Program description

Content

Civil engineering deals with the erection of buildings of all kind, in particular of structures like bridges and tunnels, structures in hydraulic engineering, water supply, waste and waste water disposal, harbour construction, streets, hall construction, as well as industrial and housing construction, including refurbishment. The master program civil engineering gives graduates the qualification to process difficult projects in the construction practice, including the necessary competences in business and management. Buildings arise by the cooperation of owners, planning offices, contractors, environment, politicians and society. Civil engineering is located in the field between technical and economic constraint, political will and legal conditions. The master program prepares for that. The master program also opens the way to doctoral studies and successful research activities, assuming a sufficient diploma.

The master program civil engineering is associated with the bachelor program civil engineering and environmental engineering of the University of Technology Hamburg-Harburg in the sense of a consecutive course of studies. Possible entries from other bachelor programs are based on a catalog of requirements, described in the document "Specific Requirements for the Master Program Civil Engineering".


Career prospects

The graduates of the master program civil engineering are prepared for a leading professional activity in planning offices, at building contractors, building authorities, owners of major immovables and infrastructure, producers of building products, material testing institutions and in research facilities. It aims at activities in extensive and difficult projects, or in research and development. In Germany a great demand exists at this time for civil engineers in particular with good knowledge in structural engineering. The master program is based on this demand.


Learning target

The graduates of the master program civil engineering gain the specialist knowledge and the methods, to plan and erect new buildings, in particular concrete structures, steel structures, structures in water engineering, in foundation engineering, in water supply, waste and waste water disposal, including refurbishment of existing structures. This incorporates the realization of necessary preliminary investigations, the design of structural elements, the development of all necessary proofs and the project management.

The graduates of the master program are able to transfer the acquired knowledge in engineering, mathematics and natural sciences to practical applications and to analyze and solve problems on a scientific basis, even if these are unusual or incompletely defined and comprise complex specifications. The graduates are able to successfully work on research projects in the field of civil engineering. Therefore a comprehensive understanding of the underlying processes and the ability to model and calculate such processes, e.g. with Finite Elements Methods, are necessary.

The graduates for this purpose gain the skills to experimentally determine the necessary properties of soil, materials and components and to deal with construction-specific program systems to calculate mechanical behavior, the hydraulics of systems as well as other physical-chemical processes. They are enabled to work on problems of civil engineering and related disciplines on one´s own. They are able to use methods needed for the solution of technical problems and planning procedures. They are able to use new findings in a critical way and to improve methods and new developments.

The graduates can communicate on advanced contents and problems of civil engineering with specialists and the laity. They are able to present their methods and the results of their work in writing and verbally in a comprehensive way. The graduates in addition learn to work on problems in a team in a purposeful way, and to document and present their methods and results understandably with up-to-date presentation methods to other persons. They learn to take the leadership for parts of a project or the whole. They are able to familiarize themselves with a topic and to select suitable methods to solve questions and problems. They are able to acquire the necessary information about a topic on one´s own and to put the new information in the context of their knowledge.

The graduates are further qualified to develop concept designs for difficult projects in structural engineering, foundation engineering, bridge design and hydraulic engineering and to plan such constructions under consideration of the available information and restrictions. They can:

  • successfully cooperate with expert und inexpert partners from the public administration, the economy and science,
  • autonomously define, plan and conduct scientific tasks and to theoretically or experimentally investigate constructions, ground, materials, infrastructure as well as management duties,
  • responsibly evaluate and consider the interests of building partners, people concerned and the society as a whole.

Program structure

The master program consists of modules which 6 ECTS except for the master thesis. It is divided into a "Core Qualification”, into the four alternative specializations "Harbor Construction and Coast Protection", "Underground Engineering", "Structures" and "Water Management and Waste", as well as the master thesis. The core qualification covers 24 ECTS, each specialization covers 66 ECTS and the master thesis covers 30 ECTS. The program covers 120 ECTS in 2 years with 4 terms in total.

The core qualification contains a module "Finite Elements Methods" as well as a module “Sustainability and Risk Management” in the 1st term. In addition an open module during the 1st, 2nd or 3rd term from the field “Business and Management” as well as a module from the “Nontechnical Elective Complementary Courses for Master” are incorporated. The lectures of these open modules are selected from catalogs that are independend from the specific master program.

Each specialization covers 42 ECTS in the compulsory modules, that are indispensable for the specialization, and 24 ECTS in the mandatory electives. They contain also an open module and a project work with 6 ECTS in each case. The compulsory modules are located in the 1st and 2nd term.

The 4th term covers the master thesis. In addition lectures of the open module of the specialization can still be attended in the 4th term. The students must select a specialization and they have the choice to elect different options in the field of “Business and Management”, in the field of the “Nontechnical Elective Complementary Courses for Master” and in the mandatory electives of the specialization.

A term abroad is possible. In particular the 3rd semester is used by the students to go abroad, because in the 3rd term there are no compulsory modules, but only mandatory electives.

Core Qualification

Module M0523: Business & Management

Module Responsible Prof. Matthias Meyer
Admission Requirements None
Recommended Previous Knowledge None
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to find their way around selected special areas of management within the scope of business management.
  • Students are able to explain basic theories, categories, and models in selected special areas of business management.
  • Students are able to interrelate technical and management knowledge.


Skills
  • Students are able to apply basic methods in selected areas of business management.
  • Students are able to explain and give reasons for decision proposals on practical issues in areas of business management.


Personal Competence
Social Competence
  • Students are able to communicate in small interdisciplinary groups and to jointly develop solutions for complex problems

Autonomy
  • Students are capable of acquiring necessary knowledge independently by means of research and preparation of material.


Workload in Hours Depends on choice of courses
Credit points 6
Course L1486: Business Model Generation & Green Technologies
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 0
Lecturer Prof. Michael Prange
Language EN
Cycle WiSe
Content
  • Overview about Green Technologies
  • Introduction to Business Model Generation
  • Business model patterns
  • Design techniques for business ideas
  • Strategy development
  • Value proposition architecture
  • Business plan and financing
  • Component‐based foundations
  • Lean Entrepreneurship


Based on examples and case studies primarily in the field of green technologies, students learn the basics of
Business Model Generation and will be able to develop business models and to evaluate start‐up projects.

Literature

Präsentationsfolien, Beispiele und Fallstudien aus der Vorlesung

Presentation slides, examples and case studies from the lecture

Course L1487: Corporate Entrepreneurship & Green Innovation
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Michael Prange
Language EN
Cycle WiSe
Content
  • Overview about Green Innovation
  • Introduction to Corporate Entrepreneurship
  • Entrepreneurial thinking in established companies
  • Entrepreneurs and managers
  • Strategic innovation processes
  • Corporate Venturing
  • Product Service Systems
  • Open Innovation
  • User Innovation


Based on examples and case studies primarily in the field of green innovation, students learn the basics of
corporate entrepreneurship and will be able to implement entrepreneurial thinking in established companies and
to describe strategic innovation processes.

Literature

Präsentationsfolien, Beispiele und Fallstudien aus der Vorlesung

Presentation slides, examples and case studies from the lecture

Course L1280: Creation of Business Opportunities
Typ Project-/problem-based Learning
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Examination Form Referat
Examination duration and scale 30 Minuten
Lecturer Prof. Christoph Ihl
Language EN
Cycle SoSe
Content

Important note: This course is part of an 6 ECTS module consisting of two courses "Entrepreneurship” & “Creation of Business Opportunities”, which have to be taken together in one semester.

Startups are temporary, team-based organizations, which can form both within and outside of established companies, to pursue one central objective: taking a new venture idea to market by designing a business model that can be scaled to a full-grown company. In this course, students will form startup teams around self-selected ideas and run through the process just like real startups would do in the first three months of intensive work. Startup Engineering takes an incremental and iterative approach, in that it favors variety and alternatives over one detailed, linear five-year business plan to reach steady state operations. From a problem solving and systems thinking perspective, student teams create different possible versions of a new venture and alternative hypotheses about value creation for customers and value capture vis-à-vis competitors. We will draw on recent scientific findings about international success factors of new venture design. To test critical hypotheses early on, student teams engage in scientific, evidence-based, experimental trial-and-error learning process that measures real progress.
Upon completion of this course, students will be able to:
· Apply a modern innovation toolkit relevant in both the corporate & startup world
· Analyze given business opportunities in terms of its constituent elements
· Design new business models by gathering and combining relevant ideas, facts and information 
· Evaluate business opportunities and derive judgment about next steps & decisions
Course language is English, but participants can decide to give their graded presentations in German. Students are invited to apply to this course module already with a startup idea and/ or team, but this is not a requirement! We will form teams and ideas in the beginning of the course. Class meetings have alternate intervals of lecture inputs, teamwork, mentoring, and peer feedback. Attendance is mandatory for at least 80% of class time due to large proportion of teamwork sessions.
Student teams give three presentations and submit them with backup analyses. Grading scheme:
· Startup discovery presentation after 5 weeks: 30%
· Startup validation presentation after 10 weeks: 30%
· Final startup pitches after 13 weeks: 40%


Literature

• Blank, S. & Dorf, B. (2012). The startup owner's manual.
• Gans, J. & Stern, S. (2016). Entrepreneurial Strategy.
• Osterwalder, A. & Yves, P. (2010). Business model generation.
• Maurya, A. (2012). Running lean: Iterate from plan A to a plan that works.
• Maurya, A. (2016). Scaling lean: Mastering the Key Metrics for Startup Growth.
• Wilcox, J. (2016). FOCUS Framework: How to Find Product-Market Fit.

Course L2348: Drivers of success for projects
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 0
Lecturer Lucia Pohl
Language DE
Cycle WiSe/SoSe
Content
Literature
Course L1384: Intellectual Property
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Janna Thomsen, Cathérine Elkemann
Language DE
Cycle WiSe
Content
  • Trademark law
  • Copyright
  • Patent law
  • Know-how, supplementary performance protection, et al.
  • Enforcement of intellectual property rights
  • Licensing of intellectual property rights
  • Hypothecation, security assignment and evaluation of intellectual property rights


Literature

Quellen und Materialen wird im Internet zur Verfügung gestellt

Course L2347: Human resource management for engineers
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 0
Lecturer Helge Kochskämper
Language DE
Cycle WiSe
Content
Literature
Course L1711: Innovation Debates
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale 3 Präsentationen der schriftlichen Ausarbeitung à 20 Minutes
Lecturer Prof. Daniel Heiner Ehls
Language EN
Cycle WiSe
Content

Scientific knowledge grows continuously but also experiences certain alignments over time. For example, early cultures had the believe of a flat earth while latest research has a spherical earth model. Also in social science and business management, from time to time certain concepts that have even been the predominant paradigm are challenged by new observations and models. Consequently, certain controversies emerge and build the base for advancing theory and managerial practice. With this lecture, we put ourselves in the middle of heated debates for informed academics and practitioners of the day after tomorrow.

The lecture targets several controversies in the domain of technology strategy and innovation management. By the classical academic method and the novel problem based learning format of a structured discussion, a given controversy is scrutinized. On selected topics, students will discuss a dispute and gain a thorough understanding. Specifically, based on a brief introduction of a motion, a affirmative constructive as well as a negative constructive is presented by two different student groups. Each presentation is followed by a response of the other group and questions from the class. Topics range from latest theories and concepts for value capture, to the importance of operating within a global marketplace, to cutting edge approaches for innovation stimulation and technology management. Consequently, this lecture deepens the knowledge in technology strategy and innovation management (TIM), enables a critical thinking and thought leadership.

Literature

1.       Course notes and materials provided before the lecture

2.       Leiblein/ Ziedonis (2011): Technology Strategy and innovation management. Edward Elgar Publishing Ltd (optional)

Course L0940: Innovation Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Cornelius Herstatt
Language DE/EN
Cycle SoSe
Content Innovation is key to corporate growth and sustainibility. In this lecture Prof. Herstatt presents a systematic way from generating ideas to the successful implementation of innovations. The lecture is presented in German language only
Literature
  • Goffin, K., Herstatt, C. and Mitchell, R. (2009): Innovationsmanagement: Strategie und effektive Umsetzung von Innovationsprozessen mit dem Pentathlon-Prinzip, München: Finanzbuch Verlag

    Weiterführende Literatur
  • Innovationsmanagement
    Juergen Hauschildt
  • F + E Management
    Specht, G. / Beckmann, Chr.
  • Management der frühen Innovationsphasen
    Cornelius Herstatt, Birgit Verworn
    (im TUHH-Intranet auch als E-Book verfügbar)
  • Bringing Technology and Innovation Into the Boardroom
  • weitere Literaturempfehlungen auf Anfrage
Course L0161: Internationalization Strategies
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 20-30 Minuten Referat einschl. Diskussionsleitung plus schriftliche Ausarbeitung (ca. 10 Seiten)
Lecturer Prof. Thomas Wrona
Language EN
Cycle SoSe
Content
  • Introduction
  • Internationalization of markets
  • Measuring internationalization of firms
  • Target market strategies
  • Market entry strategies
  • Timing strategies
  • Allocation strategies
  • Working in small teams on close-to-reality problems based on presented theories
  • Paper writing on developed solution to the given problem/project e.g. market attractiveness analysis; development of market entry strategy for a hypothetical product in a given region
Literature
  • Bartlett/Ghoshal (2002): Managing Across Borders, The Transnational Solution, 2nd edition, Boston
  • Buckley, P.J./Ghauri, P.N. (1998), The Internationalization of the Firm, 2nd edition
  • Czinkota, Ronkainen, Moffett, Marinova, Marinov (2009), International Business, Hoboken
  • Dunning, J.H. (1993), The Globalization of Business: The Challenge of the 1990s, London
  • Ghoshal, S. (1987), Global Strategy: An Organizing Framework, Strategic Management Journal, p. 425-440
  • Praveen Parboteeah, K.,Cullen, J.B. (2011) , Strategic International Management, International 5th Edition
  • Rugman, A.M./Collinson, S. (2012): International Business, 6th Edition, Essex 2012
Course L2350: Leadership
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Dr. Thomas Kosin
Language DE
Cycle WiSe
Content
Literature
Course L1231: Management and Leadership
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 Minuten
Lecturer Prof. Christian Ringle
Language DE
Cycle SoSe
Content
  • definitions and foundations of strategic management
  • strategic planning
  • strategic analysis and forecast
  • development of strategic options
  • strategy evaluaton, implementation and strategic control
Literature

- Bea, F.X.; Haas, J.: Strategisches Management, 5. Auflage, Stuttgart 2009.
- Dess, G. G.; Lumpkin, G. T.; Eisner, A. B.: Strategic management: Creating competitive advantages, Boston 2010
- Hahn, D.; Taylor, B.: Strategische Unternehmensplanung: Strategische Unternehmensführung, 9. Auflage, Heidelberg 2006.
- Hinterhuber, H.H.: Strategische Unternehmensführung Bd. 1: Strategisches Denken, 7. Aufl., Berlin u. a. 2004
- Hinterhuber, H.H.: Strategische Unternehmensführung Bd. 2: Strategisches Handeln, 7. Aufl., Berlin u. a. 2004
- Hungenberg, H.: Strategisches Management in Unternehmen, 6. Auflage, Wiesbaden 2011
- Johnson, G.; Scholes, K.; Whittington, R.: Strategisches Management. Eine Einführung, 9. Auflage, München 2011
- Macharzina, K.: Unternehmensführung: Das internationale Managementwissen, 7. Auflage, Wiesbaden 2010.
- Porter, M.E.: Competitive strategy, New York 1980 (deutsche Ausgabe: Wettbewerbsstrategie, 10. Aufl., Frankfurt am Main 1999)
- Welge, M. K.; Al-Laham, A.: Strategisches Management, 5. Auflage, Wiesbaden 2008.

Course L1857: Entrepreneurial Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 20 Minuten inklusive 15 Seiten Ausarbeitung
Lecturer Prof. Christoph Ihl
Language EN
Cycle WiSe
Content

Important note: This course is part of an 6 ECTS module consisting of the three courses "Startup Engineering", "Startup Engineering Project" and "Entrepreneurship Management", which have to be taken together in one semester.

Startups are temporary, team-based organizations, which can form both within and outside of established companies, to pursue one central objective: taking a new venture idea to market by designing a business model that can be scaled to a full-grown company. In this course, students will form startup teams around self-selected ideas and run through the process just like real startups would do in the first three months of intensive work. Startup Engineering takes an incremental and iterative approach, in that it favors variety and alternatives over one detailed, linear five-year business plan to reach steady state operations. From a problem solving and systems thinking perspective, student teams create different possible versions of a new venture and alternative hypotheses about value creation for customers and value capture vis-à-vis competitors. To test critical hypotheses early on, student teams engage in an evidence-based, experimental trial-and-error learning process that measures real progress.
Upon completion of this course, students will be able to:
· Apply a modern innovation toolkit relevant in both the corporate & startup world
· Analyze given business opportunities in terms of its constituent elements
· Design new business models by gathering and combining relevant ideas, facts and information 
· Evaluate business opportunities and derive judgment about next steps & decisions
Course language is English, but participants can decide to give their graded presentations in German. Students are invited to apply to this course module already with a startup idea and/ or team, but this is not a requirement! We will form teams and ideas in the beginning of the course. Class meetings have alternate intervals of lecture inputs, teamwork, mentoring, and peer feedback. Attendance is mandatory for at least 80% of class time due to large proportion of teamwork sessions.
Student teams give three presentations and submit them with backup analyses. Grading scheme:
· Startup discovery presentation after 5 weeks: 30%
· Startup validation presentation after 10 weeks: 30%
· Final startup pitches after 13 weeks: 40%



Literature

• Blank, S. & Dorf, B. (2012). The startup owner's manual.
• Gans, J. & Stern, S. (2016). Entrepreneurial Strategy.
• Osterwalder, A. & Yves, P. (2010). Business model generation.
• Maurya, A. (2012). Running lean: Iterate from plan A to a plan that works.
• Maurya, A. (2016). Scaling lean: Mastering the Key Metrics for Startup Growth.
• Wilcox, J. (2016). FOCUS Framework: How to Find Product-Market Fit.

Course L0863: Marketing
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Christian Lüthje
Language EN
Cycle WiSe
Content

Contents

Basics of Marketing

The philosophy and fundamental aims of marketing. Contrasting different marketing fields (e.g. business-to-consumer versus business-to-business marketing). The process of marketing planning, implementation and controlling

Strategic Marketing Planning

How to find profit opportunities? How to develop cooperation, internationalization, timing, differentiation and cost leadership  strategies?

Market-oriented Design of products and services

How can companies get valuable customer input on product design and development? What is a service? How can companies design innovative services supporting the products?

Pricing

What are the underlying determinants of pricing decision? Which pricing strategies should companies choose over the life cycle of products? What are special forms of pricing on business-to-business markets (e.g. competitive bidding, auctions)?

Marketing Communication

What is the role of communication and advertising in business-to-business markets? Why advertise? How can companies manage communication over advertisement, exhibitions and public relations?

Sales and Distribution

How to build customer relationship? What are the major requirements of industrial selling? What is a distribution channel? How to design and manage a channel strategy on business-to-business markets?


Knowledge

Students will gain an introduction and good overview of

  • Specific challenges in the marketing of innovative goods and services
  • Key strategic areas in strategic marketing planning (cooperation, internationalization, timing)
  • Tools for information gathering about future customer needs and requirements
  • Fundamental pricing theories and pricing methods
  • Main communication instruments
  • Marketing channels and main organizational issues in sales management
  • Basic approaches for managing customer relationship

Skills

Based on the acquired knowledge students will be able to:

  • Design market timing decisions
  • Make decisions for marketing-related cooperation and internationalization activities
  • Manage the challenges of market-oriented development of new products and services
  • Translate customer needs into concepts, prototypes and marketable offers
  • Determine the perceived quality of an existing product or service using advanced elicitation and measurement techniques that fit the given situation
  • Analyze the pricing alternatives for products and services
  • Make strategic sales decisions for products and services (i.e. selection of sales channels)
  • Analyze the value of customers and apply customer relationship management tools

Social Competence

The students will be able to

  • have fruitful discussions and exchange arguments
  • present results in a clear and concise way
  • carry out respectful team work

Self-reliance

The students will be able to

  • Acquire knowledge independently in the specific context and to map this knowledge on other new complex problem fields.
  • Consider proposed business actions in the field of marketing and reflect on them.



Literature

Homburg, C., Kuester, S., Krohmer, H. (2009). Marketing Management, McGraw-Hill Education, Berkshire, extracts p. 31-32, p. 38-53, 406-414, 427-431

Bingham, F. G., Gomes, R., Knowles, P. A. (2005). Business Marketing, McGraw-Hill Higher Education, 3rd edition, 2004,  p. 106-110

Besanke, D., Dranove, D., Shanley, M., Schaefer, S. (2007), Economics of strategy, Wiley, 3rd edition, 2007, p. 149-155

Hutt, M. D., Speh, T.W. (2010), Business Marketing Management, 10th edition, South Western, Lengage Learning, p. 112-116


Course L2440: Mergers & Acquistions (M&A)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Philipp Haberstock
Language DE
Cycle SoSe
Content
Literature
Course L0709: Project Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Carlos Jahn
Language EN
Cycle WiSe
Content

The lecture “project management” aims at characterizing typical phases of projects. Important contents are: possible tasks, organization, techniques and tools for initiation, definition, planning, management and finalization of projects. This will also be deepened by exercises within the framework of the event.

The following topics will be covered in the lecture:

  • SMART, Work Breakdown Structure, Operationalization, Goals relation matrix
  • Metra-Potential Method (MPM), Critical-Path Method (CPM), Program evaluation and review technique (PERT)
  • Milestone Analysis, Earned Value Analyis (EVA)
  • Progress reporting, Tracing of project goals, deadlines and costs, Project Management Control Loop, Maturity Level Assurance (MLA)
  • Risk Management, Failure Mode and Effects Analysis (FMEA), Risk Matrix

Literature

Project Management Institute (2017): A Guide to the Project Management Body of Knowledge (PMBOK® Guide) 6. Aufl. Newtown Square, PA, USA: Project Management Institute.

DeMarco, Tom (1997). The Deadline: A Novel About Project Management.

DIN Deutsches Institut für Normung e.V. (2009). Projektmanagement - Projektmanagementsysteme - Teil 5: Begriffe. (DIN 69901-5)

Frigenti, Enzo and Comninos, Dennis (2002). The Practice of Project Management.

Haberfellner, Reinhard (2015). Systems Engineering: Grundlagen und Anwendung

Harrison, Frederick and Lock, Dennis (2004). Advanced Project Management: A Structured Approach.

Heyworth, Frank (2002). A Guide to Project Management.

ISO - International Organization for Standardization (2012). Guidance on Project Management. (21500:2012(E))

Kerzner, Harold (2013). Project Management: A Systems Approach to Planning, Scheduling, and Controlling.

Lock, Dennis (2018). Project Management.

Martinelli, Russ J. and Miloševic, Dragan (2016). Project Management Toolbox: Tools and Techniques for the Practicing Project Manager.

Murch, Richard (2011). Project Management: Best Practices for IT Professionals.

Patzak, Gerold and Rattay, Günter (2009). Projektmanagement: Leitfaden zum Management von Projekten, Projektportfolios, Programmen und projektorientierten Unternehmen.

Course L1385: Project Management in Industrial Practice
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Dipl.-Ing. Wilhelm Radomsky
Language DE
Cycle WiSe
Content
  • Project management in a company
  • Project life cycle / Project environment
  • Project structuring / Project planning
  • Deployment of methods / Team development
  • Contract / Risk / Change management
  • Multi-project management / Quality management
  • Project controlling / Reporting
  • Project organization / Project conclusion


Literature

• Brown (1998): Erfolgreiches Projektmanagement in 7 Tagen

• Burghardt (2002): Einführung in Projektmanagement

• Cleland / King (1997): Project Management Handbook

• Hemmrich, Harrant (2002): Projektmanagement, In 7 Schritten zum Erfolg

• Kerzner (2003): Projektmanagement

• Litke (2004): Projektmanagement

• Madauss (2005): Handbuch Projektmanagement

• Patzak / Rattay (2004): Projektmanagement

• PMI (2004): A Guide to the Project Management Body of Knowledge

• RKW / GPM: Projektmanagement Fachmann

• Schelle / Ottmann / Pfeiffer (2005): ProjektManager

Course L1897: Project Management and Agile Methods
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Ausarbeitung eines Projektplans in Kleingruppen (ca. 5-10 Seiten)
Lecturer Christian Bussler
Language DE
Cycle SoSe
Content

The Seminar teaches the basics of project management, which constitutes the foundations for technical as well as for business projects. It also includes a sideline about process management. The participants will work on the following questions:

  • What is a project and what challenges does it imply?
  • What methods have been developed to meet those challenges?
  • How have this methods evolved over time? What is “state of the art” today?
  • What basic skills should project members have?
  • What is the difference between project and process? How can the latter be analyzed?

The approaches are not just taught theoretically, but put to use in group work. Through this approach, participants are enabled to work successfully on actual projects - and manage projects later on. As project work is increasingly important in work life, project management is a key skill for job applicants.

Main topics of the seminar include:

  • The “magic triangle” of project objectives
  • Typical project phases
  • Key instruments and methods (project structure plan, RACI, Gantt chart)
  • Project organization and steering
  • Team communication and collaboration
  • The agile approach of Scrum
  • Process levels and cascading
  • Process improvement

With the knowledge and experience from the seminar, participants should be able to acquire a basic certificate in project management with relatively little additional effort. The certification is available through institutions like GPM.

Participants already start working on their homework paper in the group work. It comprises 5 to 10 pages and a structure plan for the chosen project, which can be done in Excel for example. Ideally, the members of the work groups write their homework paper together. The expected scale of the paper would increase in this case, yet not proportionally with the number of group members (4 participants would be expected to hand in a paper of 15-20 pages).

Literature

Hans-D. Litke, Ilonka Kunow; Projektmanagement. 3. Auflage 2015

Georg Patzak, Günter Rattay; Projektmanagement: Projekte, Projektpotfolios, Programme und projektorientierte Unternehmen. 6. Auflage 2014

GPM Deutsche Gesellschaft für Projektmanagement; Kompetenzbasiertes Projektmanagement (PM3): Handbuch für die Projektarbeit, Qualifizierung und Zertifizierung auf Basis der IPMA Competence Baseline Version 3.0. 6. Auflage, 2014

Tom DeMarco; Der Termin: Ein Roman über Projektmanagement. 2007

Jeff Sutherland, Ken Schwaber; Der Scrum Guide. Der gültige Leitfaden für Scrum: Die Spielregeln. Ständig aktualisiert, kostenloser Download auf http://www.scrumguides.org/

Jurgen Appello; Management 3.0: Leading Agile Developers, Developing Agile Leaders. 2010

Course L2349: Accounting and Financial Statements
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Matthias Meyer
Language DE
Cycle WiSe/SoSe
Content
Literature
Course L1293: Risk Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 Minuten
Lecturer Dr. Meike Schröder
Language DE
Cycle WiSe
Content

Risks are inherent in every aspect of business, and the ability of managing risks is one important aspect that differentiates successful business leaders from others. There exist various categories of risk, such as credit, country, market, liquidity, operational, supply chain and reputational. Companies are vulnerable to risks. What makes such risks even more complex and challenging to manage is that the risks are often not within the direct control of the business executive. They can exist outside of the company boundary, and yet the impact to the company can be huge. The awareness and knowledge of how to manage risks in companies, will become increasingly important.

Some of the main topics covered in this lecture include:

  • Targets and legal aspects of risk management
  • Risks and their impact
  • Risk types (classification)
  • Risk management and human resource
  • Steps of the risk management process and their instruments
  • Methods of risk assessment
  • Implementation of risk management
  • Management of specific risks

This lecture is presented in German language only.


Literature

Brühwiler, B., Romeike, F. (2010), Praxisleitfaden Risikomanagement. ISO 31000 und ONR 49000 sicher anwenden, Berlin: Erich Schmidt.

Cottin, C., Döhler, S. (2013), Risikoanalyse. Modellierung, Beurteilung und Management von Risiken mit Praxisbeispielen, 2. überarbeitete und erweiterte Aufl., Wiesbaden: Springer.

Eller, R., Heinrich, M., Perrot, R., Reif, M. (2010), Kompaktwissen Risikomanagement. Nachschlagen, verstehen und erfolgreich umsetzen, Wiesbaden: Gabler.

Fiege, S. (2006), Risikomanagement- und Überwachungssystem nach KonTraG. Prozess, Instrumente, Träger, Wiesbaden: Deutscher Universitäts-Verlag.

Frame, D. (2003), Managing Risk in organizations. A guide for managers, San Francisco: Wiley.

Götze, U., Henselmann, K., Mikus, B. (2001), Risikomanagement, Heidelberg: Physica-Verlag.

Müller, K. (2010), Handbuch Unternehmenssicherheit. Umfassendes Sicherheits-, Kontinuitäts- und Risikomanagement mit System, 2., neu bearbeitete Auflage, Wiesbaden: Springer.

Rosenkranz, F., Missler-Behr, M. (2005), Unternehmensrisiken erkennen und managen. Einführung in die quantitative Planung, Berlin u.a.: Springer.

Wengert, H., Schittenhelm F. A. (2013), Coporate Risk Mangement, Berlin: Springer.


Course L1389: Key Aspects of Patent Law
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Christian Rohnke
Language DE
Cycle SoSe
Content

Mayor Issues in Patent Law:

The seminar covers five mayor issues in german patent law, namely patentatbility, prosecution, ownership and employee inventions, infringement and licensing and other commercila uses.

The lecturer will give an introduction to each issue which will be followed by in-depth inquiry by the participants through group work, presentation of results and moderated discussion.


Literature wird noch bekannt gegeben
Course L1491: Startup Engineering
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Ausarbeitung einer Geschäftsidee auf 20-30 Seiten (Inhaltsfolien zur detailliierten Dokumentation des Herangehensweise). Bearbeitungsdauer über den ganzen Kurs hinweg 13 Wochen, Zwischen- und Abschlusspräsentation jeweils 15 min plus 15 Diskussion.
Lecturer Prof. Christoph Ihl
Language EN
Cycle WiSe
Content

Important note: This course is part of an 6 ECTS module consisting of the three courses "Startup Engineering", "Startup Engineering Project" and "Entrepreneurship Management", which have to be taken together in one semester.

Startups are temporary, team-based organizations, which can form both within and outside of established companies, to pursue one central objective: taking a new venture idea to market by designing a business model that can be scaled to a full-grown company. In this course, students will form startup teams around self-selected ideas and run through the process just like real startups would do in the first three months of intensive work. Startup Engineering takes an incremental and iterative approach, in that it favors variety and alternatives over one detailed, linear five-year business plan to reach steady state operations. From a problem solving and systems thinking perspective, student teams create different possible versions of a new venture and alternative hypotheses about value creation for customers and value capture vis-à-vis competitors. To test critical hypotheses early on, student teams engage in an evidence-based, experimental trial-and-error learning process that measures real progress.
Upon completion of this course, students will be able to:
· Apply a modern innovation toolkit relevant in both the corporate & startup world
· Analyze given business opportunities in terms of its constituent elements
· Design new business models by gathering and combining relevant ideas, facts and information 
· Evaluate business opportunities and derive judgment about next steps & decisions
Course language is English, but participants can decide to give their graded presentations in German. Students are invited to apply to this course module already with a startup idea and/ or team, but this is not a requirement! We will form teams and ideas in the beginning of the course. Class meetings have alternate intervals of lecture inputs, teamwork, mentoring, and peer feedback. Attendance is mandatory for at least 80% of class time due to large proportion of teamwork sessions.
Student teams give three presentations and submit them with backup analyses. Grading scheme:
· Startup discovery presentation after 5 weeks: 30%
· Startup validation presentation after 10 weeks: 30%
· Final startup pitches after 13 weeks: 40%




Literature

• Blank, S. & Dorf, B. (2012). The startup owner's manual.
• Gans, J. & Stern, S. (2016). Entrepreneurial Strategy.
• Osterwalder, A. & Yves, P. (2010). Business model generation.
• Maurya, A. (2012). Running lean: Iterate from plan A to a plan that works.
• Maurya, A. (2016). Scaling lean: Mastering the Key Metrics for Startup Growth.
• Wilcox, J. (2016). FOCUS Framework: How to Find Product-Market Fit.

Course L1492: Startup Engineering Project
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Mündliche Prüfung
Examination duration and scale 20 min
Lecturer Prof. Christoph Ihl
Language EN
Cycle WiSe
Content

Important note: This course is part of an 6 ECTS module consisting of the three courses "Startup Engineering", "Startup Engineering Project" and "Entrepreneurship Management", which have to be taken together in one semester.

Startups are temporary, team-based organizations, which can form both within and outside of established companies, to pursue one central objective: taking a new venture idea to market by designing a business model that can be scaled to a full-grown company. In this course, students will form startup teams around self-selected ideas and run through the process just like real startups would do in the first three months of intensive work. Startup Engineering takes an incremental and iterative approach, in that it favors variety and alternatives over one detailed, linear five-year business plan to reach steady state operations. From a problem solving and systems thinking perspective, student teams create different possible versions of a new venture and alternative hypotheses about value creation for customers and value capture vis-à-vis competitors. To test critical hypotheses early on, student teams engage in an evidence-based, experimental trial-and-error learning process that measures real progress.
Upon completion of this course, students will be able to:
· Apply a modern innovation toolkit relevant in both the corporate & startup world
· Analyze given business opportunities in terms of its constituent elements
· Design new business models by gathering and combining relevant ideas, facts and information 
· Evaluate business opportunities and derive judgment about next steps & decisions
Course language is English, but participants can decide to give their graded presentations in German. Students are invited to apply to this course module already with a startup idea and/ or team, but this is not a requirement! We will form teams and ideas in the beginning of the course. Class meetings have alternate intervals of lecture inputs, teamwork, mentoring, and peer feedback. Attendance is mandatory for at least 80% of class time due to large proportion of teamwork sessions.
Student teams give three presentations and submit them with backup analyses. Grading scheme:
· Startup discovery presentation after 5 weeks: 30%
· Startup validation presentation after 10 weeks: 30%
· Final startup pitches after 13 weeks: 40%



Literature

• Blank, S. & Dorf, B. (2012). The startup owner's manual.
• Gans, J. & Stern, S. (2016). Entrepreneurial Strategy.
• Osterwalder, A. & Yves, P. (2010). Business model generation.
• Maurya, A. (2012). Running lean: Iterate from plan A to a plan that works.
• Maurya, A. (2016). Scaling lean: Mastering the Key Metrics for Startup Growth.
• Wilcox, J. (2016). FOCUS Framework: How to Find Product-Market Fit.



