstaltung L2764: Scientific Working in Computational Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Kay Smarsly |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
In the course, a scientific problem of practical relevance will first be defined, taking into account the interests of the students participating in the course. The scientific problem will then systematically be solved within the framework of a comprehensive project. The principles of scientific working will be taught based on the scientific problem defined previously. As an integral part of scientific working, fundamentals of scientific writing will be presented and applied to a scientific paper to be written during the course. Topics related to scientific writing include structuring in scientific writing (structuring the abstract, the introduction, the main part, the summary and conclusions, and the acknowledgments and references) and recommendations on effective scientific writing (principles of composition, use of English in scientific writing, useful tips, creating figures, writing in mathematics, referencing, and formal email correspondence). A final paper and a final presentation will be assembled by the students. |
Literatur |
Smarsly, K. & Dragos, K., 2019. Scientific Writing in Engineering. Tredition, Hamburg, Germany. |
Modul M2033: Subsurface Processes |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Nima Shokri |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic Mathematics, Hydrology |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Upon completion of this module, the students will understand the mechanisms controlling solute transport in soil and natural porous media and will be able to work with the equations that govern the fate and transport of solutes in porous media. Analytical, numerical and experimental tools and techniques will be used in this module. |
Fertigkeiten | In addition to the physical insights, the students will be exposed to analytical, experimental and numerical tools and techniques in this module. This provides them with an excellent opportunity to improve their skills on multiple fronts which will be useful in their future career. |
Personale Kompetenzen | |
Sozialkompetenz | Teamwork & problem solving |
Selbstständigkeit | The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Report |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Chemie- und Bioingenieurwesen: Technischer Ergänzungskurs: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L2731: Modeling of Subsurface Processes |
Typ | Gruppenübung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Milad Aminzadeh |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic usage and background of chosen computer software to calculate flow and transport in the saturated and unsaturated zone and to analyze field data like pumping test data |
Literatur |
Lehrveranstaltung L2728: Subsurface Solute Transport |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Nima Shokri |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Basic physical properties of soil: Definition and quantification; Liquid flow in soils (Darcy’s law); Solute transport in soils; Practical analysis to measure dispersion coefficient in soil under different boundary conditions; Advanced topics (e.g. Application of Artificial Intelligence to predict soil salinization) |
Literatur |
- Environmental Soil Physics, by Daniel Hillel - Soil Physics, Sixth Edition, by William A. Jury and Robert Horton |
Lehrveranstaltung L2729: Subsurface Solute Transport |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Hannes Nevermann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M2003: Biological Waste Treatment |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse | chemical and biological basics | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The module aims possess knowledge concerning the planning of biological waste treatment plants. Students are able to explain the design and layout of anaerobic and aerobic waste treatment plants in detail, describe different techniques for waste gas treatment plants for biological waste treatment plants and explain different methods for waste analytics. |
||||||||
Fertigkeiten |
The students are able to discuss the compilation of design and layout of plants. They can critically evaluate techniques and quality control measurements. The students can recherché and evaluate literature and date connected to the tasks given in der module and plan additional tests. They are capable of reflecting and evaluating findings in the group. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development in front of colleagues. Furthermore, they can give and accept professional constructive criticism. |
||||||||
Selbstständigkeit |
Students can independently tap knowledge from literature, business or test reports and transform it to the course projects. They are capable, in consultation with supervisors as well as in the interim presentation, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Referat | ||||||||
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (15-25 Minuten in Gruppen) | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemie- und Bioingenieurwesen: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L0328: Waste and Environmental Chemistry |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The participants are divided into groups. Each group prepares a transcript on the experiment performed, which is then used as basis for discussing the results and to evaluate the performance of the group and the individual student. In some experiments the test procedure and the results are presented in seminar form, accompanied by discussion and results evaluation. Experiments ar e.g. Screening and particle size determination Fos/Tac AAS Chalorific value |
Literatur | Scripte |
Lehrveranstaltung L0318: Biological Waste Treatment |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Modul M2006: Waste Treatment and Recycling |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students can name, describe current issue and problems in the field of waste treatment (mechanical, chemical and thermal) and contemplate them in the context of their field. The industrial application of unit operations as part of process engineering is explained by actual examples of waste technologies . Compostion, particle sizes, transportation and dosing of wastes are described as important unit operations . Students will be able to design and design waste treatment technology equipment. |
Fertigkeiten |
The students are able to select suitable processes for the treatment of wastes or raw material with respect to their characteristics and the process aims. They can evaluate the efforts and costs for processes and select economically feasible treatment concepts. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemie- und Bioingenieurwesen: Wahlpflicht Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L3267: Planning of waste treatment plants |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Rüdiger Siechau |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The focus is on getting to know the organization and practice of waste management companies. Topics such as planning, financing and logistics will be discussed and there will be an excursion (waste incineration plant, vehicle fleet and collection systems / containers). Project based learning: You will be given a task to work on independently in groups of 4 to 6 students. All tools and data needed for the project work will be discussed in the lecture "Recycling Technologies and Thermal Waste Treatment". Course documents can be downloaded from StudIP. Communication during the project work also takes place via StudIP. |
Literatur |
|
Lehrveranstaltung L3265: Recycling technologies and thermal waste treatment |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013. |
Lehrveranstaltung L3266: Recycling technologies and thermal waste treatment |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Thesis
Modul M-002: Masterarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 900, Präsenzstudium 0 |
Leistungspunkte | 30 |
Studienleistung | Keine |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht Chemie- und Bioingenieurwesen: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Data Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energietechnik: Abschlussarbeit: Pflicht Environmental Engineering: Abschlussarbeit: Pflicht Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht Global Innovation Management: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Information and Communication Systems: Abschlussarbeit: Pflicht Interdisciplinary Mathematics: Abschlussarbeit: Pflicht International Production Management: Abschlussarbeit: Pflicht Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht Luftfahrttechnik: Abschlussarbeit: Pflicht Materials Science and Engineering: Abschlussarbeit: Pflicht Materialwissenschaft: Abschlussarbeit: Pflicht Mechanical Engineering and Management: Abschlussarbeit: Pflicht Mechatronics: Abschlussarbeit: Pflicht Mediziningenieurwesen: Abschlussarbeit: Pflicht Microelectronics and Microsystems: Abschlussarbeit: Pflicht Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht Regenerative Energien: Abschlussarbeit: Pflicht Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht Ship and Offshore Technology: Abschlussarbeit: Pflicht Theoretischer Maschinenbau: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht Zulassungs- und Sachverständigenwesen in der Luftfahrt: Abschlussarbeit: Pflicht |