Course L2409: Strategic Shared-Value Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 30 Minuten
Lecturer Dr. Jill Küberling-Jost
Language EN
Cycle SoSe
Content
Literature
Course L2295: Strategische Planung mit Planspielen
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Dr. Jan Spitzner
Language DE
Cycle SoSe
Content
Literature
Course L2410: Technology Entrepreneurship
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 30 Minuten
Lecturer Prof. Christoph Ihl
Language EN
Cycle SoSe
Content
Literature
Course L1351: Management Consulting
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Gerald Schwetje
Language DE
Cycle SoSe
Content

The Management Consulting lecture teaches students knowledge that is complementary to their technical and business administration studies. They learn the basics of consulting and agent-principal theory and are given an overview of the consulting market. They are also shown how management consulting works and which methodical building blocks (processes) are needed to deal with a client’s concerns and to undertake a consulting process. By means of practical examples students gain an insight into the extensive range of management consultancy services and of functional consulting.

Literature

Bamberger, Ingolf (Hrsg.): Strategische Unternehmensberatung: Konzeptionen - Prozesse - Methoden, Gabler Verlag, Wiesbaden 2008

Bansbach, Schübel, Brötzel & Partner (Hrsg.): Consulting: Analyse - Konzepte - Gestaltung, Stollfuß Verlag, Bonn 2008

Fink, Dietmar (Hrsg.): Strategische Unternehmensberatung, Vahlens Handbücher, München, Verlag Vahlen, 2009

Heuermann, R./Herrmann, F.: Unternehmensberatung: Anatomie und Perspektiven einer Dienstleistungselite, Fakten und Meinungen für Kunden, Berater und Beobachter der Branche, Verlag Vahlen, München 2003

Kubr, Milan: Management consulting: A guide to the profession, 3. Auflage, Geneva, International Labour Office, 1992

Küting, Karlheinz (Hrsg.): Saarbrücker Handbuch der Betriebswirtschaftlichen Beratung; 4. Aufl., NWB Verlag, Herne 2008

Nagel, Kurt: 200 Strategien, Prinzipien und Systeme für den persönlichen und unternehmerischen Erfolg, 4. Aufl., Landsberg/Lech, mi-Verlag, 1991

Niedereichholz, Christel: Unternehmensberatung: Beratungsmarketing und Auftragsakquisition, Band 1, 2. Aufl., Oldenburg Verlag, 1996

Niedereichholz; Christel: Unternehmensberatung: Auftragsdurchführung und Qualitätssicherung, Band 2, Oldenburg Verlag, 1997

Quiring, Andreas: Rechtshandbuch für Unternehmensberater: Eine praxisorientierte Darstellung der typischen Risiken und der zweckmäßigen Strategien zum Risikomanagement mit Checklisten und Musterverträgen, Vahlen Verlag, München 2005

Schwetje, Gerald: Ihr Weg zur effizienten Unternehmensberatung: Beratungserfolg durch eine qualifizierte Beratungsmethode, NWB Verlag, Herne 2013

Schwetje, Gerald: Wer seine Nachfolge nicht regelt, vermindert seinen Unternehmenswert, in: NWB, Betriebswirtschaftliche Beratung, 03/2011 und: Sparkassen Firmenberatung aktuell, 05/2011

Schwetje, Gerald: Strategie-Assessment mit Hilfe von Arbeitshilfen der NWB-Datenbank - Pragmatischer Beratungsansatz speziell für KMU: NWB, Betriebswirtschaftliche Beratung, 10/2011

Schwetje, Gerald: Strategie-Werkzeugkasten für kleine Unternehmen, Fachbeiträge, Excel-Berechnungsprogramme, Checklisten/Muster und Mandanten-Merkblatt: NWB, Downloadprodukte, 11/2011

Schwetje, Gerald: Die Unternehmensberatung als komplementäres Leistungsangebot der Steuerberatung - Zusätzliches Honorar bei bestehenden Klienten: NWB, Betriebswirtschaftliche Beratung, 02/2012

Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Beziehungsmanagement, in: NWB Betriebswirtschaftliche Beratung, 08/2012

Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Vertrauen, in: NWB Betriebswirtschaftliche Beratung, 09/2012

Wohlgemuth, Andre C.: Unternehmensberatung (Management Consulting): Dokumentation zur Vorlesung „Unternehmensberatung“, vdf Hochschulverlag, Zürich 2010

Course L0536: Management of Trust and Reputation
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 20-30 Minuten und Thesenpapier
Lecturer Dr. Michael Florian
Language DE
Cycle SoSe
Content

The seminar offers a comparison and analysis of relevant theoretical concepts and practical issues in the corporate management of trust and reputation. Selected case studies will be used to discuss opportunities, problems, and limitations using trust and reputation to coordinate and control economic behavior.

Literature

Allgäuer, Jörg E. (2009): Vertrauensmanagement: Kontrolle ist gut, Vertrauen ist besser. Ein Plädoyer für Vertrauensmanagement als zentrale Aufgabe integrierter Unternehmenskommunikation von Dienstleistungsunternehmen. München: brain script Behr.
Beckert, Jens; Metzner, André; Roehl, Heiko (1998): Vertrauenserosion als organisatorische Gefahr und wie ihr zu begegnen ist. In: Organisationsentwicklung 17 (4), S. 57-66.
Eberl, Peter (2003): Vertrauen und Management. Studien zu einer theoretischen Fundierung des Vertrauenskonstruktes in der Managementlehre. Stuttgart: Schäffer-Poeschel.
Eberl, Peter (2012): Vertrauen und Kontrolle in Organisationen. Das problematische Verhältnis der Betriebswirtschaftslehre zum Vertrauen. In: Möller, Heidi (Hg.): Vertrauen in Organisationen. Riskante Vorleistung oder hoffnungsvolle Erwartung? Wiesbaden: Springer VS, S. 93-110.
Eisenegger, Mark (2005): Reputation in der Mediengesellschaft. Konstitution   Issues Monitoring   Issues Management. Wiesbaden: VS Verlag für Sozialwissenschaften.
Florian, Michael (2013): Paradoxien des Vertrauensmanagements. Risiken und Chancen einer widerspenstigen immateriellen Ressource. In: Personalführung 46, Heft 2/2013, S. 40-47.
Grüninger, Stephan (2001): Vertrauensmanagement - Kooperation, Moral und Governance. Marburg: Metropolis.
Grüninger, Stephan; John, Dieter (2004): Corporate Governance und Vertrauensmanagement. In: Josef Wieland (Hg.): Handbuch Wertemanagement. Erfolgsstrategien einer modernen Corporate Governance. Hamburg: Murmann, S. 149-177.
Meifert, Matthias (2008): Ist Vertrauenskultur machbar? Vorbedingungen und Überforderungen betrieblicher Personalpolitik. In: Rainer Benthin und Ulrich Brinkmann (Hg.): Unternehmenskultur und Mitbestimmung. Betriebliche Integration zwischen Konsens und Konflikt. Frankfurt/Main, New York: Campus, S. 309-327.
Neujahr, Elke; Merten, Klaus (2012): Reputationsmanagement. Zur Kommunikation von Wertschätzung. In: PR-Magazin 06/2012, S. 60-67.
Osterloh, Margit; Weibel, Antoinette (2006): Investition Vertrauen. Prozesse der Vertrauensentwicklung in Organisationen. Wiesbaden: Gabler.
Osterloh, Margit; Weibel, Antoinette (2006): Vertrauen und Kontrolle. In: Robert J. Zaugg und Norbert Thom (Hg.): Handbuch Kompetenzmanagement. Durch Kompetenz nachhaltig Werte schaffen. Festschrift für Prof. Dr. Dr. h.c. mult. Norbert Thom zum 60. Geburtstag. Bern [u.a.]: Haupt, S. 53-63.
Osterloh, Margit; Weibel, Antoinette (2007): Vertrauensmanagement in Unternehmen: Grundlagen und Fallbeispiele. In: Manfred Piwinger und Ansgar Zerfaß (Hg.): Handbuch Unternehmenskommunikation. Wiesbaden: Gabler, S. 189-203.
Schmidt, Matthias; Beschorner, Thomas (2005): Werte- und Reputationsmanagement. München und Mering: Hampp.
Seifert, Matthias (2003): Vertrauensmanagement in Unternehmen. Eine empirische Studie über Vertrauen zwischen Angestellten und ihren Führungskräften. 2. Aufl. München und Mering: Hampp.
Sprenger, Reinhard K. (2002): Vertrauen führt. Worauf es im Unternehmen wirklich ankommt, Frankfurt/Main, New York.
Thiessen, Ansgar (2011): Organisationskommunikation in Krisen. Reputationsmanagement durch strategische, integrierte und situative Krisenkommunikation. Wiesbaden: VS Verlag für Sozialwissenschaften.
Walgenbach, Peter (2000): Das Konzept der Vertrauensorganisation. Eine theoriegeleitete Betrachtung. In: Die Betriebswirtschaft 60 (6), S. 707-720.
Walgenbach, Peter (2006): Wieso ist Vertrauen in ökonomischen Transaktionsbeziehungen so wichtig, und wie lässt es sich generieren? In: Hans H. Bauer, Marcus M. Neumann und Anja Schüle (Hg.): Konsumentenvertrauen. Konzepte und Anwendungen für ein nachhaltiges Kundenbindungsmanagement. München: Vahlen, S. 17-26.
Weibel, Antoinette (2004): Kooperation in strategischen Wissensnetzwerken. Vertrauen und Kontrolle zur Lösung des sozialen Dilemmas. Wiesbaden: Dt. Univ.-Verl.
Weinreich. Uwe (2003): Vertrauensmanagement. In: Deutscher Manager-Verband e.V. (Hg.): Die Zukunft des Managements. Perspektiven für die Unternehmensführung. Zürich: Vdf, Hochsch.-Verl. an der ETH, S. 193-201.

Course L1381: Public and Constitutional Law
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 2 Stunden
Lecturer Klaus-Ulrich Tempke
Language DE
Cycle WiSe/SoSe
Content

Different areas of public law; proceedings, jurisdiction of administrative courts with stages of appeal,
members of the courts;
Court levels, organization and legal capacity;
lntroduction to and structure of fundamental rights;
Human dignity: the guiding principle of the constitution;
General right of privacy and freedom of action.

Literature

Module M0524: Non-technical Courses for Master

Module Responsible Dagmar Richter
Admission Requirements None
Recommended Previous Knowledge None
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The Nontechnical Academic Programms (NTA)

imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses.

The Learning Architecture

consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses.

The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”.

The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies.

Teaching and Learning Arrangements

provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses.

Fields of Teaching

are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.

The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations.

The Competence Level

of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc.

This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life.

Specialized Competence (Knowledge)

Students can

  • explain specialized areas in context of the relevant non-technical disciplines,
  • outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area,
  • different specialist disciplines relate to their own discipline and differentiate it as well as make connections, 
  • sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity,
  • Can communicate in a foreign language in a manner appropriate to the subject.
Skills

Professional Competence (Skills)

In selected sub-areas students can

  • apply basic and specific methods of the said scientific disciplines,
  • aquestion a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline,
  • to handle simple and advanced questions in aforementioned scientific disciplines in a sucsessful manner,
  • justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to the subject.



Personal Competence
Social Competence

Personal Competences (Social Skills)

Students will be able

  • to learn to collaborate in different manner,
  • to present and analyze problems in the abovementioned fields in a partner or group situation in a manner appropriate to the addressees,
  • to express themselves competently, in a culturally appropriate and gender-sensitive manner in the language of the country (as far as this study-focus would be chosen), 
  • to explain nontechnical items to auditorium with technical background knowledge.





Autonomy

Personal Competences (Self-reliance)

Students are able in selected areas

  • to reflect on their own profession and professionalism in the context of real-life fields of application
  • to organize themselves and their own learning processes      
  • to reflect and decide questions in front of a broad education background
  • to communicate a nontechnical item in a competent way in writen form or verbaly
  • to organize themselves as an entrepreneurial subject country (as far as this study-focus would be chosen)     



Workload in Hours Depends on choice of courses
Credit points 6
Course L1775: “What’s up, Doc?” Science and Stereotypes in Literature and Film
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Jennifer Henke
Language EN
Cycle WiSe/SoSe
Content

Popular novels and films significantly contribute to the public understanding of science and its representatives. How to define “good” or “bad” science is negotiated in a variety of artistic works. Stereotypes such as the “mad scientist”, which originated in early nineteenth century England, continue to persist. Mary Shelley created the prototype of the obsessive and reckless scientist in Frankenstein - The Modern Prometheus (1818) who conducts his forbidden experiments in a secret lab and crosses ethical boundaries. This masculine stereotype has been followed by further ones such as the noble, adventurous or clumsy scientist, whereas scholars have only recently begun to consider the representation of female science.

First, this seminar is devoted to selected formations of knowledge in relation to literature from classical antiquity to the present. Second, the focus shall rest on the production of persistent stereotypes in various media formats such as novels or films while paying particular attention to the aspect of gender. The overall goal of the seminar is an understanding of science as a cultural practice.  

Requirements for participation: Shelley, Mary: Frankenstein. New York: Norton, 2012. Please pay attention to the exact publication dates.

Literature Teilnahmevoraussetzungen: Shelley, Mary: Frankenstein. New York: Norton, 2012. Bitte ausschließlich diese Edition anschaffen.


Course L2064: 120 years of film history
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 90 min
Lecturer Prof. Margarete Jarchow
Language DE
Cycle SoSe
Content The lecture deals with the relationship between the develpoment of film technology, film aesthetics, and society. Based on the nineteenth-century film's precursors such as the laterna magica, photography and kinetoscope, crucial stages of more than 120 years of film history are studied chronologically in terms of: How does the development of new media techniques reflect certain social changes and needs? What new forms of aesthetic expression are possible through such technical innovations as the introduction of sound film, color film or handheld camera? And to what extent do these new forms of aesthetic expression in turn reflect certain social sensitivities, ultimately the respective zeitgeist? Main topics of the lecture are: the technical euphoria of the 19th century, the early film, the German Expressionist film, the classic Hollywood cinema, the European postwar cinema, exploitation and underground cinema, New Hollywood, the blockbuster cinema, independent cinema up to current phenomena like the „cinema of dissolution“. On the one hand, the participants learn in-depth, detailed knowledge of the history, meaning and analysis of the medium film and thereby acquire media literacy. On the other hand, the participants should gain a deeper understanding of the real interdependencies of technologies in culture and society and their historical transformation processes through an interdisciplinary perspective on film (history of technology, media studies and social science).
Literature
Course L1774: Applied Arts: Form and Function
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Prof. Margarete Jarchow, Dr. Christian Lechelt
Language DE
Cycle WiSe/SoSe
Content

From Arts & Crafts to modern Design - applied arts focus on the design of all kinds of products. Therefore applied arts allow to come to more thorough conclusions about social, historical, cultural issues.

In the course the impact of social developments on these particular genres are discussed.

Literature

Wird noch angegeben

Will be announced in lecture
Course L2338: Bauhaus architecture - a search for traces
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Jörg Schilling
Language DE
Cycle WiSe/SoSe
Content

The „100 years of bauhaus“ centenery also involved examining the references, differences and similarities to Hamburg architecture from 1919-1933.
The seminar intends to find these traces in social (i.e. Jarrestadt) and private (i.e. Landhaus Michaelsen / Puppenmuseum) housing as well as in numerous other building projects. During the excursions to buildings by Hamburg architects like Fritz Schumacher, Gustav Oelsner, Karl Schneider and others we will discuss aspects related to architectural modernism.

Literature wird im Seminar bekanntgegeben
Course L1882: Facilitating groups in problem-oriented courses
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Schriftliche Ausarbeitung (in mehreren Teilen) sowie eine Präsentation, Teilnahme an Gruppendiskussionen
Lecturer Siska Simon
Language DE
Cycle WiSe/SoSe
Content

Content:
- Changing the role of the teacher in problem-oriented courses
- Structure and benefits of problem-oriented courses
- Attitude and beliefs concerning teaching and learning
- Question and discussion techniques
- Group dynamic processes
- Situation-related interventions
- dealing with heterogeneous groups
- Moderation and presentation
- Interference levels and conflict management
- Feedback processes and methods

Methods:
- impulse lectures and group work

- Planning, execution and reflection of an exemplary course unit
- Micro teaching and feedback
- peer observation and feedback


Literature

Auszüge aus Fachliteratur zu oben genannten Themen werden in der Veranstaltung ausgegeben

Course L1990: Clash of Cultures. Film and TV series as images of the own and the other
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Jacobus Bracker
Language DE
Cycle WiSe/SoSe
Content

Images are negotiating concepts of the own, other and alien. Especially tv series like “Game of Thrones”, “Vikings”, or “The Walking Dead” and films like “Alien” or “Lord of the Rings” show clashes of cultures. Irrespective of their genre - fantasy, science fiction, or history - the moving images use always similar patterns to show and tell the own and the other. During the seminar we will deal with such concepts and concepts of culture and the specifics of film and series to watch and analyse selected examples from these perspectives.


Literature

Literaturhinweise, Texte etc. werden zu gegebener Zeit online zur Verfügung gestellt.

Course L1176: The end is near - Survival in the post-apocalypse
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Marlis Bussacker
Language DE
Cycle WiSe/SoSe
Content

According to the FAZ in December 2015, the end of the world is booming. At all times, people have dealt with the imminent future scenario of ultimate horror - the collapse of their own world. Where does the idea of a final disaster come from? What's so fascinating about our own demise? During the seminar we will take a look at European cultural history, which is closely linked to mythological and religious prophecies about the end of the world.

However, this question, or rather the question of survival in a post-apocalyptic world, has fortunately remained speculative to this day despite regular predictions. Since the end of the world has not yet happened in reality, we are therefore dependent on the imagination of writers, screenwriters and directors who have anticipated the event in an infinite number of texts, films and series.

Based on selected films and texts, the seminar will focus on the questions of which apocalyptic scenarios are developed, with which problems the survivors are confronted and how they deal with the situation and with each other. The focus is on the reactions of people in a state of extreme threat. Which survival strategies are presented to us, how do we assess the behaviour of the actors, can we create alternatives?

Furthermore, the effect of the genre on the recipient will be discussed. Do we dismiss films like Armaggedon and The Day After Tomorrow as entertaining thrills? Do we just enjoy the special effects? Do we feel threatened? Do we take them in the end as real instructions for action? Do they make us reflect? Or are even current social discourses reflected in the garment of the apocalypse?

Literature
Course L1441: German as a Foreign Language for International Master Programs
Typ Seminar
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Examination Form Klausur
Examination duration and scale
Lecturer Dagmar Richter
Language DE
Cycle WiSe/SoSe
Content

Master’s German course in cooperation with IBH e.V. - Master’s German courses at different levels

In the international studies program these are obligatory for non-native speakers of German and for students without a DSH certificate or equivalent TEST-DAF result. Grading after an aptitude test. All other students must sign up for a total of 4 ECTS from the catalog of non-technical supplementary courses.



Literature - Will be announced in lectures -
Course L1884: The Hamburger Speicherstadt - from achievements of engineering to world cultural heritage
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 20 minütiges Referat mit anschließender Diskussion
Lecturer Dr. Jörg Schilling
Language DE
Cycle WiSe/SoSe
Content

The seminar wants to show the problems and challenges for the engineers, who built the Hamburger Speicherstadt and their sustainable architectural solutions, which are still of vital importance and the basis for becoming a world cultural heritage.

Literature u.a.: Hamburg und seine Bauten unter Berücksichtigung seiner Nachbarstädte Altona und Wandsbek, hg. vom Architekten- und Ingenieur-Verein zu Hamburg, Hamburg 1890; Karin Maak: Die Speicherstadt im Hamburger Hafen, Hamburg 1895; Hermann Hipp: Freie und Hansestadt Hamburg, Köln 1989; Matthias von Popowski: Franz Andreas Meyer (1837-1901). Oberingenieur und Leiter des Ingenieurwesens von 1872-1901, in: Wie das Kunstwerk Hamburg entstand, hg. v. Dieter Schädel, Hamburg 2006, S. 64-79; Ralf Lange: HafenCity + Speicherstadt : das maritime Quartier in Hamburg, Hamburg 2010.
Course L1996: Digital culture(s): from subculture to media mainstream
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Oliver Schmidt
Language DE
Cycle WiSe/SoSe
Content

The course gives an introduction to the development of digitization in a media cultural perspective. In addition to technical aspects, we will focus on the cultural impact of digitization for current media users and the ermergence und development of media subcultures from the late 1970s to the 21st century. On the one hand, we will deal with questions such as: What is digitization? What is culture? What are digital (sub)cultures? In this context, the concept of ‚digital natives‘ and ‚digital immigrants‘, coined by Marc Prensky, will also be discussed. On the other hand, there will be a historical perspective on topics and developments such as the mediatization oft he children’s room in the early 1980s, the hacker scene, video game culture, the demo scene, digital culture in cinema, 8-bit culture, digital aesthetics , net art, post-digitality and ultimately the question of how digital subcultures have become part of the media mainstream at the beginning of the 21st century.

Literature
Course L2367: Digital art
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Referat ca. 20 min. plus anschließende Diskussion
Lecturer Dr. Imke Hofmeister
Language DE
Cycle WiSe/SoSe
Content

Digitalization is having a major impact on many areas of our lives and the use of digital technologies in art and design has increased rapidly. After all, art is not only subject to constant change, but also constantly adapts to technical conditions. After the photographic art of the mid-19th century and the video art of the 1960s, which already brought about major changes in artistic creation, digital art is becoming increasingly important in the field of media art. The first attempts to use the computer with corresponding graphic software as an artistic medium took place in the 80/90s of the 20th century. Since then, there has been a broad development in the field of digital art, which now encompasses the most diverse digital pictorial phenomena and art genres and is thus intertwined in its objects, theories and practices with digital media in a variety of ways. The seminar gives an overview of the history of digital art and its different genres. These include, for example, photopaintings, where digital manipulation, filtering processes and painting can process the image and transform it over many stages into a completely new form. Also 3-D images, vector graphics, mathematical art and computer art in general. At the same time, the digital development in art is to be illuminated, from the first beginnings on the computer with comparatively simple "digital aids", e.g. in the form of simple image processing programs, to the present sophisticated graphic tools.

In addition, the presentation, dissemination and conservation possibilities of digital art will also be discussed, which can be disseminated very well on the Internet primarily because it can be displayed on a computer screen. The great fascination with digital creative work and the almost inexhaustible possibilities offered by the medium of computers to artists, who will continue to ensure that digital art finds a permanent place alongside traditional media, will also be discussed. Finally, in contrast to the traditional production methods in the field of fine arts and design, there are always new manifestations of digital art, which ultimately give not only the "trained" artist but also the layman far-reaching possibilities for artistic expression. And all this in the spirit of the performance artist Joseph Beuys , who postulated, every human being is capable of creativity, indeed "every human being is an artist".

The seminar will also discuss the question of how digital art can be described as "the" contemporary art, i.e. contemporary art in the age of digital technology. Furthermore, it is of great interest to what extent the perception of art per se has already changed and will continue to change in a digitalized society.

Literature folgt
Course L1725: Introduction to the Science & Technoloy Studies (STS)
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Gruppenreferat (30 bis 45 Minuten, Eigenanteil je Person 10 bis 15 Minuten) inkl. schriftlicher Ausarbeitung, Ggf. alternativ eine längere, schriftliche Ausarbeitung.
Lecturer Dr. Simon Egbert
Language EN
Cycle WiSe/SoSe
Content

Since the end of the 1980’s or the beginning of the 1990’s, in the Sociology of Technology a line of research has emerged which initially called for a socialization of the sociology of technology (especially through the Social Construction of Technology Approach [SCOT]) and right away called for its re-materialisation (especially through Bruno Latour and the Actor-Network Theory). Technologies, thus their basic idea, are always intertwined with society and shaped by their socio-cultural context. In reverse, society is also inherently formed by the existing technologies and an adequate sociology of technology has to deal especially with the interaction of both. In the seminar at hand first of all an overview shall be given about the classical sociology of technology which routinely used argumentations inspired by technological determinism, which shall be followed by the presentation of the SCOT-approach. The later in turn was criticised by the Actor-Network Theory (which will be presented in a separate section as well) as being social deterministic which has led to a rather heated debate about the agency of technological artefacts, which shall be presented and discussed in a further part of the seminar. In the last section of the class it shall be determined what kind of relevance the sociological analysis of technological artefacts and their societal embedding can or could implicate for the own lifeworld of the students - especially of course with special focus on their engineer studies.


Literature

Bammé, Arno (2009): Science and Technology Studies: ein Überblick. Marburg: Metropolis.

Degele, Nina (2002): Einführung in die Techniksoziologie. München: Fink.

Hackett, Edward et al. (Hrsg.) (2008): The Handbook of Science and Technology Studies. 3rd Edition. Cambridge: MIT Press.

Häußling, Roger (2014): Techniksoziologie. Baden-Baden: Nomos.

MacKenzie, Donald/Judy, Wajcman (2003): The social shaping of technology. 2nd Edition. Maidenhead et al.: Open University Press.

Sismondo, Sergio (2010): An Introduction to Science and Technology Studies, 2nd Edition.

Chichester: Wiley-Blackwell.

Course L2336: Introduction to Marxian Theory of Economy
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 90 min
Lecturer Dr. Martin Schütz
Language DE
Cycle WiSe/SoSe
Content

Capitalism - what’s the definition in Marxian economical theorie? Which are the functions of gold, money, interest?
Focusing on the Marxian basis categories Ware - Gebrauchswert - Tauschwert - Wert - Arbeit - Austauschprozess - Geld - Zirkulation - Arbeitskraft, the subjects of the lecture are the first four chapters of ‘Das Kapital’ vol. 1, accompanied by discussion of neo-classical theory, monetarism etc.

Literature

Karl Marx, Das Kapital, Band 1, Berlin 1962ff (=Marx-Engels-Werke [MEW] Bd. 23), S. 1-390
Dieser Text steht text- und seitengenau im Internet zur Verfügung: http://www.mlwerke.de/me/me23/me23_000.htm oder http://www.zeno.org/Philosophie/M/Marx,+Karl/Das+Kapital
David Harvey, Marx‘ Kapital lesen, Hamburg 2017, Seiten 1-214
Begleitend: Harvey selbst hat seine ‚Kapital‘-Seminare (auf Englisch) als Stream veröffentlicht: http://davidharvey.org/reading-capital/
Ergänzende Literatur:

Altvater, Elmar (Hg.) (1999): Kapital.doc. Das Kapital (Bd. 1) von Marx in Schaubildern mit Kommentaren. Mit CD-ROM. Münster
Artus, Ingrid u.a. (Hg.) (2014): Marx für SozialwissenschaftlerInnen. Eine Einführung. Wiesbaden
Fülberth, Georg (2008): G Strich. Kleine Geschichte des Kapitalismus. 4., verb. und erw. Aufl. Köln
Krause, Alexandra (2014): Kritik der Politischen Ökonomie - Wachstum als Imperativ kapitalistischen Wirtschaftens. In: Artus (2014) S. 135-160.
Münch, Richard (2008): Soziologische Theorie. Grundlegung durch die Klassiker. Korr. Nachdr. 2008. Frankfurt/Main (Soziologische Theorie, 1).
Nachtwey, Oliver (2014): Arbeit, Lohnarbeit und Industriearbeit. In: Artus (2014) S. 109-134
Söllner, Fritz (2015): Die Geschichte des ökonomischen Denkens. 4. Aufl. Berlin

Course L1994: Facts, Facts, Facts - Understanding and Applying Techniques of Journalism - in German
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Prof. Margarete Jarchow, Matthias Kowalski
Language DE
Cycle WiSe/SoSe
Content Regardless of whether it is via classic channels such as newspapers and magazines or radio and TV as well as via internet, social media or via communication in specialist circles: Today we encounter journalism in almost all forms of public and private communication. But what makes a story really important in this flood of content? How do we recognize relevance? How do we expose fake news? In this block seminar the principles of journalistic techniques are imparted by means of practical examples and editorial exercises. The participants also develop tools to detect and deactivate manipulation and fake news. Regular attendance and attendance at all block dates is required.
Literature
Course L2370: Facts, Facts, Facts - Understanding and Applying Techniques of Journalism - in English
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Prof. Margarete Jarchow
Language EN
Cycle WiSe/SoSe
Content

Regardless of whether it is via classic channels such as newspapers and magazines or radio and TV as well as via internet, social media or via communication in specialist circles: Today we encounter journalism in almost all forms of public and private communication. But what makes a story really important in this flood of content? How do we recognize relevance? How do we expose fake news? In this block seminar the principles of journalistic techniques are imparted by means of practical examples and editorial exercises. The participants also develop tools to detect and deactivate manipulation and fake news. Regular attendance and attendance at all block dates is required.

Literature folgt
Course L0970: Foreign Language Course
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Dagmar Richter
Language
Cycle WiSe/SoSe
Content

In the Field of the Nontechnical Complementary Courses students are able to chose foreign language courses. Therefore the Hamburger Volkshochschule offers a special language programm on TUHH campus for TUHH Students. It includes courses in english, chinese, french, japanese, portuguese, russia, swedish, spanisch and german as a foreign language. All lectures impart common language knowledge, english courses although english for technical purposes.

Literature Kursspezifische Literatur / selected bibliography depending on special lecture programm.
Course L0983: Management and Communication
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 90-minütige interaktive Präsentation im Team inkl. Handout.
Lecturer Wibke Derboven
Language DE
Cycle SoSe
Content

The seminar will present basic elements of personality-promoting work organisation, motivation theories, different management concepts, communication theories and approaches to conflict and knowledge management. These subjects are applied to specific practical examples. Participants are given the opportunity to reflect on their own communicative and social behaviour.


Literature

Große Boes, Stefanie; Kaseric, Tanja (2010): Trainer-Kit. Die wichtigsten Trainings-Theorien, ihre
Anwendung im Seminar und Übungen für den Praxistransfer. 4. Aufl. Bonn: managerSeminare
Verlags GmbH
Klutmann, Beate (2004): Führung: Theorie und Praxis. Hamburg: Windmühle
Laufer, Hartmut (2011): Grundlagen erfolgreicher Mitarbeiterführung. Führungspersönlichkeit,
Führungsmethoden, Führungsinstrumente. 11. Auflage. Offenbach: GABAL
Neuberger, Oswald (2002): Führen und führen lassen. 6. überarb. und erw. Aufl. Stuttgart: Lucius und
Lucius
Schulz von Thun, Friedemann; Ruppel, Johannes; Stratmann, Roswitha (2002): Miteinander reden:
Kommunikationspsychologie für Führungskräfte. 4. Aufl. Reinbek bei Hamburg

Course L1883: Guest, barbarian or subject with equal rights? ‘The refugee’ in the history of ‘Western’ political ideas.
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 5-10 Minuten Vortrag im Rahmen eines Gruppenreferats; anschließend Diskussion
Lecturer Dr. Simone Beate Borgstede
Language DE/EN
Cycle WiSe/SoSe
Content

The seminar discusses concepts of ‘the refugee’ in the history of ‘Western’ political ideas over a period of about 2,750 years. We will try to understand these concepts as historically distinct. We will also analyze the powerful effect of related stereotypes and images.  We will read and contextualize philosophical, sociological, juridical, literary and political texts. In the second part of the seminar we will use the patterns we found to understand actual discourses on flight and migration. One aim is also to recognize alternative representations in the articulations and practices of the refugees themselves.

Literature

Agamben, Giorgio, ‚Homo Sacer: Die souveräne Macht und das nackte Leben.’

Arendt, Hannah, ‚Wir Flüchtlinge’ und ‚Das Recht, Rechte zu haben’.

Aristoteles, Politik und Platon, Politeia (Auszüge).

Derrida, Jacques, ‚Weltbürger aller Länder, noch eine Anstrengung!’

Erpenbeck, Jenny: Gehen, ging, gegangen. Roman.

Genfer Konvention und Menschenrechtserklärung.

Homer, Die Odyssee.

Simmel, Georg, ‚Exkurs über den Fremden’.

Dazu kommen Textstellen aus Bibel und Koran, aktuelle Interviews mit Migrationsforscher_innen wie Manuela Bojadzijev und Vassilis Tsianos, aber auch Erklärungen von Geflüchteten-Gruppen, Musiktexte, Fotographien und Filmspots.

Course L1844: Stay cool in conflict. Nonviolent Communication by Marshall Rosenberg
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 2-3 Seiten bzw. 10-20 Minuten plus anschließende Besprechung
Lecturer Dr. Claudia Wunram
Language EN
Cycle WiSe/SoSe
Content

„Words can build bridges or create rafts“ - this is also true for the scientific and business world. For example, how do I react if I get attacked in a professional debate by an opponent or by a colleague in my team, or if a fight arises during the planning of a project? In a challenging situation, what will help me to communicate respectfully and with appreciation? How can I express criticism or irritation honestly, directly and without reproach? 

Nonviolent Communication is a concept developped by Marshall B. Rosenberg, Ph.D., intended to help create an appreciative attitude towards oneself and others, and to live by it. Nonviolent Communication opens paths to express oneself in a mindful and responsible way, so that a bridge can be built even in challenging situations of conflict. Effective and satisfactory cooperation is only possible with well functioning communication between all parties involved, otherwise things will become difficult and inefficient.

By working with their own examples and anticipating questions that might arise in their future professional lives, the students of Engineering Sciences will be able to reflect their own communicative behavior and learn ways of cooperation and conjoint solution finding. This course will impart the essential competencies of communication necesary for that.

Literature German:
  • Rosenberg, Marshall.  (2001) Gewaltfreie Kommunikation. Eine Sprache des Lebens. Junfermann
  • Rosenberg, Marshall B. und Seils, Gabriele. (15. Auflage 2012) Konflikte lösen durch Gewaltfreie Kommunikation. Ein Gespräch mit Gabriele Seils. Herder Taschenbuch
  • Larsson, Liv. (2013) 42 Schlüsselunterscheidungen in der GFK. Für ein tieferes Verständnis der Gewaltfreien Kommunikation. Junfermann
  • De Haen, Nayoma V. und Torsten Hardieß. (2015) 30 Minuten Gewaltfreie Kommunikation. Gabal
  • Connor, Jane M. und Killian, Dian, Drs. (2014) Verbindung herstellen - Trennendes überbrücken. Mit jedermann, jederzeit und überall eine gemeinsame Ebene finden. Praktische GFK für den Alltag. Junfermann
  • Dietz, Angela. (2015) Macht ohne Machtwort. Verantwortung übernehmen, Potenziale entfalten. Business Village
  • Miyashiro, Marie R. (2013) Der Faktor Empathie. Ein Wettbewerbsvorteil für Teams und Organisationen. Junfermann
  • Brüggemeier, Beate. (2010) Wertschätzende Kommunikation im Business. Wer sich öffnet, kommt weiter. Wie Sie die GFK im Berufsalltag nutzen. Junfermann
  • Heim, Vera und Lindemann, Gabriele. (2016) Beziehungskompetenz im Beruf. Brücken bauen mit Empathie und Gewaltfreier Kommunikation. Haufe Taschen Guide

English:

  • Rosenberg, Marshall B., Ph.D. (3rd Edition 2015) Nonviolent Communication: A Language of Life. Create your Life, your Relationships, and your World in Harmony with your Values. Puddledancer Press
  • Connor, Jane, Ph.D. and Killian, Dian, Ph.D. (2nd edition 2012) Connecting Across Differences: Finding Common Ground with Anyone, Anywhere, Anytime. Puddledancer Press
  • Miyashiro, Marie R. (2011) The Empathy Factor. Your Competitive Advantage for Personal, Team and Business Success. Puddledancer Press
  • Roele, Hugo and Rich-Tolsma, Matthew, Drs. (2015) The Book of Needs. A Structural Model for Listening. Kommunikasie.nl
  • Kashtan, Miki. (2014) Reweaving our Human Fabric. Working Together to Create a Nonviolent Future. Fearless Heart Publications


Course L2345: Theory, Research and Practice of University Teaching
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Schriftliche Ausarbeitung (in mehreren Teilen) sowie eine Präsentation
Lecturer Prof. Christian Kautz, Jenny Alice Rohde
Language DE
Cycle WiSe/SoSe
Content

This course covers theory and practice of being a student teaching assistant in small-group instructional settings at TUHH.  As part of the seminar, the participants have the opportunity to reflect on their work, e. g. through mutual observation and discussion.

For prior knowledge / the event requirements:

This event requires basic first work / collaboration experiences in the academic work structures of a higher education institution, which Master's students have acquired as part of the qualification for the Bachelor's degree at a university.

These presumed work experiences include specific self-study experiences at a college.

These are picked up, reflected, expanded and further developed both theoretically and practically with regard to learning from and in groups and later guiding this learning process.

Furthermore, experiences with different types of learning / group types of higher education, which are part of a degree program acquired during the bachelor's program, are assumed, taken up, reflected on, expanded and further developed here in the master's program.

The course also requires basic knowledge of presenting scholarly work results obtained by Master's students with a Bachelor's degree.

In the course, this experience with and in representation in a group situation will be expanded and further developed in the direction of students' involvement with their own role as well as their design in face-to-face interaction as well as in group processes, learning and leadership situations, as masters graduates Graduate unlike bachelor graduates professionally stronger in a moderating role and with the guidance of humans because with the guidance in subject matters are demanded.

According to the later professional role, the work of the seminar promotes and enables graduate students significantly more than graduates' qualifications for independent work and learning, transferring what they have learned to new areas, contributing, involving discussion and contributing their own examples and interests.

Literature

Auszüge aus Fachliteratur zu oben genannten Themen werden in der Veranstaltung ausgegeben.

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.

Bosse, E. (2016). Herausforderungen und Unterstützung für gelingendes Studieren: Studienanforderungen

und Angebote für den Studieneinstieg. In I. van den Berk, K. Petersen, K. Schultes, &

K. Stolz (Hrsg.). Studierfähigkeit - theoretische Erkenntnisse, empirische Befunde und praktische

Perspektiven (Bd. 15). (S.129-169). Hamburg: Universität Hamburg.

Collins, D. & Holton, E. (2004). The effectiveness of managerial leadership development programs: A meta-analysis of studies from 1982 to 2001. Human resource development quarterly, 15(2),

217 - 248.

Danielsiek, H., Hubwieser, P., Krugel, J., Magenheim, J., Ohrndorf, L., Ossenschmidt, D., Schaper,

N. & Vahrenhold, J. (2017). Verbundprojekt KETTI: Kompetenzerwerb von Tutorinnen und Tutoren in der Informatik. In A. Hanft, F. Bischoff, B. Prang (Hrsg.), Working Paper Lehr-/Lernformen. Perspektiven aus der Begleitforschung zum Qualitätspakt Lehre. Abgerufen von KoBF:

Freeman, S., Eddy, SL., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H. & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematic.

Proceedings of the National Academy of Sciences 11(23), 8410-8415.

Glathe, A. (2017). Effekte von Tutorentraining und die Kompetenzentwicklung von MINTFachtutor*

innen in Lernunterstützungsfunktion. (Nicht veröffentlichte Dissertation). Technische

Universität Darmstadt, Deutschland.

Kirkpatrick, D. L. (1959). Techniques for Evaluation Training Program. Journal of the American Society

of Training Directors, 13, 21-26.

Hänze, M. Fischer, E. Schreiber, Biehler, R. & Hochmuth, R- (2013). Innovationen in der Hochschullehre:

empirische Überprüfung eines Studienprogramms zur Verbesserung von vorlesungsbegleitenden

Übungsgruppen in der Mathematik. Zeitschrift für Hochschulentwicklung, 8(4), 89-

103.

Kröpke, H. (2014). Who is who? Tutoring und Mentoring - der Versuch einer begrifflichen Schärfung.

In D. Lenzen & H. Fischer (Hrsg.), Tutoring und Mentoring unter besonderer Berücksichtigung

der Orientierungseinheit (Bd. 5). (21-29). Hamburg: Universitätskolleg-Schriften.

Kühlmann, T. (2007). Fragebögen. In J. Straub, A. Weidemann & D. Weidemann (Hrsg.), Handbuch

interkulturelle Kommunikation und Kompetenz (346-352). Stuttgart: Metzler.

Mayring, P. (2010). Qualitative Inhaltsanalyse. Grundlagen und Techniken (11. aktualisierte und überarbeitete

Auflage). Weinheim/Basel: Beltz.

Mummendey, H. D. (1981). Methoden und Probleme der Kontrolle sozialer Erwünschtheit (Social

Desirability). Zeitschrift für Differentielle und Diagnostische Psychologie, 2, 199-218.

Rohde, J. & Block, M. (2018). Welche Herausforderungen und Bewältigungsstrategien berichten

Tutor/innen der Ingenieurwissenschaften? Eine explorative Analyse von Reflexionsberichten. Vortrag

auf der 47. Tagung der Deutschen Gesellschaft für Hochschuldidaktik, Karlsruhe.

Heterogenität der Studierenden und Lösungsansätze von Tutor/-innen

Jenny Alice Rohde. Posterpräsentation auf der Tagung “Tutorielle Lehre und Heterogenität”. Technische Universität Darmstadt, 16.05.2019.Hochschuldidaktische Tutorenqualifizierung - Eine Basisqualifizierung des akademischen Nachwuchses und Chance für den Wandel der Lehr-/Lernkultur?

Jenny Alice Rohde & Caroline Thon-Gairola. Posterpräsentation auf der DGHD am 07.03.2019.Welches Lehrverhalten zeigen geschulte Tutor/innen? Eine explorative Analyse selbst- und fremdwahrnehmungsbasierter Reflexionsberichte

Jenny Alice Rohde & Nadine Stahlberg. In: die hochschulehre (2019).

Schneider, M. & Preckel, F. (2017). Variables associated with achievement in higher education: A

systematic review of meta-analyse. Psychological Bulletin, 143(6), 565-600.

Skylar Powell, K. & Yalcin, S. (2010). Managerial training effectiveness: A meta-analysis 1952-2002.

Personnel Review, 39(2), 227-241.

27 Welches Lehrverhalten zeigen geschulte Tutor/innen

d ie hochs chul l ehre 2019 www.hochschullehre.org

Stes, A., Min-Leliveld, M., Gijbels, D. & Van Petegem, P. (2010). The impact of instructional development

in higher education: The state-of-the-art of the research. Educational Research Review,

5(1), 25-49.

Stroebe, W. (2016). Why Good Teaching Evaluations May Reward Bad Teaching: On Grade Inflation

and Other Unintended Consequences of Student Evaluation. Perspectives on Psychological Science,

11(6), 800-816.

Technische Universität Hamburg (2018). Kennzahlen 2017. Hamburg: Technische Universität Hamburg.

[https://www.tuhh.de/tuhh/uni/informationen/kennzahlen.html]

Thumser-Dauth, K. (2008). Und was bringt das? Evaluation hochschuldidaktischer Weiterbildung.

In B. Berendt, H.-P. Voss & J. Wildt (Hrsg.), Neues Handbuch Hochschullehre. Lehren und Lernen

effizient gestalten. Kap. L 1.11 Hochschuldidaktische Aus- und Weiterbildung. Veranstaltungskonzepte

und -modelle. Berlin: Raabe. S. 1-10.

Wibbecke, G. (2015): Evaluation einer hochschuldidaktischen Weiterbildung an der Medizinischen

Fakultät Heidelberg. Dissertation. Ruprecht-Karls-Universität Heidelberg.

Willige, J., Woisch, A., Grützmacher, J. & Naumann, H. (2015a). Randauszählung Studienqualitätsmonitor

2014, Technische Universität Hamburg-Harburg, Online-Befragung Studierender im

Sommersemester 2014, DZHW - Deutsches Zentrum für Hochschul- und Wissenschaftsforschung.

Willige, J., Woisch, A., Grützmacher, J. & Naumann, H. (2015b). Randauszählung Studienqualitätsmonitor

2015, Technische Universität Hamburg-Harburg, Online-Befragung Studierender im

Sommersemester 2015, DZHW - Deutsches Zentrum für Hochschul- und Wissenschaftsforschung.

Winkler, M. (2018). Tutorielle Lehransätze im Vergleich. Die KOMPASS Begleitforschung. Vortrag

gehalten am 12.03.2018 auf dem Netzwerktreffen Tutorienarbeit an Hochschulen in Würzburg.

Zech, F. (1977). Grundkurs Mathematikdidaktik: theoretische und praktische Anleitungen für das

Lehren und Lernen im Fach Mathematik. Weinheim: Beltz.

Course L1509: Intercultural Communication
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Prof. Margarete Jarchow, Anna Katharina Bartel
Language EN
Cycle WiSe/SoSe
Content

As young professionals with technical background you may often tend to focus on communicating numbers and statistics in your presentations. However, facts are only one aspect of convincing others. Often, your personality, personal experience, cultural background and emotions are more important. You have to convince as a person in order to get your content across.

In this workshop you will learn how to increase and express your cultural competence. You will apply cultural knowledge and images in order to positively influence communicative situations. You will learn how to add character and interest to your talks, papers and publications by referring to your own and European Cultural background. You will find out the basics of communicating professionally and convincingly by showing personality and by referring to your own cultural knowledge. You will get hands-on experience both in preparing and in conducting such communicative situations. This course is not focussing on delivering new knowledge about European culture but helps you using existing knowledge or such that you can gain e.g. in other Humanities courses.

Content

  • How to enrich the personal character of your presentations by referring to European and your own culture.
  • How to properly arrange content and structure.
  • How to use PowerPoint for visualization (you will use computers in an NIT room).
  • How to be well-prepared and convincing when delivering your thoughts to your audience.
Literature

Literaturhinweise werden zu Beginn des Seminars bekanntgegeben.

Literature will be announced at the beginning of the seminar.

Course L2015: Intercultural Management - Theory and Awareness Training
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 15 Minuten Vortrag und dessen schriftliche Ausarbeitung (10 Seiten)
Lecturer Prof Jürgen Rothlauf
Language EN
Cycle WiSe/SoSe
Content

The subject of the course is the deepening of the intercultural dimension of international management in relation to fundamental challenges, the importance of culture in team work and leadership of large multinational companies. In addition, culture-awareness trainings are discussed and carried out.

Literature

Rothlauf, J (2014): A Global View on Intercultural Management - Challenges in a Globalized World, De Gruyter Oldenbourg Verlag, 360 p

Course L2346: Young, educated, (non)political - are our young engineers well prepared for the future?
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Vincent-Immanuel Herr
Language DE
Cycle WiSe/SoSe
Content

Digitalization, climate change, democracy - society is facing fundamental upheavals. The next generation of young engineers in particular must no longer remain out of debate and can provide answers to the big questions of our time. Why is social commitment important? Is studying preparing us well for the future? What needs to improve? In the interactive workshop, the participants will be accompanied in analyzing their own generation and their own actions and in developing thesis on how to improve technical studies and training. The result of the seminar will be a joint thesis paper.

Literature
Wird im Seminar bekannt gegeben.
Course L2176: Culture of Communication - Theories and Methods of Successful Communication
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Anna Katharina Bartel
Language DE
Cycle WiSe/SoSe
Content

This course is for master students. In this seminar, we will explore different theories, models and methods from the fields of communication, psychology and cultural theory.

The participants will work on theoretical content and do group presentations. They will also use examples from their own experiences to apply models and methods in practical exercises.

The way we communicate shapes the way we experience our relationships, in the business world as well as in our private lives. We spend an overwhelming amount of time in group situations. This makes it worthwhile to explore how communication works within the group context and how, within these different groups, different cultures of communication develop. This particularly applies in highly specialized fields, such as engineering.

Our ability to flexibly and successfully move from one context to another helps us along in building successful careers and allows us to feel positive about our private lives.

However, this is not always simple. For example:

            If we are part of a context in which many conflicts arise

            If we have to switch between different contexts frequently

            Or if, on the one hand, complicated facts and data are our main focus but on the other hand, we have to communicate them to people who are not familiar with the subject. Maybe we even have to win their attention in order to help along our causes.

Oftentimes, this leads to misunderstandings. There also might be a lack of openness or willingness to embrace conflict. This might make it difficult for us to reach our goals. To be able to reflect on the way we communicate, to identify patterns of communication and the ability to actively build positive relationships through communication are useful skills to help overcome those obstacles..

Literature
  • Knoblauch, H. (1995). Kommunikationskultur: Die kommunikative Konstruktion kultureller Kontexte (Materiale Soziologie, Band 5). de Gruyter.
  • Geert Hofstede, Geert Jan Hofstede, Michael Minkov. (2010). Cultures and Organizations - Software Of The Mind:Intercultural Cooperation and Its Importance for Survival. McGraw-Hill Education.
  • Bay, Rolf H. (2006) Erfolgreiche Gespräche durch aktives Zuhören. Ehningen. Expert-Verlag.
  • Cohn, Ruth (1975). Von der Psychoanalyse zur Themenzentrierten Interaktion. Stuttgart. Klett - Cotta
  • Fengler, Jörg (1998) Feedback geben. Weinheim. Beltz.
  • Lumma, Klaus (2006). Die Teamfibel oder das Einmaleins der Team- & Gruppenqualifizierung im sozialen und betrieblichen Bereich. Windmühle.
  • Spies, Stefan. (2010). Der  Gedanke lenkt den Körper: Körpersprache - Erfolgsstrathegien eines Regisseurs. Hoffmann und Campe.
Course L0535: Theory of Communication
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 20-30 Minuten Referat und Thesenpapier
Lecturer Dr. Michael Florian
Language DE
Cycle SoSe
Content

The seminar focuses on sociological theories of communication and selected problems of practical application in the area of crisis communication. The issue of crisis communication will be analyzed on the basis of case studies.

Literature

Habermas, Jürgen (1981): Theorie des kommunikativen Handelns. 2 Bände. Frankfurt/Main: Suhrkamp.
Luhmann, Niklas (1984): Soziale Systeme. Grundriß einer allgemeinen Theorie. Frankfurt/Main: Suhrkamp.
Malsch, Thomas (2005): Kommunikationsanschlüsse. Zur soziologischen Differenz von realer und künstlicher Sozialität. Wiesbaden: VS Verlag für Sozialwissenschaften.
Malsch, Thomas; Schmitt, Marco (Hg.) (2014): Neue Impulse für die soziologische Kommunikationstheorie. Empirische Widerstände und theoretische Verknüpfungen. Springer Fachmedien: Wiesbaden.
Meckel, Miriam; Schmid, Beat F. (Hg.) (2008): Unternehmenskommunikation. Kommunikationsmanagement aus Sicht der Unternehmensführung. 2., überarbeitete und erweiterte
Auflage. Gabler GWV Fachverlage: Wiesbaden.
Merten, Klaus (1999): Einführung in die Kommunikationswissenschaft. Bd 1/1: Grundlagen der Kommunikationswissenschaft. Münster: Lit Verlag.
Nolting, Tobias; Thießen, Ansgar (Hg.) (2008): Krisenmanagement in der Mediengesellschaft. Potenziale und Perspektiven der Krisenkommunikation. Wiesbaden: VS Verlag für Sozialwissenschaften.
Schützeichel, Rainer (2004): Soziologische Kommunikationstheorien. Konstanz: UVK Verlagsgesellschaft.
Thießen, Ansgar (2011): Organisationskommunikation in Krisen. Reputationsmanagement durch situative, integrierte und strategische Krisenkommunikation. VS Verlag für Sozialwissenschaften/Springer Fachmedien: Wiesbaden.
Thießen, Ansgar (Hg.) (2013): Handbuch Krisenmanagement. Springer Fachmedien: Wiesbaden.

Course L1732: criminology and society - in German
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Gruppenreferat (30 bis 45 Minuten, Eigenanteil je Person 10 bis 15 Minuten) inkl. schriftlicher Ausarbeitung, Ggf. alternativ eine längere, schriftliche Ausarbeitung.
Lecturer Sarah Schirmer
Language DE
Cycle WiSe/SoSe
Content

The seminar will provide an overview of Criminology and introduce different
theories of criminality. It is necessary to consider the discipline of Criminology
within its historical context in order to understand how some theories have
evolved. The students will use this knowledge of Criminology theory to discuss
and consider the advantages and disadvantages of each theory. Discussions
will include how society constructs crime as well as a more philosophical
debate about a determined view.

Literature

Wird zeitnah bekannt gegeben.

Will be announced in lecture.
Course L2369: Literature and Culture for international students of Master's degree programs in English (non-native speakers of German)
Typ Seminar
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Examination Form Referat
Examination duration and scale 45 min. Präsentation und anschließende Diskussion
Lecturer Bertrand Schütz
Language DE
Cycle WiSe/SoSe
Content

The seminar LITERATURE AND CULTURE investigates what culture is, especially what characterises epistemic cultures.

Culture is to be understood as the creative response to a given situation and the capacity to integrate inputs and influences, therefore as an ongoing process of permanent readjustment and learning, and by no means as a fixed identity in terms of an “essence”.

There is a growing awareness that Europe cannot lay claim to possess the ultimate standards of knowledge.

A topography of our contemporary world is to be sketched by highlighting its historical and cultural premises.

For more information please refer to the German description and the StudIP.

Literature

Je nach Thematik des Semesters wird eine spezifische
Literatur-Liste erstellt.

cf. StudIP

Course L1837: People in Business Organizations
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale Schriftliche Hausarbeit 7-10 Textseiten; verpflichtend: Präsentation der Zwischenergebnisse mit Diskussion (geht nicht in die Bewertung mit ein)
Lecturer Dr. Martin Schütz
Language DE
Cycle WiSe/SoSe
Content

The influence of technological change and social change on business organizations - how to manage the organizational change.

Literature

Becker, Karen Louise (2007): Unlearning in the workplace. A mixed methods study. PhD. Queensland University of Technology, Brisbane. Faculty of Education. Online verfügbar unter http://eprints.qut.edu.au/16574/.

Frey, Dieter; Gerkhardt, Marit; Peus, Claudia; Traut-Mattausch, Eva; Fischer, Peter (2014): Veränderungen managen. Widerstände und Erfolgsfaktoren der Umsetzung. In: Lutz von Rosenstiel, Erika Regnet und Michel E. Domsch (Hg.): Führung von Mitarbeitern. Handbuch für erfolgreiches Personalmanagement. 7. Aufl. Stuttgart: Schäffer-Poeschel, S. 547-559.

Hauser, Berndhard (2014): Konflikte in und zwischen Gruppen. In: Lutz von Rosenstiel, Erika Regnet und Michel E. Domsch (Hg.): Führung von Mitarbeitern. Handbuch für erfolgreiches Personalmanagement. 7. Aufl. Stuttgart: Schäffer-Poeschel, S. 354-367.

Kieser, Alfred; Walgenbach, Peter (2007): Organisation. 5. Aufl. Stuttgart: Schäffer-Poeschel.

Miebach, Bernhard (2012): Organisationstheorie. Problemstellung - Modelle - Entwicklung. 2. Aufl. Wiesbaden: Springer Fachmedien Wiesbaden; Imprint: Springer VS.

Müller, Ursula (Hg.) (2013): Geschlecht und Organisation. Wiesbaden: Springer VS (Geschlecht und Gesellschaft, 45).

Olfert, Klaus (2012): Organisation. 16. Aufl. Herne: NWB Verlag.

Pohlmann, Markus; Markova, Hristina (2011): Soziologie der Organisation. Eine Einführung. Konstanz, München: UVK-Verl.-Ges. (3573).

Preisendörfer, Peter (2011): Organisationssoziologie. Grundlagen, Theorien und Problemstellungen. 3. Aufl. Wiesbaden: VS Verlag für Sozialwissenschaften.

Robbins, Stephen P.; Judge, Timothy A. (2013): Organizational Behavior. 15. Aufl. Boston, Mass: Pearson.

Rosenstiel, Lutz von; Nerdinger, Friedemann W. (2011): Grundlagen der Organisationspsychologie. Basiswissen und Anwendungshinweise. 7. Aufl. Stuttgart: Schäffer-Poeschel.

Sanders, Karin; Kianty, Andrea (2006): Organisationstheorien. Eine Einführung. 1. Aufl. Wiesbaden: VS Verlag für Sozialwissenschaften.

Schreyögg, Georg (2008): Organisation. Grundlagen moderner Organisationsgestaltung, mit Fallstudien. 5. Aufl. Wiesbaden: Gabler (Lehrbuch).

Vahs, Dietmar (2012): Organisation. Ein Lehr- und Managementbuch. 8. Aufl. Stuttgart: Schäffer-Poeschel.

Weinert, Ansfried B. (2004): Organisations- und Personalpsychologie. 5. Aufl. Weinheim: BeltzPVU.


Course L1846: Classical Journalism and New Media
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Ca. 20 min. plus anschließende Diskussion
Lecturer Dieter Bednarz
Language DE
Cycle WiSe/SoSe
Content

The world wide walkover of the internet dramatically changed the perception of classical media like newspapers, magazines and even TV. In this seminar the reasons of and the consequences for the dramatic changes regarding our information habits will be analyzed and discussed. Has the media expert Neil Postman been right, when he one said, that we all one day will be „overnewsed but underinformed“?

Keeping a close eye on the real challenges of journalism, the seminar will discuss the standards of ethics in politics and media.


Literature

Wird im Seminar genannt

Course L1023: Politics
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Stephan Albrecht
Language EN
Cycle WiSe/SoSe
Content

Scientists and engineers neither just strive for truths and scientific laws, nor are they working in a space far from politics.  Science and engineering have contributed to what we now call the Anthropocene, the first time in the history of mankind when essential cycles of the earth system, e.g. carbon cycle, climate system, are heavily influenced or even shattered. Furthermore, Peak oil is indicating the end of cheap fossil energy thus triggering the search for alternatives such as biomass.

Systems of knowledge, science and technology in the OECD countries have since roughly 30 years increasingly become divided. On the one hand new technologies such as modern biotechnology, IT or nanotechnology are developing rapidly, bringing about many innovations for industry, agriculture, and consumers. On the other hand scientific studies from earth, environmental, climate change, agricultural and social sciences deliver increasingly robust evidence on more or less severe impacts on society, environment, global equity, and economy resulting from innovations during the last 50 years. Technological innovation thus is no longer an uncontested concept. And many protest movements demonstrate that the introduction of new or the enlargement of existing technologies (e.g. airports, railway stations, highways, high-voltage power lines surveillance) isn’t at all a matter of course.

It is important to bear in mind the fact that all processes of technological innovation are made by humans, individually and collectively. Industrial, social, and political organizations as actors from the local to global level of communication, deliberation, and decision making interact in diverse arenas, struggling to promote their respective corporate and/or political agenda. So innovations are as well a problem of technology as a problem of politics. Innovation and technology policies aren’t the same in all countries. We can observe conceptual and practical variations.

Since the 1992 Earth Summit in Rio de Janeiro Agenda 21 constitutes a normative umbrella, indicating Sustainable Development (SD) as core cluster of earth politics on all levels from local to global. Meanwhile other documents such as the Millennium Development Goals (MDG) have complemented the SD agenda. SD can be interpreted as operationalization of the Universal Declaration of Human Rights, adopted in 1948 by the General Assembly of the United Nations and since amended many times. 

Engineers and scientists as professionals can’t avoid to become confronted with many non-technical and non-disciplinary items, challenges, and dilemmas. So they have to choose between alternative options for action, as individuals and as members of organizations or employees. Therefore the seminar will address core elements of the complex interrelations between science, society and politics. Reflections on experiences of participants - e.g. from other countries as Germany - during the seminar are very welcome.

The goals of the seminar include:

  • Raising awareness and increasing knowledge about the political implications of scientific work and institutions;
  • Improving the understanding of different concepts and designs of innovation and technology policies;
  • Increasing knowledge about the status and perspectives of sustainable development as framework concept for technological and scientific progress;
  • Understanding core elements of recent arguments, conflicts, and crises on technological innovations, e.g. geo-engineering or bio-economy;
  • Improving the understanding of scientists’ responsibility for impacts of their professional activities;
  • Embedding individual professional responsibility in social and political contexts.

The seminar will deal with current problems from areas such as innovation policy, energy, food systems, and raw materials. Issues will include the future of energy, food security and electronics. Historical issues will also be addressed.

The seminar will start with a profound overarching introduction. Issues will be introduced by a short presentation and a Q & A session, followed by group work on selected problems. All participants will have to prepare a presentation during the weekend seminar. The seminar will use inter alia interactive tools of teaching such as focus groups, simulations and presentations by students. Regular and active participation is required at all stages.


Literature Literatur wird zu Beginn des Seminars abgesprochen.
Course L1856: Politics and Science - in German
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Referat ca. 20 min. plus anschließende Diskussion
Lecturer Dr. Mirko Himmel, Dr. Ines Krohn-Molt
Language DE
Cycle WiSe/SoSe
Content

Scientists often like to believe that their work is non-political. Within this seminar we want to demonstrate how deeply both are interconnected and converged. Not only, scientific guidance is often needed to take a political decision but also scientific outcomes are a sub-ject to political interpretation. Also, politics are significantly influencing scientific progress by framing research agendas and by funding decisions.

Literature

Wird im Seminar genannt

Course L1779: Politics and Science - in English
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Frederik Postelt, Dr. Gunnar Jeremias
Language EN
Cycle WiSe/SoSe
Content

Scientists often like to believe that their work is non-political. Within this seminar we want to demonstrate how deeply both are interconnected and converged. Not only, scientific guidance is often needed to take a political decision but also scientific outcomes are a sub-ject to political interpretation. Also, politics are significantly influencing scientific progress by framing research agendas and by funding decisions.

During this seminar we would like to show the different range of influences - scientific, economic, social, environmental, ethical/normative, security-related - affecting decision-making on science and politics. Using case studies on current debates on food security, public health, nuclear energy and terrorism to discuss the interrelation between science and politics illuminating the role of various actors in this process, such as:

• Governments,

• International organizations,

• Scientific associations,

• Industry,

• Civil society, and

• Individual scientists.

The guiding questions will be:

• How does and should science influence politics?

• How does and should politics influence science?

In order to take responsibility for the consequences of scientific work, engineers and scientists increasingly need to acknowledge the political dimension of their work and their role in the political process. We will address this political dimension of scientific work by discussing:

• Biographies and motivations of famous scientists,

• Individual responsibility of scientists for the implications of their work, and

• The role of codes of conduct as guidelines for responsible behaviour.

The goals of the seminar include:

• Raising awareness and increasing knowledge about the political dimensions of scientific work,

• Providing guidelines for evaluating political implications of scientific research,

• Improving the understanding of scientists’ and engineers’ responsibility for the results of their professional activities,

• Taking decisions at the institutional, national and international level about rules and regulations concerning scientific conduct, and

• Choosing arguments and defending positions in situations of conflicting interests.

The seminar will use current issues, such as dilemmas in the life sciences or bio fuels to demonstrate the problematic relationship between science and politics. The seminar, however, does not focus on providing in-depth knowledge of these current issues. We strongly discourage students that have participated in an “Ethics for Engineers” seminar to take this course, because the contents of the two seminars overlap.

Issues will be introduced by short presentations and a Q&A session, followed by group work on selected problems. All participants will have to prepare a presentation. Those requiring a graded certificate (“Schein”) additionally have to write a 3-4 page paper on selected issues. The seminar will use interactive tools of teaching such as role playing and simulations. Group work and active participation is expected at all stages of the seminar.

Literature

will be announced in lecture

wird im Seminar bekannt gegeben

Course L1734: Projectrealisation: TUHH goes circular - Sustainability in Research, Education and campus management
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe/SoSe
Content
Literature

Wird im Seminar bekanntgegeben

Will be announced in lecture.

Course L1872: Social Learning: Social Commitment in Refugee Issues / Master
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 10 Seiten
Lecturer Muthana Al-Temimi
Language DE
Cycle WiSe/SoSe
Content folgt
Literature

Wird im Seminar bekannt gegeben.

Will be announced in lecture.

Course L1647: Soft skill seminar for dual study programme (dual@TUHH) / Master
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Referat mit 2-3 Videoübungen à 20 Minuten + anschließende Diskussion
Lecturer Silke Wolckenhaar-Wagner, Dr. Henning Haschke
Language DE
Cycle WiSe/SoSe
Content
Literature
Course L1771: The Arabic Spring an its Consequences
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dieter Bednarz
Language DE
Cycle WiSe/SoSe
Content

The world wide walkover of the internet dramatically changed the perception of classical media like newspapers, magazines and even TV. In this seminar the reasons of and the consequences for the dramatic changes regarding our information habits will be analyzed and discussed:

Taking a close look at the Middle East the political impact of the new media´s triumphal procession will be assessed and evaluated. How come that Twitter and Facebook on one hand facilitated the so called Arabic  Spring and caused hope for the rise of democracy in the region, while on the other hand the revolutionaries failed so dramatically - at least for now.

Keeping a close  eye on both fields, the Media and the Middle East, the seminar will discuss the standards of ethics in politics and journalism.

Literature

Wird im Seminar angegeben und besprochen.

Will be announced in the lecture.

Course L1916: Responsible Conduct in Technology & Science
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Mirko Himmel, Dr. Ines Krohn-Molt
Language DE
Cycle WiSe/SoSe
Content

Aim of the seminar is raising awareness for the responsibility of engineers and researchers for a proper and ethical conduct in technology and science. The Participants will present and discuss practical examples for good as well as bad conduct in science.


Literature folgt im Seminar
Course L1991: What can philosophy do?
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Ursula Töller
Language DE
Cycle WiSe/SoSe
Content

Over the centuries, the philosophy is lined up as a discipline that provides complex and universal answers to contemporary history and circumstances. Often, she could design utopias that have led the way for political upheaval. While all scientific disciplines are subject to an increasing differentiation, the philosophy in the second half of the 20th century has lost its claim to universality. But what then are the topics of the philosophy of the 20th and 21st century and what impact have philosophical theories for processes of change?

We will provide an overview of Western philosophies of the 20th and 21st century. and take a critical look at the self-understanding of philosophy.

Literature

Gerhardt Schweppenhäuser: Kritische Theorie, Stuttgart 2010

Postmoderne und Dekonstruktion, Texte französischer Philosophen der Gegenwart, hrsg. von Peter Engelmann, Reclam UB 8668

Thomas Rentsch: Philosophie des 20. Jhdts. Von Husserl bis Derrida, München 2014

Geschichte der Philosophie in Text und Darstellung, Bd. 8=20 Jhdt.

Reclam UB 9918

Geschichte der Philosophie in Text und Darstellung, Bd. 9= Gegenwart

Reclam UB 18267

Course L2343: Academic Writing and Presentation for Master-Students
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Ursula Töller
Language DE
Cycle WiSe/SoSe
Content

The course is aimed at Master students who are planning to write their thesis, want to pursue their PhD or intend to present their research results at conferences and in journals. The course is structured on three levels: 1. writing, 2. presenting and 3. interacting in organizational structures. The latter refers to the work environment at university as well as in research groups and enterprises. In the course of the seminar, the participants become acquainted with various methods and theories on the subject. Furthermore, the methods and theories will be put into practice, reflected upon and discussed as part of the seminar.

Literature
  • Umberto Eco, Wie man eine wiss. Abschlussarbeit schreibt (2010)
  • Helga Esselborn-Krumbiegel, Von der Idee zum Text. Eine Anleitung zum wissenschaftlichen Schreiben (2008)
  • Tony Buzan: Das Mind-Map-Buch. (2001)
  • John W. Chinneck: How to organize your Thesis (1999)
  •  Lothar Seiwert: Das neue 1x1 des Zeitmanagements (2003)
  • Steven R. Covey: Die sieben Wege der Effektivität (2000)
  • Harold Kerzner: Twenty Common Mistakes Made by New or Inexperienced Project Manager (2010)
  • Friedemann Schulz von Thun: Miteinander Reden. (1996)

Tim McClintock: Dealing with Specific Types of Difficult People.

(2008)

Course L2029: “Lying press”? Functions and current challenges of journalism
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Mündliche Prüfung
Examination duration and scale 20 min
Lecturer Prof. Horst Pöttker
Language DE
Cycle WiSe/SoSe
Content

Lying press - there is a revival of the disparaging invective. Journalists use to shoot it down by leading it back to its supposed roots in the NS-propaganda. This is less convincing as several parties and ideologies have used it since the middle of the 19th century to discredit the media of other parties and ideologies. And it is missing the core of the problem. Critics are reasonably afraid that the choice of “lying press” to the “non-word of the year” 2014 has blocked the question, if there is a justified criticism of information media and journalism - or more precisely of the relationship between journalism and its audience. If this is the case both - journalism and audience - are involved from the perspective of inter actionism.    

Against this background interactive instructions will be given by scholarly literature and practical examples from the German and international media business.

Questions like the following will be discussed:

  • Is journalism really a profession? If so - since when?
  • What is journalism for? (task and duties, functions, self-images)
  • Do the audience and journalists themselves have a reasonable understanding of tasks, functions, practices, problems of journalism?
  • What is the current concept of journalistic professionalism? Has it ever been the same?
  • From an international perspective: Does journalism in Germany have special shortcomings - if so, how can they be removed?
  • What are the economic challenges for journalism from the digital media upheaval?
  • In which direction do journalistic professionalism and self-understanding change in the digital media world?

Objective is solid learning about professional tasks, ethics, techniques, endagerments, history and current problems of journalism including science journalism.

Literature

Zur Einführung:

Lilienthal, Volker/Neverla, Irene (Hrsg.) (2017): „Lügenpresse“. Anatomie eines politischen Kampfbegriffs. Köln: Kiepenheuer & Witsch. https://www.kiwi-verlag.de/buch/luegenpresse/978-3-462-31782-4/

Pöttker, Horst (2010): Der Beruf zur Öffentlichkeit. Über Aufgabe, Grundsätze und Perspektiven des Journalismus in der Mediengesellschaft aus der Sicht praktischer Vernunft. In: Publizistik, 55. Jg., H. 2, S. 107-128. https://www.springerprofessional.de/en/der-beruf-zur-oeffentlichkeit/5889108

Weischenberg, S. (2007): Das Jahrhundert des Journalismus ist vorbei. Rekonstruktionen und Prognosen zur Formation gesellschaftlicher Selbstbeobachtung. In: Bartelt-Kircher, G. et al.: Krise der Printmedien - eine Krise des Journalismus? Berlin und New York, de Gruyter Saur, S. 32-60.

https://medien21.wordpress.com/2011/10/17/weischenberg-das-jahrhundert-des-journalismus-ist-vorbei/

Eine ausführliche Literaturliste wird am Anfang des Seminars verteilt.

Module M0808: Finite Elements Methods

Courses
Title Typ Hrs/wk CP
Finite Element Methods (L0291) Lecture 2 3
Finite Element Methods (L0804) Recitation Section (large) 2 3
Module Responsible Prof. Otto von Estorff
Admission Requirements None
Recommended Previous Knowledge

Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics)
Mathematics I, II, III (in particular differential equations)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method.



Skills

The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations.



Personal Competence
Social Competence

Students can work in small groups on specific problems to arrive at joint solutions.

Autonomy

The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 20 % Midterm
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Core Qualification: Compulsory
Energy Systems: Core Qualification: Elective Compulsory
Aircraft Systems Engineering: Specialisation Aircraft Systems: Elective Compulsory
Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory
Aircraft Systems Engineering: Specialisation Aircraft Systems: Elective Compulsory
Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory
International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory
International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory
Mechatronics: Core Qualification: Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Product Development, Materials and Production: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Theoretical Mechanical Engineering: Core Qualification: Compulsory
Course L0291: Finite Element Methods
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Otto von Estorff
Language EN
Cycle WiSe
Content

- General overview on modern engineering
- Displacement method
- Hybrid formulation
- Isoparametric elements
- Numerical integration
- Solving systems of equations (statics, dynamics)
- Eigenvalue problems
- Non-linear systems
- Applications

- Programming of elements (Matlab, hands-on sessions)
- Applications

Literature

Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Course L0804: Finite Element Methods
Typ Recitation Section (large)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Otto von Estorff
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0962: Sustainability and Risk Management

Courses
Title Typ Hrs/wk CP
Safety, Reliability and Risk Assessment (L1145) Seminar 2 3
Environment and Sustainability (L0319) Lecture 2 3
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to describe single techniques and to give an overview for the field of safety and risk assessment as well as environmental and sustainable engineering, in detail:

  • basics in safety and reliability of technical facilities
  • safety and reliability analysis methods
  • risk assessment
  • Production and usage of bio-char
  • energy production and supply
  • sustainable product design


Skills

Students are able apply interdisciplinary system-oriented methods for risk assessment and sustainability reporting. They can evaluate the effort and costs for processes and select economically feasible treatment concepts.

Personal Competence
Social Competence
Autonomy

Students can gain knowledge of the subject area from given sources and transform it to new questions. Furthermore, they can define targets for new application or research-oriented duties in for risk management and sustainability concepts accordance with the potential social, economic and cultural impact.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Elaboration and presentation (45 minutes in groups)
Assignment for the Following Curricula Civil Engineering: Core Qualification: Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Elective Compulsory
Water and Environmental Engineering: Core Qualification: Compulsory
Course L1145: Safety, Reliability and Risk Assessment
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Marco Ritzkowski
Language DE
Cycle WiSe
Content

An introduction in safety and risk assessment is given and some typical problems of structural and environmental engineering are treated:

  • basics in safety and reliability of technical facilities
  • safety and reliability analysis methods
  • risk assessment
  • practical examples and excursions
  • discussions and presentations 
Literature

- Vorlesungsunterlagen

- Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf‎


Course L0319: Environment and Sustainability
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
Production and Usage of Bio-char
Engergy production with algae
Environmental product design
Clean Development mechanism (CDM)
Democracy and Energy

New Concepts for a sustainable Energy Supply


Recycling of Wind Turbines
Alternative Mobility

Disposal of Nuclear Wastes
Waste2Energy
Offshore Wind energy

Literature Wird in der Veranstaltung bekannt gegeben.

Specialization Coastal Engineering

Module M0699: Advanced Foundation Engineering and Soil Laboratory Course

Courses
Title Typ Hrs/wk CP
Soil Laboratory Course (L0499) Practical Course 1 2
Numerical Methods in Geotechnics (L0375) Lecture 3 3
Advanced Foundation Engineering (L0497) Lecture 2 2
Advanced Foundation Engineering (L0498) Recitation Section (large) 1 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 82, Study Time in Lecture 98
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0499: Soil Laboratory Course
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
  • Field experiments
  • Short lecture on laboratory tests
  • soil analysis
  • laboratory test
  • soil clasification
  • Creating a ground and foundation report
Literature
  • DIN-Taschenbuch 113, Erkundung und Untersuchung des Baugrundes


Course L0375: Numerical Methods in Geotechnics
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Hans Mathäus Stanford
Language DE
Cycle WiSe
Content

Topics:

  • numerical simulations
  • numerical algorithms
  • finite element method
  • application of finite element method in geomechanics
  • constitutive models for soils
  • contact models for soil structure interaction
  • selected applications
Literature
  • Wriggers P. (2001): Nichtlineare Finite-Elemente-Methoden, Springer Verlag, Berlin
  • Bathe Klaus-Jürgen (2002): Finite-Elemente-Methoden. Springer Verlag, Berlin
Course L0497: Advanced Foundation Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
  • Vertical drains
  • Piles
  • Ground improvement (Deep Compaction, Soil mixing)
  • Vibration driving
  • Jet grouting
  • Slurry wall
  • Deep excavation
Literature
  • EAK (2002): Empfehlungen für Küstenschutzbauwerke
  • EAU (2004): Empfehlungen des Arbeitsausschusses Uferbauwerke
  • EAB (1988): Empfehlungen des Arbeitskreises Baugruben
  • Grundbau-Taschenbuch, Teil 1-3, (1997), Ernst & Sohn Verlag
Course L0498: Advanced Foundation Engineering
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0858: Coastal Hydraulic Engineering I

Courses
Title Typ Hrs/wk CP
Basics of Coastal Engineering (L0807) Lecture 3 4
Basics of Coastal Engineering (L1413) Project-/problem-based Learning 1 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Basics of hydraulic engineering, hydrology and hydromechanics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to define and explain the basic concepts of coastal engineering and port engineering. They are able to apply the concepts to selected practical problems of coastal engineering. Students can define and determine the basics for design and dimensioning of coastal engineering constructions.

Skills

The students are capable to apply basic design approaches to selected and pre-defined design tasks in coastal engineering.

Personal Competence
Social Competence

The students are able to deploy their gained knowledge in applied problems such as the design of coastal protection structures. Additionaly, they will be able to work in team with engineers of other disciplines, for instance designing of coastal breakwaters.

Autonomy

The students will be able to independently extend their knowledge and applyit to new problems.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 2 hours. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0807: Basics of Coastal Engineering
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Peter Fröhle
Language DE
Cycle WiSe
Content
  • Basics of planning and design
    • Water levels
    • Currents
    • Waves
    • Ice
  • Planning and Design in Coastal Engineering
    • Functional and constructional design
    • Determination of design parameters
    • Design-approaches
      • Filter
      • Rubble mound constructions
      • Piles
      • Vertical constructions


Literature

Coastal Engineering Manual, CEM

Vorlesungsumdruck


Course L1413: Basics of Coastal Engineering
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0964: Structures in Foundation and Hydraulic Engineering

Courses
Title Typ Hrs/wk CP
Applied Tunnel Constructions (L2407) Lecture 2 3
Steel Structures in Foundation and Hydraulic Engineering (L1146) Lecture 2 3
Underground Constructions (L0707) Lecture 1 2
Underground Constructions (L1811) Recitation Section (large) 1 1
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge

Modules from Bachelor studies Civil and environmental engineering:

  • Geotechnics I-II
  • Steel Structures I-II
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Knowledge of different tunnel construction types as well as special methods and techniques of subsoil construction. The students get deeper knowledge of steel and ground engineering as well as constructions knowledge concerning quay walls. Futhermore, the students get all the neccessary knowledge to design singular construction elements for sheet pile walls and they know how to choose the right construction elements depending on the influencing conditions.
Skills Basic knowledge of tunnel design as well as practical skills in structural tunnel analysis. Furthermore, the students are able to dimension sheet pile wall construction regarding all constrution elements, to choose the suitable construction elements with respect to the influencing conditions, to design all kinds of sheet pile walls (wave sheet pile walls and combined sheet pile walls) and to dimension all construction elements and connections.
Personal Competence
Social Competence Capacity for teamwork concerning project management and design of tunnels.
Autonomy Promotion of independent and creative work flow in the framework of a design exercise.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L2407: Applied Tunnel Constructions
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe, Tim Babendererde
Language DE
Cycle WiSe
Content
Literature
Course L1146: Steel Structures in Foundation and Hydraulic Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Frank Feindt
Language DE
Cycle WiSe
Content Design of a sheet pile wall, design of a combined sheet pile wall, piles, walings, connections, fatigue
Literature EAU 2012, EA-Pfähle, EAB
Course L0707: Underground Constructions
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Marius Milatz
Language DE
Cycle WiSe
Content
  • Definitions
  • Historical development in tunneling
  • Geology for tunneling
  • Hard rock tunneling (construction composite and machines)
  • Tunnelung in temporarly stable soil with conventional construction methods
  • Tunneling in soft soils (form of supports, shield types, compressed air application)
  • Pipe jacking
  • Tunnel Lining, tunnel supporting structures
  • Calculation approaches for supporting structures in shield-driven tunnels
  • Surveying for tunneling
  • Safety requirements
  • Construction Contract
  • Literature and sources
Literature
  • Vorlesung/Übung s. www.tu-harburg.de/gbt
Course L1811: Underground Constructions
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Marius Milatz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0511: Electricity Generation from Wind and Hydro Power

Courses
Title Typ Hrs/wk CP
Renewable Energy Projects in Emerged Markets (L0014) Project Seminar 1 1
Hydro Power Use (L0013) Lecture 1 1
Wind Turbine Plants (L0011) Lecture 2 3
Wind Energy Use - Focus Offshore (L0012) Lecture 1 1
Module Responsible Dr. Joachim Gerth
Admission Requirements None
Recommended Previous Knowledge

Module: Technical Thermodynamics I,

Module: Technical Thermodynamics II,

Module: Fundamentals of Fluid Mechanics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

By ending this module students can explain in detail knowledge of wind turbines with a particular focus of wind energy use in offshore conditions and can critical comment these aspects in consideration of current developments. Furthermore, they are able to describe fundamentally the use of water power to generate electricity. The students reproduce and explain the basic procedure in the implementation of renewable energy projects in countries outside Europe.

Through active discussions of various topics within the seminar of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice.

Skills  Students are able to apply the acquired theoretical foundations on exemplary water or wind power systems and evaluate and assess technically the resulting relationships in the context of dimensioning and operation of these energy systems. They can in compare critically the special procedure for the implementation of renewable energy projects in countries outside Europe with the in principle applied approach in Europe and can apply this procedure on exemplary theoretical projects.

Personal Competence
Social Competence  Students can discuss scientific tasks subjet-specificly and multidisciplinary within a seminar.

Autonomy

Students can independently exploit sources in the context of the emphasis of the lecture material to clear the contents of the lecture and to acquire the particular knowledge about the subject area.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 3 hours written exam
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Energy Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0014: Renewable Energy Projects in Emerged Markets
Typ Project Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Andreas Wiese
Language DE
Cycle SoSe
Content
  1. Introduction
    • Development of renewable energies worldwide
      • History
      • Future markets
    • Special challenges in new markets - Overview
  2. Sample project wind farm Korea
    • Survey
    • Technical Description
    • Project phases and characteristics
  3. Funding and financing instruments for EE projects in new markets
    • Overview funding opportunitie
    • Overview countries with feed-in laws
    • Major funding programs
  4. CDM projects - why, how , examples
    • Overview CDM process
    • Examples
    • Exercise CDM
  5. Rural electrification and hybrid systems - an important future market for EE
    • Rural Electrification - Introduction
    • Types of Elektrizifierungsprojekten
    • The role of the EEInterpretation of hybrid systems
    • Project example: hybrid system Galapagos Islands
  6. Tendering process for EE projects - examples
    • South Africa
    • Brazil
  7. Selected projects from the perspective of a development bank - Wesley Urena Vargas, KfW Development Bank
    • Geothermal
    • Wind or CSP

Within the seminar, the various topics are actively discussed and applied to various cases of application.

Literature Folien der Vorlesung
Course L0013: Hydro Power Use
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Achleitner
Language DE
Cycle SoSe
Content
  • Introduction, importance of water power in the national and global context
  • Physical basics: Bernoulli's equation, usable height of fall, hydrological measures, loss mechanisms, efficiencies
  • Classification of Hydropower: Flow and Storage hydropower, low and high pressure systems
  • Construction of hydroelectric power plants: description of the individual components and their technical system interaction
  • Structural engineering components; representation of dams, weirs, dams, power houses, computer systems, etc.
  • Energy Technical Components: Illustration of the different types of hydraulic machinery, generators and grid connection
  • Hydropower and the Environment
  • Examples from practice

Literature
  • Schröder, W.; Euler, G.; Schneider, K.: Grundlagen des Wasserbaus; Werner, Düsseldorf, 1999, 4. Auflage
  • Quaschning, V.: Regenerative Energiesysteme: Technologie - Berechnung - Simulation; Carl Hanser, München, 2011, 7. Auflage
  • Giesecke, J.; Heimerl, S.; Mosony, E.: Wasserkraftanlagen ‑ Planung, Bau und Betrieb; Springer, Berlin, Heidelberg, 2009, 5. Auflage
  • von König, F.; Jehle, C.: Bau von Wasserkraftanlagen - Praxisbezogene Planungsunterlagen; C. F. Müller, Heidelberg, 2005, 4. Auflage
  • Strobl, T.; Zunic, F.: Wasserbau: Aktuelle Grundlagen - Neue Entwicklungen; Springer, Berlin, Heidelberg, 2006


Course L0011: Wind Turbine Plants
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Rudolf Zellermann, Dr. Jochen Oexmann
Language DE
Cycle SoSe
Content
  • Historical development
  • Wind: origins, geographic and temporal distribution, locations
  • Power coefficient, rotor thrust
  • Aerodynamics of the rotor
  • Operating performance
  • Power limitation, partial load, pitch and stall control
  • Plant selection, yield prediction, economy
  • Excursion
Literature

Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005


Course L0012: Wind Energy Use - Focus Offshore
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Martin Skiba
Language DE
Cycle SoSe
Content
  • Introduction, importance of offshore wind power generation, Specific requirements for offshore engineering
  • Physical fundamentals for utilization of wind energy
  • Design and operation of offshore wind turbines, presentation of different concepts of offshore wind turbines, representation of the individual system components and their system-technical relationships
  • Foundation engineering, offshore site investigation, presentation of different concepts of offshore foundation structures, planning and fabrication of foundation structures
  • Electrical infrastructure of an offshore wind farm, Inner Park cabling, offshore substation, grid connection
  • Installation of offshore wind farms, installation techniques and auxiliary devices, construction logistics
  • Development and planning of offshore wind farms
  • Operation and optimization of offshore wind farms
  • Day excursion
Literature
  • Gasch, R.; Twele, J.: Windkraftanlagen - Grundlagen, Entwurf, Planung und Betrieb; Vieweg + Teubner, Stuttgart, 2007, 7. Auflage
  • Molly, J. P.: Windenergie - Theorie, Anwendung, Messung; C. F. Müller, Heidel-berg, 1997, 3. Auflage
  • Hau, E.: Windkraftanalagen; Springer, Berlin, Heidelberg, 2008, 4.Auflage
  • Heier, S.: Windkraftanlagen - Systemauslegung, Integration und Regelung; Vieweg + Teubner, Stuttgart, 2009, 5. Auflage
  • Jarass, L.; Obermair, G.M.; Voigt, W.: Windenergie: Zuverlässige Integration in die Energieversorgung; Springer, Berlin, Heidelberg, 2009, 2. Auflage


Module M1351: Construction Processes

Courses
Title Typ Hrs/wk CP
Digital Building (L1908) Lecture 2 2
Lean Construction (L1910) Lecture 2 2
System Dynamics (L1909) Lecture 2 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L1908: Digital Building
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Katja Maaser
Language DE
Cycle SoSe
Content
Literature
Course L1910: Lean Construction
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Theo Herzog
Language DE
Cycle SoSe
Content
Literature
Course L1909: System Dynamics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Markus Salge
Language DE
Cycle SoSe
Content
Literature

Module M0593: Building Materials and Building Preservation

Courses
Title Typ Hrs/wk CP
Repair of Structures (L0255) Lecture 1 1
Mineral Building Materials (L0253) Lecture 2 2
Technology of mineral Building Materials (L0256) Project-/problem-based Learning 1 2
Transport Processes in Building Materials and Damage Processes (L0254) Lecture 1 1
Module Responsible Prof. Frank Schmidt-Döhl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge about building materials, building physics and building chemistry, for example by the modules Principles of Building Materials and Building Physics and Building Materials and Building Chemistry.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the components of mineral building materials and their function in detail and to use them for the manufacture of special mineral building materials. They are able to show the characteristics of mineral building materials. They are able to describe the manufacture, properties and fields of application of special mortars and special concretes and the correlations of their material parameters. They are able to show the principles of anchor technology and design. 

Skills

The students are able to perform an optimization of granulometry of a mineral building material. They are able to design a special mineral mortar and to manufacture this mortar. The students are able to manufacture post installed rebar connections. They are able to recognize damages, to assess possible causes, to use the fundamentals of construction preservation and to select repair and strengthening measures.


Personal Competence
Social Competence

The students are able to develop in small grous the mixture of a special mortar. They present their results to the lecturer and the other students. In a critical discussion they defend and adjust their results. The students are able to manufacture their special building material on the basis of this feedback.


Autonomy

The students are able to responsibly use the resources of materials and lab equipment for their project and to investigate and to get missing components.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0255: Repair of Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Maintenance of structures, repair and strengthening, subsequent waterproofing of structures
Literature BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen
Course L0253: Mineral Building Materials
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Components of mineral building materials and their function, binding materials, concrete and mortar, special mortars, special concretes
Literature

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Course L0256: Technology of mineral Building Materials
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Design and production of a special mineral building material
Literature

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Course L0254: Transport Processes in Building Materials and Damage Processes
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Transport Processes in Building Materials and Damage Processes
Literature Blaich, J.: Bauschäden, Analyse und Vermeidung

Module M0723: Design of Prestressed Structures and Concrete Bridges

Courses
Title Typ Hrs/wk CP
Design of Prestressed Structures and Concreet Bridges (L0603) Lecture 3 4
Design of Prestressed Structures and Concreet Bridges (L0604) Recitation Section (large) 2 2
Module Responsible Prof. Günter Rombach
Admission Requirements None
Recommended Previous Knowledge

Detailed knowledge on the design of concrete structures.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know the main bridge types, their applications and the various loads. They can explain the basic design methods. They can explain the design of a prestressed bridge.

Skills

The students are able to design reinforced or prestressed concrete bridges.

Personal Competence
Social Competence

The students can design in teamwork a real concrete bridge.

Autonomy

The students are able to design a prestressed concrete bridge and discuss the problems and results with other students.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 180 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0603: Design of Prestressed Structures and Concreet Bridges
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content

prestressed structures

  • basis of prestressed structures
  • differences between reinforced and prestressed concrete structures
  • history of prestressing
  • construction materials: concrete, tendons, ducts, anchorage systems
  • construction: prestressing methods
  • prestressing forces and member forces (friction, elongation)
  • tendon layout
  • time dependant prestressing losses
  • design of prestressed structures
  • design of anchorage region
  • non-bonded prestressing
  • prestressed flat slabs


Concrete bridges

  • history of bridges
  • design of bridges
  • loads on bridges
  • member forces for slab, T-beam, hollow box, frame and arch bridges
  • precast bridges - precast segmental bridges
  • bearings
  • abutments, columns
  • construction methods
Literature
  • Vorlesungsumdruck
  • Rombach, G. (2003): Spannbetonbau. Ernst & Sohn, Berlin
  • Wicke, M. (2002): Anwendung des Spannbetons. Betonkalender 2002, Teil II, S. 113-180, Verlag Ernst & Sohn, Berlin
  • Leonhardt, F. (1980): Vorlesungen über Massivbau. Teil 5: Spannbeton. Berlin
  • Mehlhorn, G. (2007): Handbuch Brücken, Springer Verlag
  • Schäfer, H.; Kaufeld, K. (1997): Massivbrücken. Betonkalender Teil II, S. 443ff, Ernst & Sohn, Berlin
  • Menn, Ch. (1986): Stahlbetonbrücken. Springer Verlag, Wien
Course L0604: Design of Prestressed Structures and Concreet Bridges
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0756: Soil Mechanics and -Dynamics

Courses
Title Typ Hrs/wk CP
Soil Mechanics - Selected Topics (L0374) Lecture 2 2
Soil Dynamics (L0452) Lecture 3 2
Experimental Researches in Geotechnics (L0706) Practical Course 1 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge

modules: Mathematics I-III, Mechanics I-II, Geotechnics I

courses: Soil laboratory course, (Applied structural dynamics)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After the successful completion of the module the students should be able to:

  • to derive and to apply the basic equation of a simple mass oscillator,
  • to understand the wave propagation in the soil under dynamic excitation and to detect the relevant parameters,
  • to know the essential laboratory and field tests to determine soil dynamic characteristics and to evaluate them,
  • to design machine foundations to dynamic load,
  • to measure shocks to perform vibration forecast,
  • to evaluate shocks in term to their effect on people and buildings,
  • to evaluate possibilities of isolation,
  • to understand mechanisms that cause earthquakes and evaluate earthquake in term of their magnitude and intensity,
  • to know methods to determine axial pile capacity, integrity and the dynamic bedding modulus,
  • to know the mechanisms that lead to a deformation accumulation due to cyclic loading and to estimate these deformations mathematically,
  • to distinguish the area of application of the method of elastodynamics and plastodynamics,

  • to detect the undrained shear strength as a function of a number of state variables,
  • to capture the visous behaviour of cohesive soils and to consider the effects of creep and rate-dependent shear strength in calculations,
  • to consider the impact of the partly saturated of a seepage and shear strength.
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 15 % Subject theoretical and practical work
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Course L0374: Soil Mechanics - Selected Topics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Hans Mathäus Stanford
Language DE
Cycle SoSe
Content

selected topis:

- continuum mechanis

- constitutive modelling

- time and rate dependend material behavior of soils

- cyclic loading

- undrained conditions

Literature Kolymbas D. (2007): Geotechnik - Bodenmechanik, Grundbau und Tunnelbau. Springer Verlag
Course L0452: Soil Dynamics
Typ Lecture
Hrs/wk 3
CP 2
Workload in Hours Independent Study Time 18, Study Time in Lecture 42
Lecturer Alexander Chmelnizkij
Language DE
Cycle SoSe
Content

• mass-spring-damper systems,

• wave propagation in soils,

• dynamic soil parameters,

• Determination of dynamic soil parameters,

• machine foundations,

• in-situ measurement of ground motion, ground motion prediction, evaluation of ground motion,

• ground motion shielding,

• introduction into earthquake engineering,

• dynamic pile tests,

• cyclic accumulation,

• plastodynamics

Literature
  • Das B.M.: Fundamentals of Soil Dynamics, Elsevier
  • Empfehlungen des Arbeitskreises Baugrunddynamik. Hrsg. Deutsche Gesellschaft für Geotechnik (DGGT)
  • Haupt W.: Bodendynamik. Vieweg und Teubner
  • Meskouris K. und Hinzen K.-G.: Bauwerke und Erdbeben. Vieweg Verlag
  • Studer J.A., Koller M.G. und Laue J.: Bodendynamik, Springer Verlag
Course L0706: Experimental Researches in Geotechnics
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Marius Milatz
Language DE
Cycle SoSe
Content

The students are supposed to:

  • become acquainted with geotechnical model tests, field tests and laboratory tests as well as corresponding measurement techniques. These compromise amongst others inclinometer measurements and geophone measurements as well as high-grade laboratory tests on the stress-strain relationship of soil specimens, e. g. triaxial tests, simple shear tests and resonant column tests.
  • gain insight into current soil mechanical research.
  • plan, coordinate, perform and evaluate soil mechanical tests in a team.
  • discuss, reflect, review and present the obtained results in a group.

An important learning target is the introduction to scientific work for students who plan a scientific career, and for those who will work in practice with the responsibility to order corresponding tests and evaluate the results.

The practical laboratory work is based on annualy changing problems, which are however related to the experience and results of the preceding year's course group.




Literature

- Grabe, J. (2004): Bodenmechanik und Grundbau, Band 3 der Veröffentlichungsreihe des Instituts für Geotechnik und Baubetrieb, Technische Universität Hamburg-Harburg.

- Kolymbas, D. (2007): Geotechnik - Bodenmechanik, Grundbau und Tunnelbau. 2., korrigierte und ergänzte Auflage, Springer Verlag.

- Normen zu geotechnischen Versuchsgeräten und Versuchsverfahren:
      - DIN 18135:2012-04: Baugrund, Untersuchung von Bodenproben -    
      Eindimensionaler Kompressionsversuch, Deutsches Institut für
      Normung, e. V.

    - DIN 18137-2:2011-04: Baugrund, Untersuchung von Bodenproben -
      Bestimmung der Scherfestigkeit - Teil 2: Triaxialversuch,
      Deutsches Institut für Normung e. V.

Module M0807: Boundary Element Methods

Courses
Title Typ Hrs/wk CP
Boundary Element Methods (L0523) Lecture 2 3
Boundary Element Methods (L0524) Recitation Section (large) 2 3
Module Responsible Prof. Otto von Estorff
Admission Requirements None
Recommended Previous Knowledge

Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics)
Mathematics I, II, III (in particular differential equations)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method.



Skills

The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the corresponding system matrices, and solving the resulting system of equations.



Personal Competence
Social Competence

Students can work in small groups on specific problems to arrive at joint solutions.

Autonomy

The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 20 % Midterm
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Energy Systems: Core Qualification: Elective Compulsory
Mechanical Engineering and Management: Specialisation Product Development and Production: Elective Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Product Development, Materials and Production: Core Qualification: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Course L0523: Boundary Element Methods
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Otto von Estorff
Language EN
Cycle SoSe
Content

- Boundary value problems
- Integral equations
- Fundamental Solutions
- Element formulations
- Numerical integration
- Solving systems of equations (statics, dynamics)
- Special BEM formulations
- Coupling of FEM and BEM

- Hands-on Sessions (programming of BE routines)
- Applications

Literature

Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Course L0524: Boundary Element Methods
Typ Recitation Section (large)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Otto von Estorff
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0827: Modeling in Water Management

Courses
Title Typ Hrs/wk CP
Applied Groundwater Modeling (L0543) Lecture 1 1
Applied Groundwater Modeling (L0544) Recitation Section (small) 2 2
Modeling of Water Supply and Sewer Network (L0875) Project-/problem-based Learning 2 3
Module Responsible Dr. Klaus Johannsen
Admission Requirements None
Recommended Previous Knowledge

Groundwater

  • groundwater hydraulics and transport of substances

Pipe Systems

  • Knowledge on urban water infrastructures, in particular drinking water systemsand urban drainage systems including special structures
  • Hydraulics of drinking water supply systems and sewer systems
  • Basic knowledge on water management
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the modelling of groundwater flow and transport as well as urban water infrastructures. They can carry out systems analyses and can detect technical and conceptual weak points within the systems in case studies. Besides they are able to analyse interdependencies of hydraulic and toxic phenomena in soil and water.


Skills

The students are able to construct and apply scientific groundwater models indipendently. They can work on different scenarios and can compare or assess different solutions for existing problems by application of selected software products. The students are able to use different software solutions (e.g. EPANET, EPA-SWMM).



Personal Competence
Social Competence

Wird nicht vermittelt.

Autonomy

Wird nicht vermittelt.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 20 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0543: Applied Groundwater Modeling
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE/EN
Cycle SoSe
Content Introduction and application of the groundwater model MODFLOW (PMWIN); theoretical backround of the modell, students do work with the model PMWIN for practical case studies.
Literature

MODFLOW-Handbuch

Chiang, Wen Hsien: PMWIN


Course L0544: Applied Groundwater Modeling
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0875: Modeling of Water Supply and Sewer Network
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen, Weitere Mitarbeiter
Language DE
Cycle SoSe
Content
Literature Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014.

Module M0828: Urban Environmental Management

Courses
Title Typ Hrs/wk CP
Noise Protection (L1109) Lecture 2 2
Urban Infrastructures (L0874) Project-/problem-based Learning 2 4
Module Responsible Dr. Dorothea Rechtenbach
Admission Requirements None
Recommended Previous Knowledge
  • Knowledge on Urban planning
  • Knowledge on measures for climate protection
  • General knowledge of scientific writing/working
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students can describe urban development corridors as well as current and future urban environmental problems. They are able to explain the causes of environmental problems (like noise).

Students can specify applications for various technical innovations and explain why these contribute to the improvement of urban life. They can, for example, derive and discuss measures for effective noise abatement.

Skills Students are able to develop specific solutions for correcting existing or future environment-related problems of urban development. They can define a range of conceptual and technical solutions for environmental problems for different development paths. To solve specific urban environmental problems they can select technical innovations and integrate them into the urban context.
Personal Competence
Social Competence

The students can work together in international groups.

Autonomy

Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Written Report plus oral Presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1109: Noise Protection
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Jäschke
Language EN
Cycle SoSe
Content
Literature

1) Müller & Möser (2013): Handbook of Engineering Acoustics (also available in German)
2) WHO (1999): Guidelines for Community Noise
3) Environmental Noise Directive 2002/49/EG
4) ISO 9613-2 (1996): Acoustics, Attenuation of sound during propagation outdoors, Part 2: General method of calculation 

Course L0874: Urban Infrastructures
Typ Project-/problem-based Learning
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Dr. Dorothea Rechtenbach
Language EN
Cycle SoSe
Content

Problem Based Learning

Main topics are:

  • Central vs. Decentral Wastewater Treatment.
  • Compaction of Cities.
  • Car Free Cities.
  • Multifunctional Places in Cities.
  • The Sustainability of Freight Transport in Cities.


Literature Depends on chosen topic.

Module M0859: Coastal Hydraulic Engineering II

Courses
Title Typ Hrs/wk CP
Coastal- and Flood Protection (L0808) Lecture 2 3
Coastal- and Flood Protection (L1415) Project-/problem-based Learning 1 1
Maintennance and Defence of Flood Protection Structures (L1411) Lecture 2 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Coastal Engineering I
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students have the capability to define and explain in detail the important aspects of erosion protection and flood protection and are able to apply the aspects to practical coastal protection problems. They are able to design and dimension important coastal protection measures from the functional and from the constructional point of view.

Skills

The students are able to select design approaches for the functional and constructional design of erosion and flood protection measures and apply these approaches to practical design tasks.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in applied problems such as the functional and constructive design of coastal and flood protection structures. Additionaly, they will be able to work in team with engineers of other disciplines.
Autonomy The students will be able to independently extend their knowledge and apply it to new problems.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 130 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Course L0808: Coastal- and Flood Protection
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content

Protection of sandy coasts

  • Sediment transport
  • Morphology
  • Technical solution for the protection of sandy coasts
    • Construction in direction of the coast
    • Constructions perpendicular to the coast
    • Other Concepst
  • Calculation approaches and numerical models

Flood Protection

  • Classification of constructions / measures
  • Dikes
  • Dunes
  • Foreland - constructions
  • Flood-Protection Walls
  • Drainage of the hinterland


Literature

Vorlesungsumdruck

Coastal Engineering Manual CEM


Course L1415: Coastal- and Flood Protection
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1411: Maintennance and Defence of Flood Protection Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Olaf Müller
Language DE
Cycle SoSe
Content
  • Dike protection
  • Maintennance of flood protection measures


Literature

Vorlesungsumdruck

Module M0860: Harbour Engineering and Harbour Planning

Courses
Title Typ Hrs/wk CP
Harbour Engineering (L0809) Lecture 2 2
Harbour Engineering (L1414) Project-/problem-based Learning 1 2
Port Planning and Port Construction (L0378) Lecture 2 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Basics of coastal engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to define in details and to choose design approaches for the functional design of a port and apply them to design tasks. They can design the fundamental elements of a port.

Skills

The students are able to select and apply appropriate approaches for the functional design of ports.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in applied problems such as the functional design of ports. Additionaly, they will be able to work in team with engineers of other disciplines.
Autonomy The students will be able to independently extend their knowledge and apply it to new problems.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 150 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Course L0809: Harbour Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content
  • Fundamentals of harbor engineering
    • Maritime transportation and waterways engineering
    • Ships
  • Elements of harbors
    • Harbor approaches and water-side harbor areas
    • Terminal design and handling of cargo
    • Quay-walls and piers
    • Equipment of harbors
    • Sluices and other special constructions
  • Connection to inland transportation / inland waterway transportation
  • Protection of harbors
    • Breakwaters and Jetties
    • Wave protection of harbors
  • Fishery and other small harbors


Literature Brinkmann, B.: Seehäfen, Springer 2005
Course L1414: Harbour Engineering
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0378: Port Planning and Port Construction
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Frank Feindt
Language DE
Cycle SoSe
Content
  • Planning and implementation of major projects
  • Market analysis and traffic relations
  • Planning process and plan 
  • Port planning in urban neighborhood
  • Development of the logistics center "Port of Hamburg" in the metropolis
  • Quays and waterfront structure
  • Special planning Law Harbor - securing of a flexible use of the port
  • Dimensioning of quays
  • Flood protection structures
  • Port of Hamburg - Infrastructure and development
  • Preparation of areas
  • Scour formation in front of shore structures
Literature Vorlesungsumdruck, s. www.tu-harburg.de/gbt

Module M0861: Modelling of Hydraulic Engineering

Courses
Title Typ Hrs/wk CP
Hydraulic Models (L0813) Project-/problem-based Learning 1 1
Modelling of Waves (L0812) Project-/problem-based Learning 1 1
Modelling of Flow in Rivers and Estuaries (L0810) Lecture 3 4
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge

Coastal Hydraulic Engineering I

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to define in detail the basic processes that are related to the modelling of flows in hydraulic engineering. Besides, they can describe the basic aspects of numerical modelling and actual numerical models for the simulation of flows and waves.

Skills

Students are able to apply hydrodynamic-numerical models to practical hydraulic engineering tasks.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in simple applied problems. Additionaly, they will be able to work in team with others.
Autonomy The students will be able to independently extend their knowledge and apply it to new problems.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 3 hours. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Course L0813: Hydraulic Models
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content
  • Fundamentals of hydraulic models
  • Model laws
  • Pi theorem of Buckingham
  • Practical examples of hydraulic models


Literature

Strobl, Zunic: Wasserbau, Kap. 11 Hydraulische Modelle, Springer


Course L0812: Modelling of Waves
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content
  •   Waves, interactions with shallow water and constructions
  •   Wave theories
  •   Sea state and surges
  • Development of waves
  • Wave spectra
  •   Modelling of Waves / phase averaged and phase resolved models
  •   Application of a phase averaged model for wave prediction (SWAN)
  • ·  Application of phase resolved wave models (Mike)


Literature

Vorlesungsumdruck

Course L0810: Modelling of Flow in Rivers and Estuaries
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Dr. Edgar Nehlsen, Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content

Basics of numerial models / application of models

  • classification of models
  • model concept
  • modelling

1D Working Equation

Mathematical description of physical processes

  • Equation of motions
    • conservation of mass
    • conservation of momentum
  • Initial conditions and boundary conditions

Numerical Methods

  • Time step procedure
  • Finite differences
  • Finite volumes



Literature Vorlesungsskript

Module M0874: Wastewater Systems

Courses
Title Typ Hrs/wk CP
Wastewater Systems - Collection, Treatment and Reuse (L0934) Lecture 2 2
Wastewater Systems - Collection, Treatment and Reuse (L0943) Recitation Section (large) 1 1
Advanced Wastewater Treatment (L0357) Lecture 2 2
Advanced Wastewater Treatment (L0358) Recitation Section (large) 1 1
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Knowledge of wastewater management and the key processes involved in wastewater treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to outline key areas of the full range of treatment systems in waste water management, as well as their mutual dependence for sustainable water protection. They can describe relevant economic, environmental and social factors.

Skills

Students are able to pre-design and explain the available wastewater treatment processes and the scope of their application in municipal and for some industrial treatment plants.

Personal Competence
Social Competence

Social skills are not targeted in this module.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Environmental Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0934: Wastewater Systems - Collection, Treatment and Reuse
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content •Understanding the global situation with water and wastewater

•Regional planning and decentralised systems

•Overview on innovative approaches

•In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse

•Mathematical Modelling of Nitrogen Removal

•Exercises with calculations and design

Literature

Henze, Mogens:
Wastewater Treatment: Biological and Chemical Processes, Springer 2002, 430 pages

George Tchobanoglous, Franklin L. Burton, H. David Stensel:
Wastewater Engineering: Treatment and Reuse, Metcalf & Eddy
McGraw-Hill, 2004 - 1819 pages

Course L0943: Wastewater Systems - Collection, Treatment and Reuse
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0357: Advanced Wastewater Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language DE
Cycle SoSe
Content

Survey on advanced wastewater treatment

reuse of reclaimed municipal wastewater

Precipitation

Flocculation

Depth filtration

Membrane Processes

Activated carbon adsorption

Ozonation

"Advanced Oxidation Processes"

Disinfection

Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003
Course L0358: Advanced Wastewater Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Joachim Behrendt
Language DE
Cycle SoSe
Content

Aggregate organic compounds (sum parameters)

Industrial wastewater

Processes for industrial wastewater treatment

Precipitation

Flocculation

Activated carbon adsorption

Recalcitrant organic compounds


Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003

Module M0922: City Planning

Courses
Title Typ Hrs/wk CP
City Planning (L1066) Project-/problem-based Learning 4 6
Module Responsible Prof. Carsten Gertz
Admission Requirements None
Recommended Previous Knowledge

for "Principles of Urban Planning": none

for "Designing Urban Streetscapes": some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineering“


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to:

  • use technical terms of urban planning.
  • describe the main determinants of urban development.
  • explain and compare different possibilities of how urban development can be influenced.
  • discuss requirements for public streetscapes.
  • explain the importance of street design.


Skills

Students are able to:

  • read and analyze urban development concepts and designs for streetscapes
  • appraise such concepts in the context of competing requirements. 
  • design, justify and reflect their own solutions for concrete examples.


Personal Competence
Social Competence

Students are able to:

  • discuss intermediate results with each other.
  • constructively accept feedback on their own work. 
  • provide constructive feedback to others.


Autonomy

Students are able to:

  • independently complete a written report including drawings following a broadly pre-defined process.
  • assess the consequences of their proposed solutions.
  • independently acquire knowledge and apply this to new issues or problem areas.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale written assignment, designwork during the semester
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1066: City Planning
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Carsten Gertz
Language DE
Cycle SoSe
Content

„Principles of Urban Planning“ deals with the determinants of urban development and their interactions. Topics include:

  • legal framework,
  • instruments and methods of planning,
  • functional requirements,
  • stakeholders and actors
  • basic design requirements
  • different planning levels and
  • historical contexts.
The objective of the course is for students to acquire a basic understanding of urban development problems and approaches for solving them. They will also be able to comprehend the process of urban planning. The course also covers the various functional and aesthetic requirements for  designing streetscape as the most important elements of public space.
The project work deals with a real life scenario and includes drawing up a development plan, an urban design concept, a building masterplan and a street redesign.


Literature

Albers, Gerd; Wekel, Julian (2009) Stadtplanung: Eine illustrierte Einführung. Primus Verlag. Darmstadt.

Frick, Dieter (2008) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. Wasmuth-Verlag. Tübingen

Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen

Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York.


Module M0977: Construction Logistics and Project Management

Courses
Title Typ Hrs/wk CP
Construction Logistics (L1163) Lecture 1 2
Construction Logistics (L1164) Recitation Section (small) 1 2
Project Development and Management (L1161) Lecture 1 1
Project Development and Management (L1162) Project-/problem-based Learning 1 1
Module Responsible Prof. Heike Flämig
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can...

  • give definitions of the main terms of construction logistics and project development and management
  • name advantages and disadvantages of internal or external construction logistics
  • explain characteristics of products, demand and production of construction objects and their consequences for construction specific supply chains
  • differentiate constructions logistics from other logistics systems
Skills

Students can...

  • carry out project life cycle assessments
  • apply methods and instruments of construction logistics
  • apply methods and instruments of project development and management
  • apply methods and instruments of conflict management
  • design supply and waste removal concepts for a construction project
Personal Competence
Social Competence

Students can...

  • hold presentations in and for groups
  • apply methods of conflict solving skills in group work and case studies
Autonomy

Students can...

  • solve problems by holistic, systemic and flow oriented thinking
  • improve their creativity, negotiation skills, conflict and crises solution skills by applying methods of moderation in case studies
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Two written papers with presentations
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Course L1163: Construction Logistics
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heike Flämig
Language DE
Cycle SoSe
Content

The lecture gives deeper insight how important logistics are as a competetive factor for construction projects and which issues are to be adressed.

The following toppics are covered:

  • competetive factor logistics
  • the concept of systems, planning and coordination of logistics
  • material, equipment and reverse logistics
  • IT in construction logistics
  • elements of the planning model of construction logistics and their connections
  • flow oriented logistics systems for construction projects
  • logistics concepts for ready to use construction projects (especially procurement and waste removel logistics)
  • best practice examples (construction logistics Potsdamer Platz, recent case study of the region)

Contents of the lecture are deepened in special exercises.

Literature

Flämig, Heike: Produktionslogistik in Stadtregionen. In: Forschungsverbund Ökologische Mobilität (Hrsg.) Forschungsbericht Bd. 15.2. Wuppertal 2000.

Krauss, Siri: Die Baulogistik in der schlüsselfertigen Ausführung,  Bauwerk Verlag GmbH Berlin 2005.

Lipsmeier, Klaus: Abfallkennzahlen für Neubauleistungen im Hochbau : Verlag Forum für Abfallwirtschaft und Altlasten, 2004.

Schmidt, Norbert: Wettbewerbsfaktor Baulogistik. Neue Wertschöpfungspotenziale in der Baustoffversorgung. In: Klaus, Peter: Edition Logistik. Band 6. Deutscher Verkehrs-Verlag. Hamburg 2003.

Seemann, Y.F. (2007): Logistikkoordination als Organisationseinheit bei der Bauausführung Wissenschaftsverlag Mainz in Aachen, Aachen. (Mitteilungen aus dem Fachgebiet Baubetrieb und Bauwirtschaft (Hrsg. Kuhne, V.): Heft 20)


Course L1164: Construction Logistics
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heike Flämig
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1161: Project Development and Management
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Heike Flämig, Dr. Anton Worobei
Language DE
Cycle SoSe
Content

Within the lecture, the main aspects of project development and management are tought:

  • Terms and definitions of project management
  • Advantages and disadvantages of different ways of project handling
  • organization, information, coordination and documentation
  • cost and fincance management in projects
  • time- and capacity management in projects
  • specific methods and instruments for successful team work

Contents of the lecture are deepened in special exercises.

Literature Projektmanagement-Fachmann. Band 1 und Band 2. RKW-Verlag, Eschborn, 2004.
Course L1162: Project Development and Management
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Heike Flämig, Dr. Anton Worobei
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0998: Statics and Dynamics of Structures

Courses
Title Typ Hrs/wk CP
Structural Dynamics (L1202) Lecture 2 2
Structural Dynamics (L1203) Recitation Section (large) 2 2
Fracture mechanics and fatigue in steel structures (L0564) Lecture 1 1
Fracture Mechanics and Fatigue (L0565) Recitation Section (large) 1 1
Module Responsible Prof. Uwe Starossek
Admission Requirements None
Recommended Previous Knowledge

Knowledge of linear structural analysis of statically determinate and indeterminate structures; Mechanics I/II, Mathematics I/II, Differential equations I

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of this module, the student can explain the basic aspects of dynamic effects on structures and the respective methods.




Skills

After successful completion of this module, the students will be able to predict the response of material and structures to dynamics loading using the appropriate computational approaches and methods.



Personal Competence
Social Competence

Students can

  • participate in subject-specific and interdisciplinary discussions,
  • defend their own work results in front of others
  • promote the scientific development of colleagues
  • Furthermore, they can give and accept professional constructive criticism
Autonomy

Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of Structural Analysis.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 150 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L1202: Structural Dynamics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle SoSe
Content
  • Single-degree-of-freedom systems: undamped and damped vibration, free vibration, forced vibrations due to harmonic, periodical or arbitrary loading, natural frequency, damping
  • vibration isolation
  • solution in the frequency-domain (Fourier transformation), solution in the time-domain
  • multi-degree-of-freedom systems: continuous or discrete systems, modelling with finite elements, generalisation
  • modal analysis
  • power iteration according to v.Mises
  • earthquake loading: seismological basics, response spectrum method
  • wind-induced vibrations: engineering meteorology, aerodynamic, classification of excitation mechanisms
progressive collapse


Literature

Clough, R.W., Penzien, J.: Dynamics of Structures. 2. Aufl., McGraw-Hill, New York, 1993.


Course L1203: Structural Dynamics
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0564: Fracture mechanics and fatigue in steel structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ingo Hadrych
Language DE
Cycle SoSe
Content

    basics of fatigue stress and fatigue resistance and determination of fatigue strength,

    determination anduse of S-N-curves and classification of notch effects,

    set up of determination of fatigue strength under dynamic load using the accumulation formula by Palmgren-Miner,

    set up of determination of fatigue strength in different examples,

    basics of construction and design regarding the problem of material fatigue,

    basics of linear elastic fracture mechanics under static and dynamic load,

    determination of lifetime of steel construction based on linear elastic fracture mechanics in different examples.

Literature

    Seeßelberg, C.; Kranbahnen - Bemessung und konstruktive Gestaltung; 3. Auflage;      Bauwerk-Verlag; Berlin 2009

    Kuhlmann, Dürr, Günther; Kranbahnen und Betriebsfestigkeit; in Stahlbau Kalender 2003; Verlag Ernst & Sohn; Berlin 2003

    Deutscher Stahlbau-Verband (Hrsg.); Stahlbau Handbuch Band 1 Teil B; 3. Auflage; Stahlbau-Verlagsgesellschaft; Köln 1996

    Petersen, C.; Stahlbau; 3. überarb. und erw. Auflage; Vieweg-Verlag; Braunschweig 1993

    DIN V ENV 1993-1-1: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 1-1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau; 1993

    DIN V ENV 1993-6: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 6: Kranbahnen; 2001

    DIN-Fachbericht 126. Richtlinie zur Anwendung von DIN V ENV 1993-6; Nationales Anwendungsdokument (NAD); Berlin 2002











Course L0565: Fracture Mechanics and Fatigue
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ingo Hadrych
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0999: Steel Construction Project

Courses
Title Typ Hrs/wk CP
Steel Construction Project (L1206) Project Seminar 4 6
Module Responsible Prof. Marcus Rutner
Admission Requirements None
Recommended Previous Knowledge Steel and Composite Structures
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students are able to prepare a part of the whole project and explain it to the others.
Skills Students can produce sketches and calculations of their part of the project. They are able to adjust their work in reaction to changing conditions resulting from other participants of the project.
Personal Competence
Social Competence

Students can present their results to other members of the group.

They have the ability to work for a broad agreement with respect to intergroup dependencies.

They can distribute and process tasks independently.

Autonomy Students can handle their part of the project on their own resposibility-
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale approx. 15-20 pages (without appendix)
Assignment for the Following Curricula Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Compulsory
Course L1206: Steel Construction Project
Typ Project Seminar
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Marcus Rutner
Language DE
Cycle SoSe
Content Design of a big construction project (i.e skyscraper, large bridge, roof of a stadiuim) in small groups
Literature

Wird je nach Projekt individuell angegeben.

Module M0663: Marine Geotechnics and Numerics

Courses
Title Typ Hrs/wk CP
Marine Geotechnics (L0548) Lecture 1 2
Marine Geotechnics (L0549) Recitation Section (large) 2 1
Numerical Methods in Geotechnics (L0375) Lecture 3 3
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge

complete modules: Geotechnics I-II, Mathematics I-III

courses: Soil laboratory course

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Course L0548: Marine Geotechnics
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jürgen Grabe
Language DE
Cycle SoSe
Content
  • Geotechnical investigation an description of the seabed
  • Foundations of Offshore-Constructions
  • cCliff erosion
  • Sea dikes
  • Port structures
  • Flood protection structures
Literature
  • EAK (2002): Empfehlungen für Küstenschutzbauwerke
  • EAU (2004): Empfehlungen des Arbeitsausschusses Uferbauwerke
  • Poulos H.G. (1988): Marine Geotechnics. Unwin Hyman, London
  • Wagner P. (1990): Meerestechnik: Eine Einführung für Bauingenieure. Ernst & Sohn, Berlin
Course L0549: Marine Geotechnics
Typ Recitation Section (large)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0375: Numerical Methods in Geotechnics
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Hans Mathäus Stanford
Language DE
Cycle SoSe
Content

Topics:

  • numerical simulations
  • numerical algorithms
  • finite element method
  • application of finite element method in geomechanics
  • constitutive models for soils
  • contact models for soil structure interaction
  • selected applications
Literature
  • Wriggers P. (2001): Nichtlineare Finite-Elemente-Methoden, Springer Verlag, Berlin
  • Bathe Klaus-Jürgen (2002): Finite-Elemente-Methoden. Springer Verlag, Berlin

Module M1133: Port Logistics

Courses
Title Typ Hrs/wk CP
Port Logistics (L0686) Lecture 2 3
Port Logistics (L1473) Recitation Section (small) 2 3
Module Responsible Prof. Carlos Jahn
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Th

After completing the module, students can...

  • reflect on the development of seaports (in terms of the functions of the ports and the corresponding terminals, as well as the relevant operator models) and place them in their historical context;
  • explain and evaluate different types of seaport terminals and their specific characteristics (cargo, transhipment technologies, logistic functional areas);
  • analyze common planning tasks (e.g. berth planning, stowage planning, yard planning) at seaport terminals and develop suitable approaches (in terms of methods and tools) to solve these planning tasks;
  • identify future developments and trends regarding the planning and control of innovative seaport terminals and discuss them in a problem-oriented manner.


Skills

After completing the module, students will be able to...

  • recognize functional areas in ports and seaport terminals;
  • define and evaluate suitable operating systems for container terminals;
  • perform static calculations with regard to given boundary conditions, e.g. required capacity (parking spaces, equipment requirements, quay wall length, port access) on selected terminal types;
  • reliably estimate which boundary conditions influence common logistics indicators in the static planning of selected terminal types and to what extent.



Personal Competence
Social Competence

After completing the module, students can...

  • transfer the acquired knowledge to further questions of port logistics;
  • discuss and successfully organize extensive task packages in small groups;
  • in small groups, document work results in writing in an understandable form and present them to an appropriate extent.


Autonomy

After completing the module, the students are able to...

  • research and select specialist literature, including standards, guidelines and journal papers, and to develop the contents independently;
  • submit own parts in an extensive written elaboration in small groups in due time and to present them jointly within a fixed time frame.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 15 % Written elaboration
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Course L0686: Port Logistics
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Carlos Jahn
Language DE
Cycle SoSe
Content

Port Logistics deals with the planning, control, execution and monitoring of material flows and the associated information flows in the port system and its interfaces to numerous actors inside and outside the port area.

The extraordinary role of maritime transport in international trade requires very efficient ports. These must meet numerous requirements in terms of economy, speed, safety and the environment. Against this background, the lecture Port Logistics deals with the planning, control, execution and monitoring of material flows and the associated information flows in the port system and its interfaces to numerous actors inside and outside the port area. The aim of the lecture Port Logistics is to convey an understanding of structures and processes in ports. The focus will be on different types of terminals, their characteristical layouts and the technical equipment used as well as the ongoing digitization and interaction of the players involved.

In addition, renowned guest speakers from science and practice will be regularly invited to discuss some lecture-relevant topics from alternative perspectives.

The following contents will be conveyed in the lectures:

  • Instruction of structures and processes in the port
  • Planning, control, implementation and monitoring of material and information flows in the port
  • Fundamentals of different terminals, characteristical layouts and the technical equipment used
  • Handling of current issues in port logistics
Literature
  • Alderton, Patrick (2013). Port Management and Operations.
  • Biebig, Peter and Althof, Wolfgang and Wagener, Norbert (2017). Seeverkehrswirtschaft: Kompendium.
  • Brinkmann, Birgitt. Seehäfen: Planung und Entwurf. Berlin Heidelberg: Springer-Verlag, 2005.
  • Büter, Clemens (2013). Außenhandel: Grundlagen internationaler Handelsbeziehungen.
  • Gleissner, Harald and Femerling, J. Christian (2012). Logistik: Grundlagen, Übungen, Fallbeispiele.
  • Jahn, Carlos; Saxe, Sebastian (Hg.). Digitalization of Seaports - Visions of the Future,  Stuttgart: Fraunhofer Verlag, 2017.
  • Kummer, Sebastian (2019). Einführung in die Verkehrswirtschaft
  • Lun, Y.H.V. and Lai, K.-H. and Cheng, T.C.E. (2010). Shipping and Logistics Management.
  • Woitschützke, Claus-Peter (2013). Verkehrsgeografie.
Course L1473: Port Logistics
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Carlos Jahn
Language DE
Cycle SoSe
Content

The content of the exercise is the independent preparation of a scientific paper plus an accompanying presentation on a current topic of port logistics. The paper deals with current topics of port logistics. For example, the future challenges in sustainability and productivity of ports, the digital transformation of terminals and ports or the introduction of new regulations by the International Maritime Organization regarding the verified gross weight of containers. Due to the international orientation of the event, the paper is to be prepared in English.


Literature
  • Alderton, Patrick (2013). Port Management and Operations.
  • Biebig, Peter and Althof, Wolfgang and Wagener, Norbert (2017). Seeverkehrswirtschaft: Kompendium.
  • Brinkmann, Birgitt. Seehäfen: Planung und Entwurf. (2005) Berlin Heidelberg: Springer-Verlag.
  • Büter, Clemens (2013). Außenhandel: Grundlagen internationaler Handelsbeziehungen.
  • Gleissner, Harald and Femerling, J. Christian (2012). Logistik: Grundlagen, Übungen, Fallbeispiele.
  • Jahn, Carlos; Saxe, Sebastian (Hg.) (2017) Digitalization of Seaports - Visions of the Future,  Stuttgart: Fraunhofer Verlag.
  • Kummer, Sebastian (2019). Einführung in die Verkehrswirtschaft
  • Lun, Y.H.V. and Lai, K.-H. and Cheng, T.C.E. (2010). Shipping and Logistics Management.
  • Woitschützke, Claus-Peter (2013). Verkehrsgeografie.

Module M1132: Maritime Transport

Courses
Title Typ Hrs/wk CP
Maritime Transport (L0063) Lecture 2 3
Maritime Transport (L0064) Recitation Section (small) 2 3
Module Responsible Prof. Carlos Jahn
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to…

  • present the actors involved in the maritime transport chain with regard to their typical tasks;
  • name common cargo types in shipping and classify cargo to the corresponding categories;
  • explain operating forms in maritime shipping, transport options and management in transport networks;
  • weigh the advantages and disadvantages of the various modes of hinterland transport and apply them in practice;
  • present relevant factors for the location planning of ports and seaport terminals and discuss them in a problem-oriented way;
  • estimate the potential of digitisation in maritime shipping.


Skills

The students are able to...

  • determine the mode of transport, actors and functions of the actors in the maritime supply chain;
  • identify possible cost drivers in a transport chain and recommend appropriate proposals for cost reduction;
  • record, map and systematically analyse material and information flows of a maritime logistics chain, identify possible problems and recommend solutions;
  • perform risk assessments of human disruptions to the supply chain;
  • analyse accidents in the field of maritime logistics and evaluating their relevance in everyday life;
  • deal with current research topics in the field of maritime logistics in a differentiated way; 
  • apply different process modelling methods in a hitherto unknown field of activity and to work out the respective advantages.
Personal Competence
Social Competence

The students are able to...

  • discuss and organise extensive work packages in groups;
  • document and present the elaborated results.
Autonomy

The students are capable to...

  • research and select technical literature, including standards and guidelines;
  • submit own shares in an extensive written elaboration in small groups in due time.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 15 % Subject theoretical and practical work Teilnahme an einem Planspiel und anschließende schriftliche Ausarbeitung
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Course L0063: Maritime Transport
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Carlos Jahn
Language DE
Cycle SoSe
Content

The general tasks of maritime logistics include the planning, design, implementation and control of material and information flows in the logistics chain ship - port - hinterland. This includes technology assessment, selection, dimensioning and implementation as well as the operation of technologies.

The aim of the course is to provide students with knowledge of maritime transport and the actors involved in the maritime transport chain. Typical problem areas and tasks will be dealt with, taking into account the economic development. Thus, classical problems as well as current developments and trends in the field of maritime logistics are considered.

In the lecture, the components of the maritime logistics chain and the actors involved will be examined and risk assessments of human disturbances on the supply chain will be developed. In addition, students learn to estimate the potential of digitisation in maritime shipping, especially with regard to the monitoring of ships. Further content of the lecture is the different modes of transport in the hinterland, which students can evaluate after completion of the course regarding their advantages and disadvantages.

Literature
  • Brinkmann, Birgitt. Seehäfen: Planung und Entwurf. Berlin Heidelberg: Springer-Verlag, 2005.
  • Schönknecht, Axel. Maritime Containerlogistik: Leistungsvergleich von Containerschiffen in intermodalen Transportketten. Berlin Heidelberg: Springer-Verlag, 2009.
  • Stopford, Martin. Maritime Economics Routledge, 2009
Course L0064: Maritime Transport
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Carlos Jahn
Language DE
Cycle SoSe
Content

The exercise lesson bases on the haptic management game MARITIME. MARITIME focuses on providing knowledge about structures and processes in a maritime transport network. Furthermore, the management game systematically provides process management methodology and also promotes personal skills of the participants.


Literature
  • Stopford, Martin. Maritime Economics Routledge, 2009
  • Brinkmann, Birgitt. Seehäfen: Planung und Entwurf. Berlin Heidelberg: Springer-Verlag, 2005.
  • Schönknecht, Axel. Maritime Containerlogistik: Leistungsvergleich von Containerschiffen in intermodalen Transportketten. Berlin Heidelberg: Springer-Verlag, 2009.


Module M1350: Excavation Law and Projects

Courses
Title Typ Hrs/wk CP
Subsoil and Underground Engineering Law (L0395) Lecture 2 2
Service Contract and Procurement Law (L1906) Lecture 2 2
Project Geotechnics (L0708) Project-/problem-based Learning 2 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 15 min
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0395: Subsoil and Underground Engineering Law
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Günther Schalk
Language DE
Cycle WiSe
Content

• History of Civil Engineering Law (from 1700 BC to 2000 AD)

• Basics of foundation and excarvation law / engineering law (the participants in the case law of geotechnical law case studies)

• Legal aspects of technical regulations in civil engineering (with case studies)

• The civil engineering contract (including checklists for the special civil engineering contract design and execution)

• The liability of the planner and entrepreneur in civil engineering (practical examples, jurisprudence and law, inter alia, to the Ordinance on Combatants, liability for defects and traffic safety obligations, construction law and insurance questions)

• The ground / foundation risk and the systemic risk (also in the European context)

• The total debt in (low) building law (based on practice-oriented case constellations)

• The (construction) conflict, the dispute avoidance models and the construction process (practice-oriented presentation)

Literature

Folienskript (in der Vorlesung erhältlich)

weitere Literatur:

  • Englert, Grauvogel und Maurer: Handbuch des Baugrund- und Tiefbaurechts. Werner-Verlag

Course L1906: Service Contract and Procurement Law
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Günther Schalk, Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
Literature
Course L0708: Project Geotechnics
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content The students solve independently a project-based geotechnical problem in groups. Additional lectures concerning the problem will be held and material will be distributed as study basis. Every two weeks the groups present their current project status. The final work will be presentated in a final presentation.
Literature abhängig von der Fragestellung

Module M0581: Water Protection

Courses
Title Typ Hrs/wk CP
Water Protection and Wastewater Management (L0226) Lecture 3 3
Water Protection and Wastewater Management (L2008) Project Seminar 3 3
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge in water management;
  • Good knowledge in urban drainage;
  • Good knowledge of wastewater treatment techniques;
  • Good knowledge of pollutants (e.g. COD, BOD, TS, N, P) and their properties;
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can describe the basic principles of the regulatory framework related to the international and European water sector. They can explain limnological processes, substance cycles and water morphology in detail. They are able to assess complex problems related to water protection, such as ecosystem service and wastewater treatment with a special focus on innovative solutions, remediation measures as well as conceptual approaches.

Skills

Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems.



Personal Competence
Social Competence

The students can work together in international groups.



Autonomy

Students are able to organize their work flow to prepare presentations and discussions. They can acquire appropriate knowledge by making enquiries independently.




Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale Term paper plus presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Course L0226: Water Protection and Wastewater Management
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content

The lecture focusses on:

  • Regulatory Framework (e.g. WFD)
  • Main instruments for the water management and protection
  • In depth knowledge of relevant measures of water pollution control
  • Urban drainage, treatment options in different regions on the world
  • Rainwater management, improved management of heavy rainfalls, downpours, rainwater harvesting, rainwater infiltration
  • Case Studies and Field Trips
Literature

The literature listed below is available in the library of the TUHH.

  • Water and wastewater technology Hammer, M. J. 1., & . (2012). (7. ed., internat. ed.). Boston [u.a.]: Pearson Education International.
  • Water and wastewater engineering : design principles and practice: Davis, M. L. 1. (2011). . New York, NY: McGraw-Hill.
  • Biological wastewater treatment: (2011). C. P. Leslie Grady, Jr.  (3. ed.). London, Boca Raton,  Fla. [u.a.]: IWA Publ. 
Course L2008: Water Protection and Wastewater Management
Typ Project Seminar
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content
Literature

Module M0595: Examination of Materials, Structural Condition and Damages

Courses
Title Typ Hrs/wk CP
Examination of Materials, Structural Condition and Damages (L0260) Lecture 3 4
Examination of Materials, Structural Condition and Damages (L0261) Recitation Section (small) 1 2
Module Responsible Prof. Frank Schmidt-Döhl
Admission Requirements None
Recommended Previous Knowledge Basic knowledge about building materials or material science, for example by the module Building Materials and Building Chemistry.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the rules for trading, use and marking of construction products in Germany. They know which methods for the testing of building material properties are usable and know the limitations and characterics of the most important testing methods.

Skills

The students are able to responsibly discover the rules for trading and using of building products in Germany. 
They are able to chose suitable methods for the testing and inspection of construction products, the examination of damages and the examination of the structural conditions of buildings. They are able to conclude from symptons to the cause of damages. They are able to  describe an examination in form of a test report or expert opinion.


Personal Competence
Social Competence

The students can describe the different roles of manufacturers as well as testing, supervisory and certification bodies within the framework of material testing. They can describe the different roles of the participants in legal proceedings.


Autonomy The students are able to make the timing and the operation steps to learn the specialist knowledge of a very extensive field.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L0260: Examination of Materials, Structural Condition and Damages
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle WiSe
Content Materials testing and marking process of construction products, testing methods for building materials and structures, testing reports and expert opinions, describing the condition of a structure, from symptons to the cause of damages
Literature Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013.
Course L0261: Examination of Materials, Structural Condition and Damages
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0619: Waste Treatment Technologies

Courses
Title Typ Hrs/wk CP
Waste and Environmental Chemistry (L0328) Practical Course 2 2
Biological Waste Treatment (L0318) Project-/problem-based Learning 3 4
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge chemical and biological basics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module aims possess knowledge concerning the planning of biological waste treatment plants. Students are able to explain the design and layout of anaerobic and aerobic waste treatment plants in detail, describe different techniques for waste gas treatment plants for biological waste treatment plants and explain different methods for waste analytics.


Skills

The students are able to discuss the compilation of design and layout of plants. They can critically evaluate techniques and quality control measurements. The students can recherché and evaluate literature and date connected to the tasks given in der module and plan additional tests. They are capable of reflecting and evaluating findings in the group.


Personal Competence
Social Competence

Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development in front of colleagues. Furthermore, they can give and accept professional constructive criticism.


Autonomy

Students can independently tap knowledge from literature, business or test reports and transform it to the course projects. They are capable, in consultation with supervisors as well as in the interim presentation, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Presentation
Examination duration and scale Elaboration and Presentation (15-25 minutes in groups)
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Energy and Environmental Engineering: Specialisation Environmental Engineering: Elective Compulsory
Environmental Engineering: Core Qualification: Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Course L0328: Waste and Environmental Chemistry
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language DE/EN
Cycle WiSe
Content

The participants are divided into groups. Each group prepares a transcript on the experiment performed, which is then used as basis for discussing the results and to evaluate the performance of the group and the individual student.

In some experiments the test procedure and the results are presented in seminar form, accompanied by discussion and results evaluation.

Experiments ar e.g.

Screening  and particle size determination

Fos/Tac

AAS

Chalorific value

Literature Scripte
Course L0318: Biological Waste Treatment
Typ Project-/problem-based Learning
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content
  1. Introduction
  2. biological basics
  3. determination process specific material characterization
  4. aerobic degradation ( Composting, stabilization)
  5. anaerobic degradation (Biogas production, fermentation)
  6. Technical layout and process design
  7. Flue gas treatment
  8. Plant design practical phase
Literature

Module M0705: Groundwater

Courses
Title Typ Hrs/wk CP
Geohydraulic and Solute Transport (L0539) Lecture 2 2
Geohydraulic and Solute Transport (L0540) Recitation Section (small) 1 1
Simulation in Groundwater Hydrology (L0541) Lecture 1 1
Simulation in Groundwater Hydrology (L0542) Recitation Section (small) 2 2
Module Responsible NN
Admission Requirements None
Recommended Previous Knowledge
  • Ground water hydrology
  • Hydromechanics


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to describe the fate of solutes in the subsurface along the path between soil and water body quantitatively and qualitatively. They are able to do this with simulation models.
Skills The students are able to describe conceptually movement and storage of water in the unsaturated zone. They are able to analyse pF- functions and Ku functions. They can model transport of solutes in the unsaturated and saturated zoned. They are able to determine dispersiities, sorption coefficients, decay rates and dissolution rates for organic and inorganic substances.
Personal Competence
Social Competence The students can help to each other.
Autonomy none
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min written exam and written papers
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0539: Geohydraulic and Solute Transport
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content Pump test analysis, water content-water suction functions, unsaturated hydraulic conductivity function, Brooks-Corey relation, van Genuchten relation, solute transport in unsaturated zone, solute transport and reactions in groundwater
Literature

Todd; K. (2005): Groundwater Hydrology

Fetter, C.W. (2001): Applied Hydrogeology

Hölting & Coldewey (2005): Hydrogeologie

Charbeneau, R.J. (2000): Groundwater Hydraulics and pollutant Transport

Course L0540: Geohydraulic and Solute Transport
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0541: Simulation in Groundwater Hydrology
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content Basics and theoretical background of simulation models frequently used in science and practise for pumping test analysis, water movement in vadose zone, solute transport in vadose zone, groundwater recharge, solute transport in groundwater
Literature Handbücher der verwendeten Slumationsmodelle werden bereitgestellt.
Course L0542: Simulation in Groundwater Hydrology
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0713: Concrete Structures

Courses
Title Typ Hrs/wk CP
Concrete Structures (L0579) Seminar 1 1
Structural Concrete Members (L0577) Lecture 2 3
Structural Concrete Members (L0578) Recitation Section (large) 2 2
Module Responsible Prof. Günter Rombach
Admission Requirements None
Recommended Previous Knowledge

Basics of structural analysis, conception and dimensioning of structural concrete

Modules: Reinforced Concrete Structures I+II, Structural Analysis I+II, Mechanics I+II



Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students broaden their skills in structural engineering, especially in the field of buildings (houses, roofs, halls). They dispose of the knowledge for the conception and design of concrete buildings and structural members that are often used. 

Skills

The students are able to apply procedures of the conception and dimensioning to to practical problems of structural engineering. They are capable to draft concrete buildings and to design them for general action effects and to plan their detailing and execution. Moreover, they can make design and construction sketches and draw up technical descriptions. 

Personal Competence
Social Competence

The students are able to obtain results of high quality in teamwork. 

Autonomy

The students are able to carry out complex conception and dimensioning tasks of structures under the guidance of tutors.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation Es werden 2 Referate ausgegeben
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0579: Concrete Structures
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Björn Schütte
Language DE
Cycle WiSe
Content

With help of a project teamwork the subjects of the course "Concrete Structures" is practiced, discussed and presented.


Literature - Projektbezogene Unterlagen werden abgegeben.
Course L0577: Structural Concrete Members
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content
  • concrete buildings 
  • actions on structrues
  • bracing systems
  • slabs (line and point supported plates and floor slabs)
  • membranes and deep beams
  • shells and folded plates
  • reinforced and prestressed members
Literature

Vorlesungsunterlagen können im STUDiP heruntergeladen werden

  • Zilch K., Zehetmaier G.: Bemessung im konstruktiven Ingenieurbau. Springer, Heidelberg 2010
  • König, G., Liphardt S.: Hochhäuser aus Stahlbeton, Betonkalender 2003, Teil II, Seite 1-69, Verlag Ernst & Sohn, Berlin 2003
  • Phocas, Marios C.: Hochhäuser : Tragwerk und Konstruktion, Stuttgart, Teubner, 2005
  • Deutscher Ausschuss für Stahlbeton: Heft 600: Erläuterungen zu DIN EN 1992-1-1, Beuth Verlag, Berlin 2012
  • Deutscher Ausschuss für Stahlbeton: Heft 240: Hilfsmittel zur Berechnung der Schnittgrößen und Formänderungen von Stahlbetontragwerken, Verlag Ernst & Sohn, Berlin 1978
  • Stiglat, K., Wippel, H.: Massive Platten - Ausgewählte Kapitel der Schnittkraftermittlung und Bemessung, Betonkalender 1992, Teil I, 287-366, Verlag Ernst & Sohn, Berlin 1992
  • Stiglat/Wippel: Platten. Verlag Ernst & Sohn, Berlin,1973
  • Schlaich J.; Schäfer K.: Konstruieren im Stahlbetonbau. Betonkalender 1998, Teil II, S. 721ff, Verlag Ernst & Sohn, Berlin, 1998
  • Dames K.-H.: Rohbauzeichnungen Bewehrungszeichnungen. Bauverlag, Wiesbaden 1997



Course L0578: Structural Concrete Members
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Björn Schütte
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0722: Computational Analysis of Concrete Structures

Courses
Title Typ Hrs/wk CP
Computational Analysis of Concrete Structures (L0598) Lecture 2 3
Computational Analysis of Concrete Structures (L0599) Recitation Section (large) 1 1
FE-Modeling of Concrete Structures (L0600) Project-/problem-based Learning 2 2
Module Responsible Prof. Günter Rombach
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge in structural analysis and design of reinforced concrete structures (beams, slabs, shear walls).

Lectures  'Concrete Structures I und II'

Lectures  'Structural Analysis I and II'

Lecture 'Concrete Structures'

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know the problems of numerical modeling and design of an arbitrary concrete structure.

Skills

The students can model and design an arbitrary concrete structure by means of a finite element software package.

Personal Competence
Social Competence

The students can model and design in teamwork a real concrete structure by means of a finite element software package.

Autonomy

The students can model and design a real concrete structure based on a finite element software package and discuss the problems and results with other students.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Excercises Es ist ein Tragsystem mit TEDDY zu modellieren
Yes None Attestation Am Ende des Semster ist ein Tragsystem mit dem Rechenprogramm zu modellieren
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0598: Computational Analysis of Concrete Structures
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content
  • Modeling of beam and truss structures
    - Discontinuity regions, like frame corners, openings, shear walls with large openings
    - Bracing of high-rise buildings
    - Modeling of bridges 
    - Nonlinear analysis 
  • Finite-Elemente-analysis of slabs: support conditions, singularity regions
  • Finite-Elemente-Berechnungen of shear walls and deep beams: support condition, design
  • Coupled systems 
  • Modeling of slab supported on beams
  • Shell structures
  • 3D building models
  • Nonlinear analysis of slabs and shells
  • Documentation
Literature
  • Vorlesungsumdruck
  • Rombach, G.A. (2007): Anwendung der Finite-Elemente-Methode im Betonbau. 2. Auflage, Verlag Ernst & Sohn, Berlin
  • Rombach G.A. (2011): Finite-Element Design of Concrete Structures, 2nd edition, ICE publishing
  • Hartmann, F., Katz, C. (2002): Statik mit finiten Elementen. Springer, Berlin
Course L0599: Computational Analysis of Concrete Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0600: FE-Modeling of Concrete Structures
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Lukas Henze
Language DE
Cycle WiSe
Content

Finite Element Modeling and computational design of concrete structures by ‘SOFiSTiK’

Literature
  • Rombach G.: Anwendung der Finite - Elemente - Methode im Betonbau. 2. Auflage. Verlag Ernst &.Sohn, Berlin, 2007
  • Rombach G.: Finite-Element Design of Concrete Structures. 2nd edition, ICE Publishing, London, 2011, ISBN 0 7277 32749
  • Rombach G.: EDV-unterstützte Berechnungen im Stahlbetonbau. in: „Stahlbetonbau aktuell 2014“ (ed. Gorris A., Hegger J., Mark P.), Berlin 2014 (S. C1.-C.36)


Module M0923: Integrated Transportation Planning

Courses
Title Typ Hrs/wk CP
Integrated Transportation Planning (L1068) Project-/problem-based Learning 4 6
Module Responsible Prof. Carsten Gertz
Admission Requirements None
Recommended Previous Knowledge

some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineerin

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to:

  • describe interdependencies between land-use/location choice and transportation/mobility behaviour
  • explain and evaluate the social, ecological and economic effects of transport and land-use policy measures.
  • relate current issues in the area of integrated transport planning and formulate an opinion on them.


Skills

Students are able to:

  • quantify important parameters, which influence travel demand or are influenced by it.
  • comprehensively examine a pre-defined or self-selected topic from a transportation studies perspective and document the results in accordance with scientific conventions.


Personal Competence
Social Competence

Students are able to:

  • provide feedback on topical contents and their teaching.
  • constructively handle feedback on their own work.
  • produce results in group work and document these.


Autonomy

Students are able to:

  • assess potential consequences of their future professional activities
  • independently plan working on a pre-defined project topic, acquire the necessary knowledge and use appropriate means for its execution.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale written assignment with presentation during the semester
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1068: Integrated Transportation Planning
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Carsten Gertz, Dr. Philine Gaffron, Jacqueline Bianca Maaß
Language DE
Cycle WiSe
Content

The course will provide students with an understanding of interdependencies between land-use and transportation. Specific topics include a.o.:

  • interactions between transport and the environment and consequent limitations
  • characteristics of integrated planning
  • complex planning processes
  • interdependencies of location choice and mobility behaviour
  • transport and land-use policies
  • project on current issues in transportation studies


Literature

Kutter, Eckhard (2005) Entwicklung innovativer Verkehrsstrategien für die mobile Gesellschaft. Erich Schmidt Verlag. Berlin.

Bracher, Tilman u. a. (Hrsg.) (68. Ergänzung 2013) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen)


Module M0963: Steel and Composite Structures

Courses
Title Typ Hrs/wk CP
Steel and Composite Structures (L1204) Lecture 2 2
Steel and Composite Structures (L1205) Recitation Section (large) 2 2
Steel Bridges (L1097) Lecture 2 2
Module Responsible Prof. Marcus Rutner
Admission Requirements None
Recommended Previous Knowledge

Basics of steel construction (i.e. Steel Structures I and II, BUBC)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completition, students can

  • describe the phenomenon of local buckling
  • explain warping torsion
  • illustrate the behaviour of composite structures
  • specify the principles in design of composite sttructures
  • sketch the contructions of steel and composite bridges
Skills

After successful participation students are able to

  • check stiffened and unstiffened plated structures
  • recognize and verify warping tosion in strucures
  • design composite structures
  • design bridges and o perform the detailing
Personal Competence
Social Competence --
Autonomy --
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 180 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L1204: Steel and Composite Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Marcus Rutner
Language DE
Cycle WiSe
Content
  • Local-buckling of plated structures
  • Warping torsion
  • Composite-girders, -columns, -slabs, -bridges
  • Principles in composite constructions
  • Bridge-design and -construction
Literature

Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag

Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag

Course L1205: Steel and Composite Structures
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Marcus Rutner
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1097: Steel Bridges
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Jörg Ahlgrimm
Language DE
Cycle WiSe
Content

Lecture Contents ,Steel Bridge Construction'
Dr.-Ing. Jörg Ahlgrimm

- From tendering and contracting to completion - the development of a steel bridge

- Contents of a bridge static - structural details, examples of analysis in detail:

   -> effective width in regard to the longitudinal stiffeners

   -> Bearing point, bearing stiffener

   -> Crossbeam breakthrough, crossbeam reinforcement

   -> Analysis of the Rib-to-Floorbeam (RF) connection (web-tooth of the floorbeam  between trapezoidal shaped Ribs)

- Steel grades, -designation, testing methods and approval certificates

- Nondestructive weld inspecting

- Corrosion protection

- Bridge bearing - types, format, function, dimensioning, installation

- Expansion Joints

- Oscillation of bridge hangers and cables - oscillation damper

- Opening bridges- Detailed reviews to different assembling procedures and - implements

- Selective damage events

Requirements: Basic knowledge in the calculation, dimensioning, and construction of structural elements and joints of constructional steelwork

Literature


  • Herbert Schmidt, Ulrich Schulte, Rainer Zwätz, Lothar Bär:
    Ausführung von Stahlbauten

  • Petersen, Christian: Stahlbau, Abschnitt Brückenbau


  • Ahlgrimm, J., Lohrer, I.: Erneuerung der Eisenbahnüberführung in Fulda-Horas über die Fulda, Stahlbau 74 (2005), Heft 2, S. 114

Module M0967: Study Work Harbour and Coastal Engineering

Courses
Title Typ Hrs/wk CP
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge

Subjects of the Port and Coastal Engineering specialisation.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to demonstrate their detailed knowledge in the field of port and coastal engineering. They can exemplify the state of technology and application and discuss critically in the context of actual problems and general conditions of science and society.

The students can develop solving strategies and approaches for fundamental and practical problems in port and coastal engineering. They may apply theory based procedures and integrate safety-related, ecological, ethical, and economic view points of science and society.

Scientific work techniques that are used can be described and critically reviewed.
Skills

The students are able to independently select methods for the project work and to justify this choice. They can explain how these methods relate to the field of work and how the context of application has to be adjusted. General findings and further developments may essentially be outlined.

Personal Competence
Social Competence

The students are able to condense the relevance and the structure of the project work, the work steps and the sub-problems for the presentation and discussion in front of a bigger group. They can lead the discussion and give a feedback on the project to their colleagues.

Autonomy

The students are capable of independently planning and documenting the work steps and procedures while considering the given deadlines. This includes the ability to accurately procure the newest scientific information. Furthermore, they can obtain feedback from experts with regard to the progress of the work, and to accomplish results on the state of the art in science and technology.

Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Study work
Examination duration and scale The number of pages depends on the task.
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Compulsory

Module M0969: Selected Topics in Civil Engineering

Courses
Title Typ Hrs/wk CP
Analysis of Offshore Structures (L1867) Lecture 1 1
Excellence in International Project Delivery (L2387) Integrated Lecture 2 2
Design of Prefabricated Concrete Structures (L0596) Lecture 1 1
Design of Prefabricated Concrete Structures (L0597) Recitation Section (large) 1 1
Forum I - Geotechnics and Construction Management (L1634) Seminar 1 1
Forum II - Geotechnics and Construction Management (L1635) Seminar 1 1
Geotechnical Engineering Design (L2447) Lecture 2 3
Timber Structures (L1151) Seminar 2 2
Glass Structures (L1152) Lecture 2 2
Glass Structures (L1447) Recitation Section (large) 1 1
Special topics of civil engineering 1CP (L2378) 1 1
Special topics of civil engineering 2 LP (L2379) 2 2
Special topics of civil engineering 3 LP (L2380) 3 3
Wind turbine design (L1905) Lecture 1 1
Module Responsible Prof. Uwe Starossek
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to find their way through selected special areas within civil and structural engineering.
  • Students are able to explain basic models and procedures in selected special areas of civil and structural engineering.
  • Students are able to interrelate scientific and technical knowledge.


Skills
  • Students are able to apply basic methods in selected areas of civil and structural engineering.
Personal Competence
Social Competence ---
Autonomy
  • Students can chose independently, in which fields they want to deepen their knowledge and skills through the election of courses.
Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L1867: Analysis of Offshore Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Dr. Said Fawad Mohammadi
Language DE/EN
Cycle SoSe
Content

Topic 1: Types of Offshore Structures, Fixed and floating structures for Oil & Gas and Offshore Wind industry

Topic 2: Wave Forces, Morisons equation

Topic 3: Irregular Seastates, Power spectrum and application of FFT

Topic 4: Additional Environmental Forces, wind spectra, current forces

Topic 5: Linear-Time-Invariant Systems, response of an LTI-system in frequency domain

Topic 6: Tubular Welded Connections, stress concentration factors, weld geometry

Topic 7: Introduction to Fracture Mechanics, criteria for fracture initiation and crack growth

Topic 8: Time and Frequency Domain Fatigue Analyses, rainflow counting, application of LTI-systems for frequency domain fatigue

Topic 9: Offshore Installation and Exam, installation of structures, pile driving, pipe laying techniques

Literature

Chakrabarti, Handbook of Offshore Engineering, 2005

Sarpkaya, Wave Forces on Offshore Structures, 2010

Faltinsen, Sea Loads on Ships and Offshore Structures, 1998

Sorensen, Basic Coastal Engineering, 2006

Dowling, Mechanical Behavior of Materials, 2007

Haibach, Betriebsfestigkeit, 2006

Marshall, Design of Welded Tubular Connections, 1992

Newland, Random vibrations, spectral and wavelet analysis, 1993


Course L2387: Excellence in International Project Delivery
Typ Integrated Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dr. Jens Huckfeldt
Language EN
Cycle SoSe
Content
Literature
Course L0596: Design of Prefabricated Concrete Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content
  • application and advantages and disadvantages of precast concrete structures
  • basics of design - precast element production - construction - tolerances
  • elements of a warehouse
  • design of a beam - joints
  • design of D-regions: half joints, corbels, openings
  • slab types - walls - facades
  • footings: pocket and block foundations
  • joints - connections
  • shear design of the interface between concrete cast at different times
  • unreinforced concrete structures
Literature
  • Bachmann H., Steinle A.; Hahn V.: Bauen mit Betonfertigteilen. Betonkalender 2009, Teil I, Verlag Ernst & Sohn, Berlin
  • Bindseil P.: Stahlbetonfertigteile. Werner Verlag, 1998
  • FIP: FIP Handbuch für Planung und Entwerfen von Fertigteilbauten (siehe Zeitschrift: Beton- und Fertigteiltechnik ab 3/1996)
  • Bergmeister K.: Konstruieren von Fertigteilen. Betonkalender 2005 Teil 2, S. 163-240
  • Reineck K.-H.: Modellierung der D-Bereiche von Fertigteilen. Betonkalender 2005 Teil 2, S. 241-296
  • Graubner C.-A. et. al.: Bemessung von Fertigteilen nach DIN 1045-1. Betonkalender 2005 Teil 2, S. 297-374

 Broschüren der Fachvereinigung Deutscher Betonfertigteilbau e.V.
siehe:   www.fdb-fertigteilbau.de
             www.systembauweise.de

Course L0597: Design of Prefabricated Concrete Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Klausur
Examination duration and scale Siehe korrespondierende Vorlesung
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1634: Forum I - Geotechnics and Construction Management
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content Lectures about projects and issues with practical and scientific relevance.
Literature --
Course L1635: Forum II - Geotechnics and Construction Management
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Prof. Jürgen Grabe
Language DE
Cycle SoSe
Content Lectures about projects and issues with practical and scientific relevance.
Literature --
Course L2447: Geotechnical Engineering Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 45 Min.
Lecturer Prof. Jürgen Grabe, Dr. Tim Pucker
Language DE
Cycle WiSe
Content

The focus of the course is on the design of geotechnical structures. Methods and fundamental approaches for the successful processing of geotechnical designs are taught. Theoretical approaches are backed up with examples from everyday work in industry. In parallel to the theoretical content, students are given a practical task for a geotechnical design at beginning of the course, which will be worked on in small teams. In addition to the application of the already acquired technical knowledge, topics like realisation, construction sequence planning, cost calculation, optimisation and evaluation criteria are also part of the course.

The event will be finished with the presentation of the designs.

Literature
Course L1151: Timber Structures
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 90 min
Lecturer Prof. Torsten Faber
Language DE
Cycle WiSe
Content
Literature
Course L1152: Glass Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Mündliche Prüfung
Examination duration and scale
Lecturer Marvin Matzik
Language DE
Cycle WiSe
Content

Glass structures

 - Introduction of the material glass (production, refinement, material characteristic)

 - design of facades

 - facade types

 - static calculation of glazing

 - static calculation of facades

 - load bearing behavior of glazing (plate or membrane stiffness)

 - vertical / horizontal glazing with safety-related requirements

 - glass structures

 - fire safety of glass facades

 - construction physics of facades and glazing

Literature
Course L1447: Glass Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale
Lecturer Marvin Matzik
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L2378: Special topics of civil engineering 1CP
Typ
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature Die Literatur wird kurzfristig festgelegt.
Course L2379: Special topics of civil engineering 2 LP
Typ
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dr. Jan Mittelstädt, Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature

Die Literatur wird kurzfristig festgelegt.

Course L2380: Special topics of civil engineering 3 LP
Typ
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature

Die Literatur wird kurzfristig festgelegt.

Course L1905: Wind turbine design
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Dr. Jörn Scheller
Language DE
Cycle WiSe
Content
Literature

Module M0997: Structural Analysis - Selected Topics

Courses
Title Typ Hrs/wk CP
Plates and Shells (L1199) Lecture 2 2
Nonlinear Analysis of Frame Structure (L1200) Lecture 2 2
Nonlinear Analysis of Frame Structure (L1201) Recitation Section (large) 2 2
Module Responsible Prof. Uwe Starossek
Admission Requirements None
Recommended Previous Knowledge

Mechanics I/II, Mathematics I/II, Differential Equations I


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of this module, students can explain selected elements of higher structural analysis.




Skills


After successful completion of this module, the students are able to assess the premises and the applicability of the presented methods of advanced structural analysis. They are able to use these methods for performing structural analyses.

Personal Competence
Social Competence

Students can

  • participate in subject-specific and interdisciplinary discussions,
  • defend their own work results in front of others
  • promote the scientific development of colleagues
  • Furthermore, they can give and accept professional constructive criticism
Autonomy

The students have the opportunity to voluntarily and independently work homework problems.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 135 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Course L1199: Plates and Shells
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Jürgen Priebe
Language DE
Cycle WiSe
Content

Theory of plates loaded in-plane

  • Governing equations (equilibrium, kinematics, constitutive law)
  • Differential equation
  • Airy stress function
  • Plane stress / plane strain
  • Structural behaviour of plates loaded in-plane

                                               Theory of plates in bending

  • Governing equations (equilibrium, kinematics, constitutive law)
  • Differential equation
  • Navier solution / Fourier series expansion
  • Approximation procedures
  • Structural behaviour of plates in bending

                                               Shell theory

  • Phenomenona of the structural behaviour of shells
  • Membrane and bending theory
  • Equilibrium equations of shells of revolution
  • Stress resultants and deformations of the spherical shell, the half spherical shell, and the cylindrical shell

                                               Stability problems (overview)

  • Plate buckling
  • Shell buckling


Literature
  • Basar, Y.: Krätzig, W.B. (1985): Mechanik der Flächentragwerke. Vieweg-Verlag, Braunschweig, Wiesbaden
  • Girkmann, K. (1963): Flächentragwerke, Springer Verlag, Wien, 1963, unveränderter Nachdruck 1986
  • Zienkiewicz, O.C. (1977): The Finite Element Method in Enginieering Science. McGraw-Hill, London


Course L1200: Nonlinear Analysis of Frame Structure
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle WiSe
Content

-Types of nonlinearity

-relevance of nonlinear effects on structural analysis

-comparison and classification of 1st  order theory, 2nd  order theory and 3rd order theory with regard to the coverage of geometric nonlinearity

-fundamentals of 2nd order elasticity theory for frame structures

-application of  2nd order elasticity theory using finite elements: common displacement method

-fundamentals of analytical application of 2nd order elasticity theory: derivation and solution of differential equation

-structurally applied methods of analytical application of 2nd order elasticity theory: common displacement method using analytical stiffness matrix, slope-deflection method for sway and non-sway frame structures, consideration of imperfections

1st order plastic hinge theory


Literature

Rothert, H.; Gensichen, V. (1987): Nichtlineare Stabstatik. Springer Verlag, Berlin


Course L1201: Nonlinear Analysis of Frame Structure
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0801: Water Resources and -Supply

Courses
Title Typ Hrs/wk CP
Chemistry of Drinking Water Treatment (L0311) Lecture 2 1
Chemistry of Drinking Water Treatment (L0312) Recitation Section (large) 1 2
Water Resource Management (L0402) Lecture 2 2
Water Resource Management (L0403) Recitation Section (small) 1 1
Module Responsible Prof. Mathias Ernst
Admission Requirements None
Recommended Previous Knowledge

Knowledge of water management and the key processes involved in water treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to outline key areas of conflict in water management, as well as their mutual dependence for sustainable water supply. They will understand relevant economic, environmental and social factors. Students will be able to explain and outline the organisational structures of water companies. They will be able to explain the available water treatment processes and the scope of their application.

Skills

Students will be able to assess complex problems in drinking water production and establish solutions involving water management and technical measures. They will be able to assess the evaluation methods that can be used for this. Students will be able to carry out chemical calculations for selected treatment processes and apply generally accepted technical rules and standards to these processes.

Personal Competence
Social Competence

Working in a diverse group of specialists, students will be able to develop and document complex solutions for the management and treatment of drinking water. They will be able to take an appropriate professional position, for example representing user interests. They will be able to develop joint solutions in teams of diverse experts and present these solutions to others.

Autonomy

Students will be in a position to work on a subject independently and present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min (chemistry) + presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0311: Chemistry of Drinking Water Treatment
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content

The topic of this course is water chemistry with respect to drinking water treatment and water distribution

Major topics are solubility of gases, carbonic acid system and calcium carbonate,  blending, softening, redox processes, materials and legal requirements on drinking water treatment. Focus is put on generally accepted rules of technology (DVGW- and DIN-standards).

Special emphasis is put on calculations using realistic analysis data  (e.g. calculation of pH or calcium carbonate dissolution potential) in exercises. Students can get a feedback and gain extra points for exam by solving problems for homework.

Knowledge of drinking water treatment processes is vital for this lecture. Therefore the most important processes are explained coordinated with the course “ Water resources management“ in the beginning of the semester.


Literature

MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005.

Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996.

DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004.

Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003.


Course L0312: Chemistry of Drinking Water Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0402: Water Resource Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content

The lecture provides comprehensive knowledge on interaction of water ressource management and drinking water supply. Content overview:

  • Current situation of global water resources

-        User and Stakeholder conflicts

-        Wasserressourcenmanagement in urbane Gebieten

-        Rechtliche Aspekte, Organisationsformen Trinkwasserversorgungsunternehmen.

-        Ökobilanzierung, Benchmarking in der Wasserversorgung

Literature
  • Aktuelle UN World Water Development Reports
  • Branchenbild der deutschen Wasserwirtschaft, VKU (2011)
  • Aktuelle Artikel wissenschaftlicher Zeitschriften
  • Ppt der Vorlesung
Course L0403: Water Resource Management
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1505: Adaptation to Climate Change in Hydraulic Engineering (AKWAS)

Courses
Title Typ Hrs/wk CP
Adaptation to climate change in hydraulic engineering (L2291) Project-/problem-based Learning 4 6
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge
  • Hydrology, Hydraulic Engineering
  • Hydromechanic, Hydraulics
  • Fundamentals of Coastal Engineering, Coastal- and Flood Protection
  • Hydrological Systems
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Climate protection and climate adaptation
  • Insights into climate change and its regional characteristics - fundamentals, climate modelling / climate models
  • Impacts of climate change on the components of the regional hydrological cycle
  • Fundamentals of analysis of climate data
  • Consequences of the impact of the climate change
  • Measures for climate adaptation
  • Assessment, prioritization and communication of adaptation measures
  • Fundamentals of the analysis of hydrometeorological and hydrological data
Skills
  • Critical thinking: analysis of processes and relations, assessment of needs for action
  • Creative thinking: development of adaptation strategies and adaptation measures
  • Practical thinking: inclusion of restrictions, application of calculation approaches, methods, numerical models, planning methods
  • Consideration of complex tasks


Personal Competence
Social Competence
  • Working in heterogenous groups
  • Working with different scientific / non-scientific disciplines
  • Self reflection
Autonomy
  • Application oriented use of knowledge and skills
  • Autonomous work on complex tasks
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Preparation of a written report and a presentation of a complex task.
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Course L2291: Adaptation to climate change in hydraulic engineering
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Peter Fröhle
Language DE
Cycle WiSe
Content
  • Climate protection and climate adaptation
  • Findings on climate change and its regional characteristics: fundamentals of climate change, climate modelling / climate models
  • Impacts of climate change on the components of the regional hydrological cycle(climate science view)
  • Fundamentals of the analysis of climate data
  • Concequences of the impacts of climate change (ingenieering science view)
  • Measures for climate change adaptation
  • Assessment, prioritization and communication of measures
  • Fundamentals of analysis of hydrometeorological and hydrological data
Literature
  • Bereitgestellte eLearning Plattform

Specialization Geotechnical Engineering

Module M0699: Advanced Foundation Engineering and Soil Laboratory Course

Courses
Title Typ Hrs/wk CP
Soil Laboratory Course (L0499) Practical Course 1 2
Numerical Methods in Geotechnics (L0375) Lecture 3 3
Advanced Foundation Engineering (L0497) Lecture 2 2
Advanced Foundation Engineering (L0498) Recitation Section (large) 1 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 82, Study Time in Lecture 98
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0499: Soil Laboratory Course
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
  • Field experiments
  • Short lecture on laboratory tests
  • soil analysis
  • laboratory test
  • soil clasification
  • Creating a ground and foundation report
Literature
  • DIN-Taschenbuch 113, Erkundung und Untersuchung des Baugrundes


Course L0375: Numerical Methods in Geotechnics
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Hans Mathäus Stanford
Language DE
Cycle WiSe
Content

Topics:

  • numerical simulations
  • numerical algorithms
  • finite element method
  • application of finite element method in geomechanics
  • constitutive models for soils
  • contact models for soil structure interaction
  • selected applications
Literature
  • Wriggers P. (2001): Nichtlineare Finite-Elemente-Methoden, Springer Verlag, Berlin
  • Bathe Klaus-Jürgen (2002): Finite-Elemente-Methoden. Springer Verlag, Berlin
Course L0497: Advanced Foundation Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
  • Vertical drains
  • Piles
  • Ground improvement (Deep Compaction, Soil mixing)
  • Vibration driving
  • Jet grouting
  • Slurry wall
  • Deep excavation
Literature
  • EAK (2002): Empfehlungen für Küstenschutzbauwerke
  • EAU (2004): Empfehlungen des Arbeitsausschusses Uferbauwerke
  • EAB (1988): Empfehlungen des Arbeitskreises Baugruben
  • Grundbau-Taschenbuch, Teil 1-3, (1997), Ernst & Sohn Verlag
Course L0498: Advanced Foundation Engineering
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0858: Coastal Hydraulic Engineering I

Courses
Title Typ Hrs/wk CP
Basics of Coastal Engineering (L0807) Lecture 3 4
Basics of Coastal Engineering (L1413) Project-/problem-based Learning 1 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Basics of hydraulic engineering, hydrology and hydromechanics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to define and explain the basic concepts of coastal engineering and port engineering. They are able to apply the concepts to selected practical problems of coastal engineering. Students can define and determine the basics for design and dimensioning of coastal engineering constructions.

Skills

The students are capable to apply basic design approaches to selected and pre-defined design tasks in coastal engineering.

Personal Competence
Social Competence

The students are able to deploy their gained knowledge in applied problems such as the design of coastal protection structures. Additionaly, they will be able to work in team with engineers of other disciplines, for instance designing of coastal breakwaters.

Autonomy

The students will be able to independently extend their knowledge and applyit to new problems.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 2 hours. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0807: Basics of Coastal Engineering
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Peter Fröhle
Language DE
Cycle WiSe
Content
  • Basics of planning and design
    • Water levels
    • Currents
    • Waves
    • Ice
  • Planning and Design in Coastal Engineering
    • Functional and constructional design
    • Determination of design parameters
    • Design-approaches
      • Filter
      • Rubble mound constructions
      • Piles
      • Vertical constructions


Literature

Coastal Engineering Manual, CEM

Vorlesungsumdruck


Course L1413: Basics of Coastal Engineering
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0964: Structures in Foundation and Hydraulic Engineering

Courses
Title Typ Hrs/wk CP
Applied Tunnel Constructions (L2407) Lecture 2 3
Steel Structures in Foundation and Hydraulic Engineering (L1146) Lecture 2 3
Underground Constructions (L0707) Lecture 1 2
Underground Constructions (L1811) Recitation Section (large) 1 1
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge

Modules from Bachelor studies Civil and environmental engineering:

  • Geotechnics I-II
  • Steel Structures I-II
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Knowledge of different tunnel construction types as well as special methods and techniques of subsoil construction. The students get deeper knowledge of steel and ground engineering as well as constructions knowledge concerning quay walls. Futhermore, the students get all the neccessary knowledge to design singular construction elements for sheet pile walls and they know how to choose the right construction elements depending on the influencing conditions.
Skills Basic knowledge of tunnel design as well as practical skills in structural tunnel analysis. Furthermore, the students are able to dimension sheet pile wall construction regarding all constrution elements, to choose the suitable construction elements with respect to the influencing conditions, to design all kinds of sheet pile walls (wave sheet pile walls and combined sheet pile walls) and to dimension all construction elements and connections.
Personal Competence
Social Competence Capacity for teamwork concerning project management and design of tunnels.
Autonomy Promotion of independent and creative work flow in the framework of a design exercise.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L2407: Applied Tunnel Constructions
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe, Tim Babendererde
Language DE
Cycle WiSe
Content
Literature
Course L1146: Steel Structures in Foundation and Hydraulic Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Frank Feindt
Language DE
Cycle WiSe
Content Design of a sheet pile wall, design of a combined sheet pile wall, piles, walings, connections, fatigue
Literature EAU 2012, EA-Pfähle, EAB
Course L0707: Underground Constructions
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Marius Milatz
Language DE
Cycle WiSe
Content
  • Definitions
  • Historical development in tunneling
  • Geology for tunneling
  • Hard rock tunneling (construction composite and machines)
  • Tunnelung in temporarly stable soil with conventional construction methods
  • Tunneling in soft soils (form of supports, shield types, compressed air application)
  • Pipe jacking
  • Tunnel Lining, tunnel supporting structures
  • Calculation approaches for supporting structures in shield-driven tunnels
  • Surveying for tunneling
  • Safety requirements
  • Construction Contract
  • Literature and sources
Literature
  • Vorlesung/Übung s. www.tu-harburg.de/gbt
Course L1811: Underground Constructions
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Marius Milatz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0511: Electricity Generation from Wind and Hydro Power

Courses
Title Typ Hrs/wk CP
Renewable Energy Projects in Emerged Markets (L0014) Project Seminar 1 1
Hydro Power Use (L0013) Lecture 1 1
Wind Turbine Plants (L0011) Lecture 2 3
Wind Energy Use - Focus Offshore (L0012) Lecture 1 1
Module Responsible Dr. Joachim Gerth
Admission Requirements None
Recommended Previous Knowledge

Module: Technical Thermodynamics I,

Module: Technical Thermodynamics II,

Module: Fundamentals of Fluid Mechanics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

By ending this module students can explain in detail knowledge of wind turbines with a particular focus of wind energy use in offshore conditions and can critical comment these aspects in consideration of current developments. Furthermore, they are able to describe fundamentally the use of water power to generate electricity. The students reproduce and explain the basic procedure in the implementation of renewable energy projects in countries outside Europe.

Through active discussions of various topics within the seminar of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice.

Skills  Students are able to apply the acquired theoretical foundations on exemplary water or wind power systems and evaluate and assess technically the resulting relationships in the context of dimensioning and operation of these energy systems. They can in compare critically the special procedure for the implementation of renewable energy projects in countries outside Europe with the in principle applied approach in Europe and can apply this procedure on exemplary theoretical projects.

Personal Competence
Social Competence  Students can discuss scientific tasks subjet-specificly and multidisciplinary within a seminar.

Autonomy

Students can independently exploit sources in the context of the emphasis of the lecture material to clear the contents of the lecture and to acquire the particular knowledge about the subject area.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 3 hours written exam
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Energy Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0014: Renewable Energy Projects in Emerged Markets
Typ Project Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Andreas Wiese
Language DE
Cycle SoSe
Content
  1. Introduction
    • Development of renewable energies worldwide
      • History
      • Future markets
    • Special challenges in new markets - Overview
  2. Sample project wind farm Korea
    • Survey
    • Technical Description
    • Project phases and characteristics
  3. Funding and financing instruments for EE projects in new markets
    • Overview funding opportunitie
    • Overview countries with feed-in laws
    • Major funding programs
  4. CDM projects - why, how , examples
    • Overview CDM process
    • Examples
    • Exercise CDM
  5. Rural electrification and hybrid systems - an important future market for EE
    • Rural Electrification - Introduction
    • Types of Elektrizifierungsprojekten
    • The role of the EEInterpretation of hybrid systems
    • Project example: hybrid system Galapagos Islands
  6. Tendering process for EE projects - examples
    • South Africa
    • Brazil
  7. Selected projects from the perspective of a development bank - Wesley Urena Vargas, KfW Development Bank
    • Geothermal
    • Wind or CSP

Within the seminar, the various topics are actively discussed and applied to various cases of application.

Literature Folien der Vorlesung
Course L0013: Hydro Power Use
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Achleitner
Language DE
Cycle SoSe
Content
  • Introduction, importance of water power in the national and global context
  • Physical basics: Bernoulli's equation, usable height of fall, hydrological measures, loss mechanisms, efficiencies
  • Classification of Hydropower: Flow and Storage hydropower, low and high pressure systems
  • Construction of hydroelectric power plants: description of the individual components and their technical system interaction
  • Structural engineering components; representation of dams, weirs, dams, power houses, computer systems, etc.
  • Energy Technical Components: Illustration of the different types of hydraulic machinery, generators and grid connection
  • Hydropower and the Environment
  • Examples from practice

Literature
  • Schröder, W.; Euler, G.; Schneider, K.: Grundlagen des Wasserbaus; Werner, Düsseldorf, 1999, 4. Auflage
  • Quaschning, V.: Regenerative Energiesysteme: Technologie - Berechnung - Simulation; Carl Hanser, München, 2011, 7. Auflage
  • Giesecke, J.; Heimerl, S.; Mosony, E.: Wasserkraftanlagen ‑ Planung, Bau und Betrieb; Springer, Berlin, Heidelberg, 2009, 5. Auflage
  • von König, F.; Jehle, C.: Bau von Wasserkraftanlagen - Praxisbezogene Planungsunterlagen; C. F. Müller, Heidelberg, 2005, 4. Auflage
  • Strobl, T.; Zunic, F.: Wasserbau: Aktuelle Grundlagen - Neue Entwicklungen; Springer, Berlin, Heidelberg, 2006


Course L0011: Wind Turbine Plants
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Rudolf Zellermann, Dr. Jochen Oexmann
Language DE
Cycle SoSe
Content
  • Historical development
  • Wind: origins, geographic and temporal distribution, locations
  • Power coefficient, rotor thrust
  • Aerodynamics of the rotor
  • Operating performance
  • Power limitation, partial load, pitch and stall control
  • Plant selection, yield prediction, economy
  • Excursion
Literature

Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005


Course L0012: Wind Energy Use - Focus Offshore
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Martin Skiba
Language DE
Cycle SoSe
Content
  • Introduction, importance of offshore wind power generation, Specific requirements for offshore engineering
  • Physical fundamentals for utilization of wind energy
  • Design and operation of offshore wind turbines, presentation of different concepts of offshore wind turbines, representation of the individual system components and their system-technical relationships
  • Foundation engineering, offshore site investigation, presentation of different concepts of offshore foundation structures, planning and fabrication of foundation structures
  • Electrical infrastructure of an offshore wind farm, Inner Park cabling, offshore substation, grid connection
  • Installation of offshore wind farms, installation techniques and auxiliary devices, construction logistics
  • Development and planning of offshore wind farms
  • Operation and optimization of offshore wind farms
  • Day excursion
Literature
  • Gasch, R.; Twele, J.: Windkraftanlagen - Grundlagen, Entwurf, Planung und Betrieb; Vieweg + Teubner, Stuttgart, 2007, 7. Auflage
  • Molly, J. P.: Windenergie - Theorie, Anwendung, Messung; C. F. Müller, Heidel-berg, 1997, 3. Auflage
  • Hau, E.: Windkraftanalagen; Springer, Berlin, Heidelberg, 2008, 4.Auflage
  • Heier, S.: Windkraftanlagen - Systemauslegung, Integration und Regelung; Vieweg + Teubner, Stuttgart, 2009, 5. Auflage
  • Jarass, L.; Obermair, G.M.; Voigt, W.: Windenergie: Zuverlässige Integration in die Energieversorgung; Springer, Berlin, Heidelberg, 2009, 2. Auflage


Module M1351: Construction Processes

Courses
Title Typ Hrs/wk CP
Digital Building (L1908) Lecture 2 2
Lean Construction (L1910) Lecture 2 2
System Dynamics (L1909) Lecture 2 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L1908: Digital Building
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Katja Maaser
Language DE
Cycle SoSe
Content
Literature
Course L1910: Lean Construction
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Theo Herzog
Language DE
Cycle SoSe
Content
Literature
Course L1909: System Dynamics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Markus Salge
Language DE
Cycle SoSe
Content
Literature

Module M0593: Building Materials and Building Preservation

Courses
Title Typ Hrs/wk CP
Repair of Structures (L0255) Lecture 1 1
Mineral Building Materials (L0253) Lecture 2 2
Technology of mineral Building Materials (L0256) Project-/problem-based Learning 1 2
Transport Processes in Building Materials and Damage Processes (L0254) Lecture 1 1
Module Responsible Prof. Frank Schmidt-Döhl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge about building materials, building physics and building chemistry, for example by the modules Principles of Building Materials and Building Physics and Building Materials and Building Chemistry.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the components of mineral building materials and their function in detail and to use them for the manufacture of special mineral building materials. They are able to show the characteristics of mineral building materials. They are able to describe the manufacture, properties and fields of application of special mortars and special concretes and the correlations of their material parameters. They are able to show the principles of anchor technology and design. 

Skills

The students are able to perform an optimization of granulometry of a mineral building material. They are able to design a special mineral mortar and to manufacture this mortar. The students are able to manufacture post installed rebar connections. They are able to recognize damages, to assess possible causes, to use the fundamentals of construction preservation and to select repair and strengthening measures.


Personal Competence
Social Competence

The students are able to develop in small grous the mixture of a special mortar. They present their results to the lecturer and the other students. In a critical discussion they defend and adjust their results. The students are able to manufacture their special building material on the basis of this feedback.


Autonomy

The students are able to responsibly use the resources of materials and lab equipment for their project and to investigate and to get missing components.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0255: Repair of Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Maintenance of structures, repair and strengthening, subsequent waterproofing of structures
Literature BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen
Course L0253: Mineral Building Materials
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Components of mineral building materials and their function, binding materials, concrete and mortar, special mortars, special concretes
Literature

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Course L0256: Technology of mineral Building Materials
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Design and production of a special mineral building material
Literature

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Course L0254: Transport Processes in Building Materials and Damage Processes
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Transport Processes in Building Materials and Damage Processes
Literature Blaich, J.: Bauschäden, Analyse und Vermeidung

Module M0723: Design of Prestressed Structures and Concrete Bridges

Courses
Title Typ Hrs/wk CP
Design of Prestressed Structures and Concreet Bridges (L0603) Lecture 3 4
Design of Prestressed Structures and Concreet Bridges (L0604) Recitation Section (large) 2 2
Module Responsible Prof. Günter Rombach
Admission Requirements None
Recommended Previous Knowledge

Detailed knowledge on the design of concrete structures.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know the main bridge types, their applications and the various loads. They can explain the basic design methods. They can explain the design of a prestressed bridge.

Skills

The students are able to design reinforced or prestressed concrete bridges.

Personal Competence
Social Competence

The students can design in teamwork a real concrete bridge.

Autonomy

The students are able to design a prestressed concrete bridge and discuss the problems and results with other students.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 180 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0603: Design of Prestressed Structures and Concreet Bridges
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content

prestressed structures

  • basis of prestressed structures
  • differences between reinforced and prestressed concrete structures
  • history of prestressing
  • construction materials: concrete, tendons, ducts, anchorage systems
  • construction: prestressing methods
  • prestressing forces and member forces (friction, elongation)
  • tendon layout
  • time dependant prestressing losses
  • design of prestressed structures
  • design of anchorage region
  • non-bonded prestressing
  • prestressed flat slabs


Concrete bridges

  • history of bridges
  • design of bridges
  • loads on bridges
  • member forces for slab, T-beam, hollow box, frame and arch bridges
  • precast bridges - precast segmental bridges
  • bearings
  • abutments, columns
  • construction methods
Literature
  • Vorlesungsumdruck
  • Rombach, G. (2003): Spannbetonbau. Ernst & Sohn, Berlin
  • Wicke, M. (2002): Anwendung des Spannbetons. Betonkalender 2002, Teil II, S. 113-180, Verlag Ernst & Sohn, Berlin
  • Leonhardt, F. (1980): Vorlesungen über Massivbau. Teil 5: Spannbeton. Berlin
  • Mehlhorn, G. (2007): Handbuch Brücken, Springer Verlag
  • Schäfer, H.; Kaufeld, K. (1997): Massivbrücken. Betonkalender Teil II, S. 443ff, Ernst & Sohn, Berlin
  • Menn, Ch. (1986): Stahlbetonbrücken. Springer Verlag, Wien
Course L0604: Design of Prestressed Structures and Concreet Bridges
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0756: Soil Mechanics and -Dynamics

Courses
Title Typ Hrs/wk CP
Soil Mechanics - Selected Topics (L0374) Lecture 2 2
Soil Dynamics (L0452) Lecture 3 2
Experimental Researches in Geotechnics (L0706) Practical Course 1 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge

modules: Mathematics I-III, Mechanics I-II, Geotechnics I

courses: Soil laboratory course, (Applied structural dynamics)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After the successful completion of the module the students should be able to:

  • to derive and to apply the basic equation of a simple mass oscillator,
  • to understand the wave propagation in the soil under dynamic excitation and to detect the relevant parameters,
  • to know the essential laboratory and field tests to determine soil dynamic characteristics and to evaluate them,
  • to design machine foundations to dynamic load,
  • to measure shocks to perform vibration forecast,
  • to evaluate shocks in term to their effect on people and buildings,
  • to evaluate possibilities of isolation,
  • to understand mechanisms that cause earthquakes and evaluate earthquake in term of their magnitude and intensity,
  • to know methods to determine axial pile capacity, integrity and the dynamic bedding modulus,
  • to know the mechanisms that lead to a deformation accumulation due to cyclic loading and to estimate these deformations mathematically,
  • to distinguish the area of application of the method of elastodynamics and plastodynamics,

  • to detect the undrained shear strength as a function of a number of state variables,
  • to capture the visous behaviour of cohesive soils and to consider the effects of creep and rate-dependent shear strength in calculations,
  • to consider the impact of the partly saturated of a seepage and shear strength.
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 15 % Subject theoretical and practical work
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Course L0374: Soil Mechanics - Selected Topics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Hans Mathäus Stanford
Language DE
Cycle SoSe
Content

selected topis:

- continuum mechanis

- constitutive modelling

- time and rate dependend material behavior of soils

- cyclic loading

- undrained conditions

Literature Kolymbas D. (2007): Geotechnik - Bodenmechanik, Grundbau und Tunnelbau. Springer Verlag
Course L0452: Soil Dynamics
Typ Lecture
Hrs/wk 3
CP 2
Workload in Hours Independent Study Time 18, Study Time in Lecture 42
Lecturer Alexander Chmelnizkij
Language DE
Cycle SoSe
Content

• mass-spring-damper systems,

• wave propagation in soils,

• dynamic soil parameters,

• Determination of dynamic soil parameters,

• machine foundations,

• in-situ measurement of ground motion, ground motion prediction, evaluation of ground motion,

• ground motion shielding,

• introduction into earthquake engineering,

• dynamic pile tests,

• cyclic accumulation,

• plastodynamics

Literature
  • Das B.M.: Fundamentals of Soil Dynamics, Elsevier
  • Empfehlungen des Arbeitskreises Baugrunddynamik. Hrsg. Deutsche Gesellschaft für Geotechnik (DGGT)
  • Haupt W.: Bodendynamik. Vieweg und Teubner
  • Meskouris K. und Hinzen K.-G.: Bauwerke und Erdbeben. Vieweg Verlag
  • Studer J.A., Koller M.G. und Laue J.: Bodendynamik, Springer Verlag
Course L0706: Experimental Researches in Geotechnics
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Marius Milatz
Language DE
Cycle SoSe
Content

The students are supposed to:

  • become acquainted with geotechnical model tests, field tests and laboratory tests as well as corresponding measurement techniques. These compromise amongst others inclinometer measurements and geophone measurements as well as high-grade laboratory tests on the stress-strain relationship of soil specimens, e. g. triaxial tests, simple shear tests and resonant column tests.
  • gain insight into current soil mechanical research.
  • plan, coordinate, perform and evaluate soil mechanical tests in a team.
  • discuss, reflect, review and present the obtained results in a group.

An important learning target is the introduction to scientific work for students who plan a scientific career, and for those who will work in practice with the responsibility to order corresponding tests and evaluate the results.

The practical laboratory work is based on annualy changing problems, which are however related to the experience and results of the preceding year's course group.




Literature

- Grabe, J. (2004): Bodenmechanik und Grundbau, Band 3 der Veröffentlichungsreihe des Instituts für Geotechnik und Baubetrieb, Technische Universität Hamburg-Harburg.

- Kolymbas, D. (2007): Geotechnik - Bodenmechanik, Grundbau und Tunnelbau. 2., korrigierte und ergänzte Auflage, Springer Verlag.

- Normen zu geotechnischen Versuchsgeräten und Versuchsverfahren:
      - DIN 18135:2012-04: Baugrund, Untersuchung von Bodenproben -    
      Eindimensionaler Kompressionsversuch, Deutsches Institut für
      Normung, e. V.

    - DIN 18137-2:2011-04: Baugrund, Untersuchung von Bodenproben -
      Bestimmung der Scherfestigkeit - Teil 2: Triaxialversuch,
      Deutsches Institut für Normung e. V.

Module M0807: Boundary Element Methods

Courses
Title Typ Hrs/wk CP
Boundary Element Methods (L0523) Lecture 2 3
Boundary Element Methods (L0524) Recitation Section (large) 2 3
Module Responsible Prof. Otto von Estorff
Admission Requirements None
Recommended Previous Knowledge

Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics)
Mathematics I, II, III (in particular differential equations)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method.



Skills

The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the corresponding system matrices, and solving the resulting system of equations.



Personal Competence
Social Competence

Students can work in small groups on specific problems to arrive at joint solutions.

Autonomy

The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 20 % Midterm
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Energy Systems: Core Qualification: Elective Compulsory
Mechanical Engineering and Management: Specialisation Product Development and Production: Elective Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Product Development, Materials and Production: Core Qualification: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Course L0523: Boundary Element Methods
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Otto von Estorff
Language EN
Cycle SoSe
Content

- Boundary value problems
- Integral equations
- Fundamental Solutions
- Element formulations
- Numerical integration
- Solving systems of equations (statics, dynamics)
- Special BEM formulations
- Coupling of FEM and BEM

- Hands-on Sessions (programming of BE routines)
- Applications

Literature

Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Course L0524: Boundary Element Methods
Typ Recitation Section (large)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Otto von Estorff
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0827: Modeling in Water Management

Courses
Title Typ Hrs/wk CP
Applied Groundwater Modeling (L0543) Lecture 1 1
Applied Groundwater Modeling (L0544) Recitation Section (small) 2 2
Modeling of Water Supply and Sewer Network (L0875) Project-/problem-based Learning 2 3
Module Responsible Dr. Klaus Johannsen
Admission Requirements None
Recommended Previous Knowledge

Groundwater

  • groundwater hydraulics and transport of substances

Pipe Systems

  • Knowledge on urban water infrastructures, in particular drinking water systemsand urban drainage systems including special structures
  • Hydraulics of drinking water supply systems and sewer systems
  • Basic knowledge on water management
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the modelling of groundwater flow and transport as well as urban water infrastructures. They can carry out systems analyses and can detect technical and conceptual weak points within the systems in case studies. Besides they are able to analyse interdependencies of hydraulic and toxic phenomena in soil and water.


Skills

The students are able to construct and apply scientific groundwater models indipendently. They can work on different scenarios and can compare or assess different solutions for existing problems by application of selected software products. The students are able to use different software solutions (e.g. EPANET, EPA-SWMM).



Personal Competence
Social Competence

Wird nicht vermittelt.

Autonomy

Wird nicht vermittelt.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 20 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0543: Applied Groundwater Modeling
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE/EN
Cycle SoSe
Content Introduction and application of the groundwater model MODFLOW (PMWIN); theoretical backround of the modell, students do work with the model PMWIN for practical case studies.
Literature

MODFLOW-Handbuch

Chiang, Wen Hsien: PMWIN


Course L0544: Applied Groundwater Modeling
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0875: Modeling of Water Supply and Sewer Network
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen, Weitere Mitarbeiter
Language DE
Cycle SoSe
Content
Literature Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014.

Module M0828: Urban Environmental Management

Courses
Title Typ Hrs/wk CP
Noise Protection (L1109) Lecture 2 2
Urban Infrastructures (L0874) Project-/problem-based Learning 2 4
Module Responsible Dr. Dorothea Rechtenbach
Admission Requirements None
Recommended Previous Knowledge
  • Knowledge on Urban planning
  • Knowledge on measures for climate protection
  • General knowledge of scientific writing/working
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students can describe urban development corridors as well as current and future urban environmental problems. They are able to explain the causes of environmental problems (like noise).

Students can specify applications for various technical innovations and explain why these contribute to the improvement of urban life. They can, for example, derive and discuss measures for effective noise abatement.

Skills Students are able to develop specific solutions for correcting existing or future environment-related problems of urban development. They can define a range of conceptual and technical solutions for environmental problems for different development paths. To solve specific urban environmental problems they can select technical innovations and integrate them into the urban context.
Personal Competence
Social Competence

The students can work together in international groups.

Autonomy

Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Written Report plus oral Presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1109: Noise Protection
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Jäschke
Language EN
Cycle SoSe
Content
Literature

1) Müller & Möser (2013): Handbook of Engineering Acoustics (also available in German)
2) WHO (1999): Guidelines for Community Noise
3) Environmental Noise Directive 2002/49/EG
4) ISO 9613-2 (1996): Acoustics, Attenuation of sound during propagation outdoors, Part 2: General method of calculation 

Course L0874: Urban Infrastructures
Typ Project-/problem-based Learning
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Dr. Dorothea Rechtenbach
Language EN
Cycle SoSe
Content

Problem Based Learning

Main topics are:

  • Central vs. Decentral Wastewater Treatment.
  • Compaction of Cities.
  • Car Free Cities.
  • Multifunctional Places in Cities.
  • The Sustainability of Freight Transport in Cities.


Literature Depends on chosen topic.

Module M0859: Coastal Hydraulic Engineering II

Courses
Title Typ Hrs/wk CP
Coastal- and Flood Protection (L0808) Lecture 2 3
Coastal- and Flood Protection (L1415) Project-/problem-based Learning 1 1
Maintennance and Defence of Flood Protection Structures (L1411) Lecture 2 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Coastal Engineering I
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students have the capability to define and explain in detail the important aspects of erosion protection and flood protection and are able to apply the aspects to practical coastal protection problems. They are able to design and dimension important coastal protection measures from the functional and from the constructional point of view.

Skills

The students are able to select design approaches for the functional and constructional design of erosion and flood protection measures and apply these approaches to practical design tasks.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in applied problems such as the functional and constructive design of coastal and flood protection structures. Additionaly, they will be able to work in team with engineers of other disciplines.
Autonomy The students will be able to independently extend their knowledge and apply it to new problems.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 130 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Course L0808: Coastal- and Flood Protection
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content

Protection of sandy coasts

  • Sediment transport
  • Morphology
  • Technical solution for the protection of sandy coasts
    • Construction in direction of the coast
    • Constructions perpendicular to the coast
    • Other Concepst
  • Calculation approaches and numerical models

Flood Protection

  • Classification of constructions / measures
  • Dikes
  • Dunes
  • Foreland - constructions
  • Flood-Protection Walls
  • Drainage of the hinterland


Literature

Vorlesungsumdruck

Coastal Engineering Manual CEM


Course L1415: Coastal- and Flood Protection
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1411: Maintennance and Defence of Flood Protection Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Olaf Müller
Language DE
Cycle SoSe
Content
  • Dike protection
  • Maintennance of flood protection measures


Literature

Vorlesungsumdruck

Module M0860: Harbour Engineering and Harbour Planning

Courses
Title Typ Hrs/wk CP
Harbour Engineering (L0809) Lecture 2 2
Harbour Engineering (L1414) Project-/problem-based Learning 1 2
Port Planning and Port Construction (L0378) Lecture 2 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Basics of coastal engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to define in details and to choose design approaches for the functional design of a port and apply them to design tasks. They can design the fundamental elements of a port.

Skills

The students are able to select and apply appropriate approaches for the functional design of ports.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in applied problems such as the functional design of ports. Additionaly, they will be able to work in team with engineers of other disciplines.
Autonomy The students will be able to independently extend their knowledge and apply it to new problems.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 150 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Course L0809: Harbour Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content
  • Fundamentals of harbor engineering
    • Maritime transportation and waterways engineering
    • Ships
  • Elements of harbors
    • Harbor approaches and water-side harbor areas
    • Terminal design and handling of cargo
    • Quay-walls and piers
    • Equipment of harbors
    • Sluices and other special constructions
  • Connection to inland transportation / inland waterway transportation
  • Protection of harbors
    • Breakwaters and Jetties
    • Wave protection of harbors
  • Fishery and other small harbors


Literature Brinkmann, B.: Seehäfen, Springer 2005
Course L1414: Harbour Engineering
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0378: Port Planning and Port Construction
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Frank Feindt
Language DE
Cycle SoSe
Content
  • Planning and implementation of major projects
  • Market analysis and traffic relations
  • Planning process and plan 
  • Port planning in urban neighborhood
  • Development of the logistics center "Port of Hamburg" in the metropolis
  • Quays and waterfront structure
  • Special planning Law Harbor - securing of a flexible use of the port
  • Dimensioning of quays
  • Flood protection structures
  • Port of Hamburg - Infrastructure and development
  • Preparation of areas
  • Scour formation in front of shore structures
Literature Vorlesungsumdruck, s. www.tu-harburg.de/gbt

Module M0861: Modelling of Hydraulic Engineering

Courses
Title Typ Hrs/wk CP
Hydraulic Models (L0813) Project-/problem-based Learning 1 1
Modelling of Waves (L0812) Project-/problem-based Learning 1 1
Modelling of Flow in Rivers and Estuaries (L0810) Lecture 3 4
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge

Coastal Hydraulic Engineering I

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to define in detail the basic processes that are related to the modelling of flows in hydraulic engineering. Besides, they can describe the basic aspects of numerical modelling and actual numerical models for the simulation of flows and waves.

Skills

Students are able to apply hydrodynamic-numerical models to practical hydraulic engineering tasks.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in simple applied problems. Additionaly, they will be able to work in team with others.
Autonomy The students will be able to independently extend their knowledge and apply it to new problems.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 3 hours. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Course L0813: Hydraulic Models
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content
  • Fundamentals of hydraulic models
  • Model laws
  • Pi theorem of Buckingham
  • Practical examples of hydraulic models


Literature

Strobl, Zunic: Wasserbau, Kap. 11 Hydraulische Modelle, Springer


Course L0812: Modelling of Waves
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content
  •   Waves, interactions with shallow water and constructions
  •   Wave theories
  •   Sea state and surges
  • Development of waves
  • Wave spectra
  •   Modelling of Waves / phase averaged and phase resolved models
  •   Application of a phase averaged model for wave prediction (SWAN)
  • ·  Application of phase resolved wave models (Mike)


Literature

Vorlesungsumdruck

Course L0810: Modelling of Flow in Rivers and Estuaries
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Dr. Edgar Nehlsen, Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content

Basics of numerial models / application of models

  • classification of models
  • model concept
  • modelling

1D Working Equation

Mathematical description of physical processes

  • Equation of motions
    • conservation of mass
    • conservation of momentum
  • Initial conditions and boundary conditions

Numerical Methods

  • Time step procedure
  • Finite differences
  • Finite volumes



Literature Vorlesungsskript

Module M0874: Wastewater Systems

Courses
Title Typ Hrs/wk CP
Wastewater Systems - Collection, Treatment and Reuse (L0934) Lecture 2 2
Wastewater Systems - Collection, Treatment and Reuse (L0943) Recitation Section (large) 1 1
Advanced Wastewater Treatment (L0357) Lecture 2 2
Advanced Wastewater Treatment (L0358) Recitation Section (large) 1 1
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Knowledge of wastewater management and the key processes involved in wastewater treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to outline key areas of the full range of treatment systems in waste water management, as well as their mutual dependence for sustainable water protection. They can describe relevant economic, environmental and social factors.

Skills

Students are able to pre-design and explain the available wastewater treatment processes and the scope of their application in municipal and for some industrial treatment plants.

Personal Competence
Social Competence

Social skills are not targeted in this module.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Environmental Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0934: Wastewater Systems - Collection, Treatment and Reuse
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content •Understanding the global situation with water and wastewater

•Regional planning and decentralised systems

•Overview on innovative approaches

•In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse

•Mathematical Modelling of Nitrogen Removal

•Exercises with calculations and design

Literature

Henze, Mogens:
Wastewater Treatment: Biological and Chemical Processes, Springer 2002, 430 pages

George Tchobanoglous, Franklin L. Burton, H. David Stensel:
Wastewater Engineering: Treatment and Reuse, Metcalf & Eddy
McGraw-Hill, 2004 - 1819 pages

Course L0943: Wastewater Systems - Collection, Treatment and Reuse
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0357: Advanced Wastewater Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language DE
Cycle SoSe
Content

Survey on advanced wastewater treatment

reuse of reclaimed municipal wastewater

Precipitation

Flocculation

Depth filtration

Membrane Processes

Activated carbon adsorption

Ozonation

"Advanced Oxidation Processes"

Disinfection

Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003
Course L0358: Advanced Wastewater Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Joachim Behrendt
Language DE
Cycle SoSe
Content

Aggregate organic compounds (sum parameters)

Industrial wastewater

Processes for industrial wastewater treatment

Precipitation

Flocculation

Activated carbon adsorption

Recalcitrant organic compounds


Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003

Module M0922: City Planning

Courses
Title Typ Hrs/wk CP
City Planning (L1066) Project-/problem-based Learning 4 6
Module Responsible Prof. Carsten Gertz
Admission Requirements None
Recommended Previous Knowledge

for "Principles of Urban Planning": none

for "Designing Urban Streetscapes": some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineering“


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to:

  • use technical terms of urban planning.
  • describe the main determinants of urban development.
  • explain and compare different possibilities of how urban development can be influenced.
  • discuss requirements for public streetscapes.
  • explain the importance of street design.


Skills

Students are able to:

  • read and analyze urban development concepts and designs for streetscapes
  • appraise such concepts in the context of competing requirements. 
  • design, justify and reflect their own solutions for concrete examples.


Personal Competence
Social Competence

Students are able to:

  • discuss intermediate results with each other.
  • constructively accept feedback on their own work. 
  • provide constructive feedback to others.


Autonomy

Students are able to:

  • independently complete a written report including drawings following a broadly pre-defined process.
  • assess the consequences of their proposed solutions.
  • independently acquire knowledge and apply this to new issues or problem areas.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale written assignment, designwork during the semester
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1066: City Planning
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Carsten Gertz
Language DE
Cycle SoSe
Content

„Principles of Urban Planning“ deals with the determinants of urban development and their interactions. Topics include:

  • legal framework,
  • instruments and methods of planning,
  • functional requirements,
  • stakeholders and actors
  • basic design requirements
  • different planning levels and
  • historical contexts.
The objective of the course is for students to acquire a basic understanding of urban development problems and approaches for solving them. They will also be able to comprehend the process of urban planning. The course also covers the various functional and aesthetic requirements for  designing streetscape as the most important elements of public space.
The project work deals with a real life scenario and includes drawing up a development plan, an urban design concept, a building masterplan and a street redesign.


Literature

Albers, Gerd; Wekel, Julian (2009) Stadtplanung: Eine illustrierte Einführung. Primus Verlag. Darmstadt.

Frick, Dieter (2008) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. Wasmuth-Verlag. Tübingen

Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen

Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York.


Module M0977: Construction Logistics and Project Management

Courses
Title Typ Hrs/wk CP
Construction Logistics (L1163) Lecture 1 2
Construction Logistics (L1164) Recitation Section (small) 1 2
Project Development and Management (L1161) Lecture 1 1
Project Development and Management (L1162) Project-/problem-based Learning 1 1
Module Responsible Prof. Heike Flämig
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can...

  • give definitions of the main terms of construction logistics and project development and management
  • name advantages and disadvantages of internal or external construction logistics
  • explain characteristics of products, demand and production of construction objects and their consequences for construction specific supply chains
  • differentiate constructions logistics from other logistics systems
Skills

Students can...

  • carry out project life cycle assessments
  • apply methods and instruments of construction logistics
  • apply methods and instruments of project development and management
  • apply methods and instruments of conflict management
  • design supply and waste removal concepts for a construction project
Personal Competence
Social Competence

Students can...

  • hold presentations in and for groups
  • apply methods of conflict solving skills in group work and case studies
Autonomy

Students can...

  • solve problems by holistic, systemic and flow oriented thinking
  • improve their creativity, negotiation skills, conflict and crises solution skills by applying methods of moderation in case studies
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Two written papers with presentations
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Course L1163: Construction Logistics
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heike Flämig
Language DE
Cycle SoSe
Content

The lecture gives deeper insight how important logistics are as a competetive factor for construction projects and which issues are to be adressed.

The following toppics are covered:

  • competetive factor logistics
  • the concept of systems, planning and coordination of logistics
  • material, equipment and reverse logistics
  • IT in construction logistics
  • elements of the planning model of construction logistics and their connections
  • flow oriented logistics systems for construction projects
  • logistics concepts for ready to use construction projects (especially procurement and waste removel logistics)
  • best practice examples (construction logistics Potsdamer Platz, recent case study of the region)

Contents of the lecture are deepened in special exercises.

Literature

Flämig, Heike: Produktionslogistik in Stadtregionen. In: Forschungsverbund Ökologische Mobilität (Hrsg.) Forschungsbericht Bd. 15.2. Wuppertal 2000.

Krauss, Siri: Die Baulogistik in der schlüsselfertigen Ausführung,  Bauwerk Verlag GmbH Berlin 2005.

Lipsmeier, Klaus: Abfallkennzahlen für Neubauleistungen im Hochbau : Verlag Forum für Abfallwirtschaft und Altlasten, 2004.

Schmidt, Norbert: Wettbewerbsfaktor Baulogistik. Neue Wertschöpfungspotenziale in der Baustoffversorgung. In: Klaus, Peter: Edition Logistik. Band 6. Deutscher Verkehrs-Verlag. Hamburg 2003.

Seemann, Y.F. (2007): Logistikkoordination als Organisationseinheit bei der Bauausführung Wissenschaftsverlag Mainz in Aachen, Aachen. (Mitteilungen aus dem Fachgebiet Baubetrieb und Bauwirtschaft (Hrsg. Kuhne, V.): Heft 20)


Course L1164: Construction Logistics
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heike Flämig
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1161: Project Development and Management
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Heike Flämig, Dr. Anton Worobei
Language DE
Cycle SoSe
Content

Within the lecture, the main aspects of project development and management are tought:

  • Terms and definitions of project management
  • Advantages and disadvantages of different ways of project handling
  • organization, information, coordination and documentation
  • cost and fincance management in projects
  • time- and capacity management in projects
  • specific methods and instruments for successful team work

Contents of the lecture are deepened in special exercises.

Literature Projektmanagement-Fachmann. Band 1 und Band 2. RKW-Verlag, Eschborn, 2004.
Course L1162: Project Development and Management
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Heike Flämig, Dr. Anton Worobei
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0998: Statics and Dynamics of Structures

Courses
Title Typ Hrs/wk CP
Structural Dynamics (L1202) Lecture 2 2
Structural Dynamics (L1203) Recitation Section (large) 2 2
Fracture mechanics and fatigue in steel structures (L0564) Lecture 1 1
Fracture Mechanics and Fatigue (L0565) Recitation Section (large) 1 1
Module Responsible Prof. Uwe Starossek
Admission Requirements None
Recommended Previous Knowledge

Knowledge of linear structural analysis of statically determinate and indeterminate structures; Mechanics I/II, Mathematics I/II, Differential equations I

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of this module, the student can explain the basic aspects of dynamic effects on structures and the respective methods.




Skills

After successful completion of this module, the students will be able to predict the response of material and structures to dynamics loading using the appropriate computational approaches and methods.



Personal Competence
Social Competence

Students can

  • participate in subject-specific and interdisciplinary discussions,
  • defend their own work results in front of others
  • promote the scientific development of colleagues
  • Furthermore, they can give and accept professional constructive criticism
Autonomy

Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of Structural Analysis.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 150 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L1202: Structural Dynamics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle SoSe
Content
  • Single-degree-of-freedom systems: undamped and damped vibration, free vibration, forced vibrations due to harmonic, periodical or arbitrary loading, natural frequency, damping
  • vibration isolation
  • solution in the frequency-domain (Fourier transformation), solution in the time-domain
  • multi-degree-of-freedom systems: continuous or discrete systems, modelling with finite elements, generalisation
  • modal analysis
  • power iteration according to v.Mises
  • earthquake loading: seismological basics, response spectrum method
  • wind-induced vibrations: engineering meteorology, aerodynamic, classification of excitation mechanisms
progressive collapse


Literature

Clough, R.W., Penzien, J.: Dynamics of Structures. 2. Aufl., McGraw-Hill, New York, 1993.


Course L1203: Structural Dynamics
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0564: Fracture mechanics and fatigue in steel structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ingo Hadrych
Language DE
Cycle SoSe
Content

    basics of fatigue stress and fatigue resistance and determination of fatigue strength,

    determination anduse of S-N-curves and classification of notch effects,

    set up of determination of fatigue strength under dynamic load using the accumulation formula by Palmgren-Miner,

    set up of determination of fatigue strength in different examples,

    basics of construction and design regarding the problem of material fatigue,

    basics of linear elastic fracture mechanics under static and dynamic load,

    determination of lifetime of steel construction based on linear elastic fracture mechanics in different examples.

Literature

    Seeßelberg, C.; Kranbahnen - Bemessung und konstruktive Gestaltung; 3. Auflage;      Bauwerk-Verlag; Berlin 2009

    Kuhlmann, Dürr, Günther; Kranbahnen und Betriebsfestigkeit; in Stahlbau Kalender 2003; Verlag Ernst & Sohn; Berlin 2003

    Deutscher Stahlbau-Verband (Hrsg.); Stahlbau Handbuch Band 1 Teil B; 3. Auflage; Stahlbau-Verlagsgesellschaft; Köln 1996

    Petersen, C.; Stahlbau; 3. überarb. und erw. Auflage; Vieweg-Verlag; Braunschweig 1993

    DIN V ENV 1993-1-1: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 1-1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau; 1993

    DIN V ENV 1993-6: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 6: Kranbahnen; 2001

    DIN-Fachbericht 126. Richtlinie zur Anwendung von DIN V ENV 1993-6; Nationales Anwendungsdokument (NAD); Berlin 2002











Course L0565: Fracture Mechanics and Fatigue
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ingo Hadrych
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0999: Steel Construction Project

Courses
Title Typ Hrs/wk CP
Steel Construction Project (L1206) Project Seminar 4 6
Module Responsible Prof. Marcus Rutner
Admission Requirements None
Recommended Previous Knowledge Steel and Composite Structures
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students are able to prepare a part of the whole project and explain it to the others.
Skills Students can produce sketches and calculations of their part of the project. They are able to adjust their work in reaction to changing conditions resulting from other participants of the project.
Personal Competence
Social Competence

Students can present their results to other members of the group.

They have the ability to work for a broad agreement with respect to intergroup dependencies.

They can distribute and process tasks independently.

Autonomy Students can handle their part of the project on their own resposibility-
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale approx. 15-20 pages (without appendix)
Assignment for the Following Curricula Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Compulsory
Course L1206: Steel Construction Project
Typ Project Seminar
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Marcus Rutner
Language DE
Cycle SoSe
Content Design of a big construction project (i.e skyscraper, large bridge, roof of a stadiuim) in small groups
Literature

Wird je nach Projekt individuell angegeben.

Module M0663: Marine Geotechnics and Numerics

Courses
Title Typ Hrs/wk CP
Marine Geotechnics (L0548) Lecture 1 2
Marine Geotechnics (L0549) Recitation Section (large) 2 1
Numerical Methods in Geotechnics (L0375) Lecture 3 3
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge

complete modules: Geotechnics I-II, Mathematics I-III

courses: Soil laboratory course

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Course L0548: Marine Geotechnics
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jürgen Grabe
Language DE
Cycle SoSe
Content
  • Geotechnical investigation an description of the seabed
  • Foundations of Offshore-Constructions
  • cCliff erosion
  • Sea dikes
  • Port structures
  • Flood protection structures
Literature
  • EAK (2002): Empfehlungen für Küstenschutzbauwerke
  • EAU (2004): Empfehlungen des Arbeitsausschusses Uferbauwerke
  • Poulos H.G. (1988): Marine Geotechnics. Unwin Hyman, London
  • Wagner P. (1990): Meerestechnik: Eine Einführung für Bauingenieure. Ernst & Sohn, Berlin
Course L0549: Marine Geotechnics
Typ Recitation Section (large)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0375: Numerical Methods in Geotechnics
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Hans Mathäus Stanford
Language DE
Cycle SoSe
Content

Topics:

  • numerical simulations
  • numerical algorithms
  • finite element method
  • application of finite element method in geomechanics
  • constitutive models for soils
  • contact models for soil structure interaction
  • selected applications
Literature
  • Wriggers P. (2001): Nichtlineare Finite-Elemente-Methoden, Springer Verlag, Berlin
  • Bathe Klaus-Jürgen (2002): Finite-Elemente-Methoden. Springer Verlag, Berlin

Module M1350: Excavation Law and Projects

Courses
Title Typ Hrs/wk CP
Subsoil and Underground Engineering Law (L0395) Lecture 2 2
Service Contract and Procurement Law (L1906) Lecture 2 2
Project Geotechnics (L0708) Project-/problem-based Learning 2 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 15 min
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0395: Subsoil and Underground Engineering Law
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Günther Schalk
Language DE
Cycle WiSe
Content

• History of Civil Engineering Law (from 1700 BC to 2000 AD)

• Basics of foundation and excarvation law / engineering law (the participants in the case law of geotechnical law case studies)

• Legal aspects of technical regulations in civil engineering (with case studies)

• The civil engineering contract (including checklists for the special civil engineering contract design and execution)

• The liability of the planner and entrepreneur in civil engineering (practical examples, jurisprudence and law, inter alia, to the Ordinance on Combatants, liability for defects and traffic safety obligations, construction law and insurance questions)

• The ground / foundation risk and the systemic risk (also in the European context)

• The total debt in (low) building law (based on practice-oriented case constellations)

• The (construction) conflict, the dispute avoidance models and the construction process (practice-oriented presentation)

Literature

Folienskript (in der Vorlesung erhältlich)

weitere Literatur:

  • Englert, Grauvogel und Maurer: Handbuch des Baugrund- und Tiefbaurechts. Werner-Verlag

Course L1906: Service Contract and Procurement Law
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Günther Schalk, Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
Literature
Course L0708: Project Geotechnics
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content The students solve independently a project-based geotechnical problem in groups. Additional lectures concerning the problem will be held and material will be distributed as study basis. Every two weeks the groups present their current project status. The final work will be presentated in a final presentation.
Literature abhängig von der Fragestellung

Module M0581: Water Protection

Courses
Title Typ Hrs/wk CP
Water Protection and Wastewater Management (L0226) Lecture 3 3
Water Protection and Wastewater Management (L2008) Project Seminar 3 3
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge in water management;
  • Good knowledge in urban drainage;
  • Good knowledge of wastewater treatment techniques;
  • Good knowledge of pollutants (e.g. COD, BOD, TS, N, P) and their properties;
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can describe the basic principles of the regulatory framework related to the international and European water sector. They can explain limnological processes, substance cycles and water morphology in detail. They are able to assess complex problems related to water protection, such as ecosystem service and wastewater treatment with a special focus on innovative solutions, remediation measures as well as conceptual approaches.

Skills

Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems.



Personal Competence
Social Competence

The students can work together in international groups.



Autonomy

Students are able to organize their work flow to prepare presentations and discussions. They can acquire appropriate knowledge by making enquiries independently.




Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale Term paper plus presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Course L0226: Water Protection and Wastewater Management
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content

The lecture focusses on:

  • Regulatory Framework (e.g. WFD)
  • Main instruments for the water management and protection
  • In depth knowledge of relevant measures of water pollution control
  • Urban drainage, treatment options in different regions on the world
  • Rainwater management, improved management of heavy rainfalls, downpours, rainwater harvesting, rainwater infiltration
  • Case Studies and Field Trips
Literature

The literature listed below is available in the library of the TUHH.

  • Water and wastewater technology Hammer, M. J. 1., & . (2012). (7. ed., internat. ed.). Boston [u.a.]: Pearson Education International.
  • Water and wastewater engineering : design principles and practice: Davis, M. L. 1. (2011). . New York, NY: McGraw-Hill.
  • Biological wastewater treatment: (2011). C. P. Leslie Grady, Jr.  (3. ed.). London, Boca Raton,  Fla. [u.a.]: IWA Publ. 
Course L2008: Water Protection and Wastewater Management
Typ Project Seminar
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content
Literature

Module M0595: Examination of Materials, Structural Condition and Damages

Courses
Title Typ Hrs/wk CP
Examination of Materials, Structural Condition and Damages (L0260) Lecture 3 4
Examination of Materials, Structural Condition and Damages (L0261) Recitation Section (small) 1 2
Module Responsible Prof. Frank Schmidt-Döhl
Admission Requirements None
Recommended Previous Knowledge Basic knowledge about building materials or material science, for example by the module Building Materials and Building Chemistry.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the rules for trading, use and marking of construction products in Germany. They know which methods for the testing of building material properties are usable and know the limitations and characterics of the most important testing methods.

Skills

The students are able to responsibly discover the rules for trading and using of building products in Germany. 
They are able to chose suitable methods for the testing and inspection of construction products, the examination of damages and the examination of the structural conditions of buildings. They are able to conclude from symptons to the cause of damages. They are able to  describe an examination in form of a test report or expert opinion.


Personal Competence
Social Competence

The students can describe the different roles of manufacturers as well as testing, supervisory and certification bodies within the framework of material testing. They can describe the different roles of the participants in legal proceedings.


Autonomy The students are able to make the timing and the operation steps to learn the specialist knowledge of a very extensive field.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L0260: Examination of Materials, Structural Condition and Damages
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle WiSe
Content Materials testing and marking process of construction products, testing methods for building materials and structures, testing reports and expert opinions, describing the condition of a structure, from symptons to the cause of damages
Literature Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013.
Course L0261: Examination of Materials, Structural Condition and Damages
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0619: Waste Treatment Technologies

Courses
Title Typ Hrs/wk CP
Waste and Environmental Chemistry (L0328) Practical Course 2 2
Biological Waste Treatment (L0318) Project-/problem-based Learning 3 4
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge chemical and biological basics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module aims possess knowledge concerning the planning of biological waste treatment plants. Students are able to explain the design and layout of anaerobic and aerobic waste treatment plants in detail, describe different techniques for waste gas treatment plants for biological waste treatment plants and explain different methods for waste analytics.


Skills

The students are able to discuss the compilation of design and layout of plants. They can critically evaluate techniques and quality control measurements. The students can recherché and evaluate literature and date connected to the tasks given in der module and plan additional tests. They are capable of reflecting and evaluating findings in the group.


Personal Competence
Social Competence

Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development in front of colleagues. Furthermore, they can give and accept professional constructive criticism.


Autonomy

Students can independently tap knowledge from literature, business or test reports and transform it to the course projects. They are capable, in consultation with supervisors as well as in the interim presentation, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Presentation
Examination duration and scale Elaboration and Presentation (15-25 minutes in groups)
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Energy and Environmental Engineering: Specialisation Environmental Engineering: Elective Compulsory
Environmental Engineering: Core Qualification: Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Course L0328: Waste and Environmental Chemistry
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language DE/EN
Cycle WiSe
Content

The participants are divided into groups. Each group prepares a transcript on the experiment performed, which is then used as basis for discussing the results and to evaluate the performance of the group and the individual student.

In some experiments the test procedure and the results are presented in seminar form, accompanied by discussion and results evaluation.

Experiments ar e.g.

Screening  and particle size determination

Fos/Tac

AAS

Chalorific value

Literature Scripte
Course L0318: Biological Waste Treatment
Typ Project-/problem-based Learning
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content
  1. Introduction
  2. biological basics
  3. determination process specific material characterization
  4. aerobic degradation ( Composting, stabilization)
  5. anaerobic degradation (Biogas production, fermentation)
  6. Technical layout and process design
  7. Flue gas treatment
  8. Plant design practical phase
Literature

Module M0705: Groundwater

Courses
Title Typ Hrs/wk CP
Geohydraulic and Solute Transport (L0539) Lecture 2 2
Geohydraulic and Solute Transport (L0540) Recitation Section (small) 1 1
Simulation in Groundwater Hydrology (L0541) Lecture 1 1
Simulation in Groundwater Hydrology (L0542) Recitation Section (small) 2 2
Module Responsible NN
Admission Requirements None
Recommended Previous Knowledge
  • Ground water hydrology
  • Hydromechanics


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to describe the fate of solutes in the subsurface along the path between soil and water body quantitatively and qualitatively. They are able to do this with simulation models.
Skills The students are able to describe conceptually movement and storage of water in the unsaturated zone. They are able to analyse pF- functions and Ku functions. They can model transport of solutes in the unsaturated and saturated zoned. They are able to determine dispersiities, sorption coefficients, decay rates and dissolution rates for organic and inorganic substances.
Personal Competence
Social Competence The students can help to each other.
Autonomy none
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min written exam and written papers
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0539: Geohydraulic and Solute Transport
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content Pump test analysis, water content-water suction functions, unsaturated hydraulic conductivity function, Brooks-Corey relation, van Genuchten relation, solute transport in unsaturated zone, solute transport and reactions in groundwater
Literature

Todd; K. (2005): Groundwater Hydrology

Fetter, C.W. (2001): Applied Hydrogeology

Hölting & Coldewey (2005): Hydrogeologie

Charbeneau, R.J. (2000): Groundwater Hydraulics and pollutant Transport

Course L0540: Geohydraulic and Solute Transport
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0541: Simulation in Groundwater Hydrology
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content Basics and theoretical background of simulation models frequently used in science and practise for pumping test analysis, water movement in vadose zone, solute transport in vadose zone, groundwater recharge, solute transport in groundwater
Literature Handbücher der verwendeten Slumationsmodelle werden bereitgestellt.
Course L0542: Simulation in Groundwater Hydrology
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0713: Concrete Structures

Courses
Title Typ Hrs/wk CP
Concrete Structures (L0579) Seminar 1 1
Structural Concrete Members (L0577) Lecture 2 3
Structural Concrete Members (L0578) Recitation Section (large) 2 2
Module Responsible Prof. Günter Rombach
Admission Requirements None
Recommended Previous Knowledge

Basics of structural analysis, conception and dimensioning of structural concrete

Modules: Reinforced Concrete Structures I+II, Structural Analysis I+II, Mechanics I+II



Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students broaden their skills in structural engineering, especially in the field of buildings (houses, roofs, halls). They dispose of the knowledge for the conception and design of concrete buildings and structural members that are often used. 

Skills

The students are able to apply procedures of the conception and dimensioning to to practical problems of structural engineering. They are capable to draft concrete buildings and to design them for general action effects and to plan their detailing and execution. Moreover, they can make design and construction sketches and draw up technical descriptions. 

Personal Competence
Social Competence

The students are able to obtain results of high quality in teamwork. 

Autonomy

The students are able to carry out complex conception and dimensioning tasks of structures under the guidance of tutors.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation Es werden 2 Referate ausgegeben
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0579: Concrete Structures
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Björn Schütte
Language DE
Cycle WiSe
Content

With help of a project teamwork the subjects of the course "Concrete Structures" is practiced, discussed and presented.


Literature - Projektbezogene Unterlagen werden abgegeben.
Course L0577: Structural Concrete Members
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content
  • concrete buildings 
  • actions on structrues
  • bracing systems
  • slabs (line and point supported plates and floor slabs)
  • membranes and deep beams
  • shells and folded plates
  • reinforced and prestressed members
Literature

Vorlesungsunterlagen können im STUDiP heruntergeladen werden

  • Zilch K., Zehetmaier G.: Bemessung im konstruktiven Ingenieurbau. Springer, Heidelberg 2010
  • König, G., Liphardt S.: Hochhäuser aus Stahlbeton, Betonkalender 2003, Teil II, Seite 1-69, Verlag Ernst & Sohn, Berlin 2003
  • Phocas, Marios C.: Hochhäuser : Tragwerk und Konstruktion, Stuttgart, Teubner, 2005
  • Deutscher Ausschuss für Stahlbeton: Heft 600: Erläuterungen zu DIN EN 1992-1-1, Beuth Verlag, Berlin 2012
  • Deutscher Ausschuss für Stahlbeton: Heft 240: Hilfsmittel zur Berechnung der Schnittgrößen und Formänderungen von Stahlbetontragwerken, Verlag Ernst & Sohn, Berlin 1978
  • Stiglat, K., Wippel, H.: Massive Platten - Ausgewählte Kapitel der Schnittkraftermittlung und Bemessung, Betonkalender 1992, Teil I, 287-366, Verlag Ernst & Sohn, Berlin 1992
  • Stiglat/Wippel: Platten. Verlag Ernst & Sohn, Berlin,1973
  • Schlaich J.; Schäfer K.: Konstruieren im Stahlbetonbau. Betonkalender 1998, Teil II, S. 721ff, Verlag Ernst & Sohn, Berlin, 1998
  • Dames K.-H.: Rohbauzeichnungen Bewehrungszeichnungen. Bauverlag, Wiesbaden 1997



Course L0578: Structural Concrete Members
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Björn Schütte
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0722: Computational Analysis of Concrete Structures

Courses
Title Typ Hrs/wk CP
Computational Analysis of Concrete Structures (L0598) Lecture 2 3
Computational Analysis of Concrete Structures (L0599) Recitation Section (large) 1 1
FE-Modeling of Concrete Structures (L0600) Project-/problem-based Learning 2 2
Module Responsible Prof. Günter Rombach
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge in structural analysis and design of reinforced concrete structures (beams, slabs, shear walls).

Lectures  'Concrete Structures I und II'

Lectures  'Structural Analysis I and II'

Lecture 'Concrete Structures'

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know the problems of numerical modeling and design of an arbitrary concrete structure.

Skills

The students can model and design an arbitrary concrete structure by means of a finite element software package.

Personal Competence
Social Competence

The students can model and design in teamwork a real concrete structure by means of a finite element software package.

Autonomy

The students can model and design a real concrete structure based on a finite element software package and discuss the problems and results with other students.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Attestation Am Ende des Semster ist ein Tragsystem mit dem Rechenprogramm zu modellieren
Yes None Excercises Es ist ein Tragsystem mit TEDDY zu modellieren
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0598: Computational Analysis of Concrete Structures
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content
  • Modeling of beam and truss structures
    - Discontinuity regions, like frame corners, openings, shear walls with large openings
    - Bracing of high-rise buildings
    - Modeling of bridges 
    - Nonlinear analysis 
  • Finite-Elemente-analysis of slabs: support conditions, singularity regions
  • Finite-Elemente-Berechnungen of shear walls and deep beams: support condition, design
  • Coupled systems 
  • Modeling of slab supported on beams
  • Shell structures
  • 3D building models
  • Nonlinear analysis of slabs and shells
  • Documentation
Literature
  • Vorlesungsumdruck
  • Rombach, G.A. (2007): Anwendung der Finite-Elemente-Methode im Betonbau. 2. Auflage, Verlag Ernst & Sohn, Berlin
  • Rombach G.A. (2011): Finite-Element Design of Concrete Structures, 2nd edition, ICE publishing
  • Hartmann, F., Katz, C. (2002): Statik mit finiten Elementen. Springer, Berlin
Course L0599: Computational Analysis of Concrete Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0600: FE-Modeling of Concrete Structures
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Lukas Henze
Language DE
Cycle WiSe
Content

Finite Element Modeling and computational design of concrete structures by ‘SOFiSTiK’

Literature
  • Rombach G.: Anwendung der Finite - Elemente - Methode im Betonbau. 2. Auflage. Verlag Ernst &.Sohn, Berlin, 2007
  • Rombach G.: Finite-Element Design of Concrete Structures. 2nd edition, ICE Publishing, London, 2011, ISBN 0 7277 32749
  • Rombach G.: EDV-unterstützte Berechnungen im Stahlbetonbau. in: „Stahlbetonbau aktuell 2014“ (ed. Gorris A., Hegger J., Mark P.), Berlin 2014 (S. C1.-C.36)


Module M0801: Water Resources and -Supply

Courses
Title Typ Hrs/wk CP
Chemistry of Drinking Water Treatment (L0311) Lecture 2 1
Chemistry of Drinking Water Treatment (L0312) Recitation Section (large) 1 2
Water Resource Management (L0402) Lecture 2 2
Water Resource Management (L0403) Recitation Section (small) 1 1
Module Responsible Prof. Mathias Ernst
Admission Requirements None
Recommended Previous Knowledge

Knowledge of water management and the key processes involved in water treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to outline key areas of conflict in water management, as well as their mutual dependence for sustainable water supply. They will understand relevant economic, environmental and social factors. Students will be able to explain and outline the organisational structures of water companies. They will be able to explain the available water treatment processes and the scope of their application.

Skills

Students will be able to assess complex problems in drinking water production and establish solutions involving water management and technical measures. They will be able to assess the evaluation methods that can be used for this. Students will be able to carry out chemical calculations for selected treatment processes and apply generally accepted technical rules and standards to these processes.

Personal Competence
Social Competence

Working in a diverse group of specialists, students will be able to develop and document complex solutions for the management and treatment of drinking water. They will be able to take an appropriate professional position, for example representing user interests. They will be able to develop joint solutions in teams of diverse experts and present these solutions to others.

Autonomy

Students will be in a position to work on a subject independently and present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min (chemistry) + presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0311: Chemistry of Drinking Water Treatment
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content

The topic of this course is water chemistry with respect to drinking water treatment and water distribution

Major topics are solubility of gases, carbonic acid system and calcium carbonate,  blending, softening, redox processes, materials and legal requirements on drinking water treatment. Focus is put on generally accepted rules of technology (DVGW- and DIN-standards).

Special emphasis is put on calculations using realistic analysis data  (e.g. calculation of pH or calcium carbonate dissolution potential) in exercises. Students can get a feedback and gain extra points for exam by solving problems for homework.

Knowledge of drinking water treatment processes is vital for this lecture. Therefore the most important processes are explained coordinated with the course “ Water resources management“ in the beginning of the semester.


Literature

MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005.

Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996.

DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004.

Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003.


Course L0312: Chemistry of Drinking Water Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0402: Water Resource Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content

The lecture provides comprehensive knowledge on interaction of water ressource management and drinking water supply. Content overview:

  • Current situation of global water resources

-        User and Stakeholder conflicts

-        Wasserressourcenmanagement in urbane Gebieten

-        Rechtliche Aspekte, Organisationsformen Trinkwasserversorgungsunternehmen.

-        Ökobilanzierung, Benchmarking in der Wasserversorgung

Literature
  • Aktuelle UN World Water Development Reports
  • Branchenbild der deutschen Wasserwirtschaft, VKU (2011)
  • Aktuelle Artikel wissenschaftlicher Zeitschriften
  • Ppt der Vorlesung
Course L0403: Water Resource Management
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0923: Integrated Transportation Planning

Courses
Title Typ Hrs/wk CP
Integrated Transportation Planning (L1068) Project-/problem-based Learning 4 6
Module Responsible Prof. Carsten Gertz
Admission Requirements None
Recommended Previous Knowledge

some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineerin

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to:

  • describe interdependencies between land-use/location choice and transportation/mobility behaviour
  • explain and evaluate the social, ecological and economic effects of transport and land-use policy measures.
  • relate current issues in the area of integrated transport planning and formulate an opinion on them.


Skills

Students are able to:

  • quantify important parameters, which influence travel demand or are influenced by it.
  • comprehensively examine a pre-defined or self-selected topic from a transportation studies perspective and document the results in accordance with scientific conventions.


Personal Competence
Social Competence

Students are able to:

  • provide feedback on topical contents and their teaching.
  • constructively handle feedback on their own work.
  • produce results in group work and document these.


Autonomy

Students are able to:

  • assess potential consequences of their future professional activities
  • independently plan working on a pre-defined project topic, acquire the necessary knowledge and use appropriate means for its execution.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale written assignment with presentation during the semester
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1068: Integrated Transportation Planning
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Carsten Gertz, Dr. Philine Gaffron, Jacqueline Bianca Maaß
Language DE
Cycle WiSe
Content

The course will provide students with an understanding of interdependencies between land-use and transportation. Specific topics include a.o.:

  • interactions between transport and the environment and consequent limitations
  • characteristics of integrated planning
  • complex planning processes
  • interdependencies of location choice and mobility behaviour
  • transport and land-use policies
  • project on current issues in transportation studies


Literature

Kutter, Eckhard (2005) Entwicklung innovativer Verkehrsstrategien für die mobile Gesellschaft. Erich Schmidt Verlag. Berlin.

Bracher, Tilman u. a. (Hrsg.) (68. Ergänzung 2013) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen)


Module M0963: Steel and Composite Structures

Courses
Title Typ Hrs/wk CP
Steel and Composite Structures (L1204) Lecture 2 2
Steel and Composite Structures (L1205) Recitation Section (large) 2 2
Steel Bridges (L1097) Lecture 2 2
Module Responsible Prof. Marcus Rutner
Admission Requirements None
Recommended Previous Knowledge

Basics of steel construction (i.e. Steel Structures I and II, BUBC)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completition, students can

  • describe the phenomenon of local buckling
  • explain warping torsion
  • illustrate the behaviour of composite structures
  • specify the principles in design of composite sttructures
  • sketch the contructions of steel and composite bridges
Skills

After successful participation students are able to

  • check stiffened and unstiffened plated structures
  • recognize and verify warping tosion in strucures
  • design composite structures
  • design bridges and o perform the detailing
Personal Competence
Social Competence --
Autonomy --
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 180 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L1204: Steel and Composite Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Marcus Rutner
Language DE
Cycle WiSe
Content
  • Local-buckling of plated structures
  • Warping torsion
  • Composite-girders, -columns, -slabs, -bridges
  • Principles in composite constructions
  • Bridge-design and -construction
Literature

Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag

Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag

Course L1205: Steel and Composite Structures
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Marcus Rutner
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1097: Steel Bridges
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Jörg Ahlgrimm
Language DE
Cycle WiSe
Content

Lecture Contents ,Steel Bridge Construction'
Dr.-Ing. Jörg Ahlgrimm

- From tendering and contracting to completion - the development of a steel bridge

- Contents of a bridge static - structural details, examples of analysis in detail:

   -> effective width in regard to the longitudinal stiffeners

   -> Bearing point, bearing stiffener

   -> Crossbeam breakthrough, crossbeam reinforcement

   -> Analysis of the Rib-to-Floorbeam (RF) connection (web-tooth of the floorbeam  between trapezoidal shaped Ribs)

- Steel grades, -designation, testing methods and approval certificates

- Nondestructive weld inspecting

- Corrosion protection

- Bridge bearing - types, format, function, dimensioning, installation

- Expansion Joints

- Oscillation of bridge hangers and cables - oscillation damper

- Opening bridges- Detailed reviews to different assembling procedures and - implements

- Selective damage events

Requirements: Basic knowledge in the calculation, dimensioning, and construction of structural elements and joints of constructional steelwork

Literature


  • Herbert Schmidt, Ulrich Schulte, Rainer Zwätz, Lothar Bär:
    Ausführung von Stahlbauten

  • Petersen, Christian: Stahlbau, Abschnitt Brückenbau


  • Ahlgrimm, J., Lohrer, I.: Erneuerung der Eisenbahnüberführung in Fulda-Horas über die Fulda, Stahlbau 74 (2005), Heft 2, S. 114

Module M0966: Study Work Foundation Engineering

Courses
Title Typ Hrs/wk CP
Module Responsible Dozenten des SD B
Admission Requirements None
Recommended Previous Knowledge

Subjects of the Foundation Engineering specialisation.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to demonstrate their detailed knowledge in the field of geotechnical and foundation engineering. They can exemplify the state of technology and application and discuss critically in the context of actual problems and general conditions of science and society.

The students can develop solving strategies and approaches for fundamental and practical problems in geotechnical and foundation engineering. They may apply theory based procedures and integrate safety-related, ecological, ethical, and economic view points of science and society.

Scientific work techniques that are used can be described and critically reviewed.
Skills

The students are able to independently select methods for the project work and to justify this choice. They can explain how these methods relate to the field of work and how the context of application has to be adjusted. General findings and further developments may essentially be outlined.

Personal Competence
Social Competence

The students are able to condense the relevance and the structure of the project work, the work steps and the sub-problems for the presentation and discussion in front of a bigger group. They can lead the discussion and give a feedback on the project to their colleagues.

Autonomy

The students are capable of independently planning and documenting the work steps and procedures while considering the given deadlines. This includes the ability to accurately procure the newest scientific information. Furthermore, they can obtain feedback from experts with regard to the progress of the work, and to accomplish results on the state of the art in science and technology.

Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Study work
Examination duration and scale see FSPO
Assignment for the Following Curricula Civil Engineering: Specialisation Geotechnical Engineering: Compulsory

Module M0969: Selected Topics in Civil Engineering

Courses
Title Typ Hrs/wk CP
Analysis of Offshore Structures (L1867) Lecture 1 1
Excellence in International Project Delivery (L2387) Integrated Lecture 2 2
Design of Prefabricated Concrete Structures (L0596) Lecture 1 1
Design of Prefabricated Concrete Structures (L0597) Recitation Section (large) 1 1
Forum I - Geotechnics and Construction Management (L1634) Seminar 1 1
Forum II - Geotechnics and Construction Management (L1635) Seminar 1 1
Geotechnical Engineering Design (L2447) Lecture 2 3
Timber Structures (L1151) Seminar 2 2
Glass Structures (L1152) Lecture 2 2
Glass Structures (L1447) Recitation Section (large) 1 1
Special topics of civil engineering 1CP (L2378) 1 1
Special topics of civil engineering 2 LP (L2379) 2 2
Special topics of civil engineering 3 LP (L2380) 3 3
Wind turbine design (L1905) Lecture 1 1
Module Responsible Prof. Uwe Starossek
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to find their way through selected special areas within civil and structural engineering.
  • Students are able to explain basic models and procedures in selected special areas of civil and structural engineering.
  • Students are able to interrelate scientific and technical knowledge.


Skills
  • Students are able to apply basic methods in selected areas of civil and structural engineering.
Personal Competence
Social Competence ---
Autonomy
  • Students can chose independently, in which fields they want to deepen their knowledge and skills through the election of courses.
Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L1867: Analysis of Offshore Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Dr. Said Fawad Mohammadi
Language DE/EN
Cycle SoSe
Content

Topic 1: Types of Offshore Structures, Fixed and floating structures for Oil & Gas and Offshore Wind industry

Topic 2: Wave Forces, Morisons equation

Topic 3: Irregular Seastates, Power spectrum and application of FFT

Topic 4: Additional Environmental Forces, wind spectra, current forces

Topic 5: Linear-Time-Invariant Systems, response of an LTI-system in frequency domain

Topic 6: Tubular Welded Connections, stress concentration factors, weld geometry

Topic 7: Introduction to Fracture Mechanics, criteria for fracture initiation and crack growth

Topic 8: Time and Frequency Domain Fatigue Analyses, rainflow counting, application of LTI-systems for frequency domain fatigue

Topic 9: Offshore Installation and Exam, installation of structures, pile driving, pipe laying techniques

Literature

Chakrabarti, Handbook of Offshore Engineering, 2005

Sarpkaya, Wave Forces on Offshore Structures, 2010

Faltinsen, Sea Loads on Ships and Offshore Structures, 1998

Sorensen, Basic Coastal Engineering, 2006

Dowling, Mechanical Behavior of Materials, 2007

Haibach, Betriebsfestigkeit, 2006

Marshall, Design of Welded Tubular Connections, 1992

Newland, Random vibrations, spectral and wavelet analysis, 1993


Course L2387: Excellence in International Project Delivery
Typ Integrated Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dr. Jens Huckfeldt
Language EN
Cycle SoSe
Content
Literature
Course L0596: Design of Prefabricated Concrete Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content
  • application and advantages and disadvantages of precast concrete structures
  • basics of design - precast element production - construction - tolerances
  • elements of a warehouse
  • design of a beam - joints
  • design of D-regions: half joints, corbels, openings
  • slab types - walls - facades
  • footings: pocket and block foundations
  • joints - connections
  • shear design of the interface between concrete cast at different times
  • unreinforced concrete structures
Literature
  • Bachmann H., Steinle A.; Hahn V.: Bauen mit Betonfertigteilen. Betonkalender 2009, Teil I, Verlag Ernst & Sohn, Berlin
  • Bindseil P.: Stahlbetonfertigteile. Werner Verlag, 1998
  • FIP: FIP Handbuch für Planung und Entwerfen von Fertigteilbauten (siehe Zeitschrift: Beton- und Fertigteiltechnik ab 3/1996)
  • Bergmeister K.: Konstruieren von Fertigteilen. Betonkalender 2005 Teil 2, S. 163-240
  • Reineck K.-H.: Modellierung der D-Bereiche von Fertigteilen. Betonkalender 2005 Teil 2, S. 241-296
  • Graubner C.-A. et. al.: Bemessung von Fertigteilen nach DIN 1045-1. Betonkalender 2005 Teil 2, S. 297-374

 Broschüren der Fachvereinigung Deutscher Betonfertigteilbau e.V.
siehe:   www.fdb-fertigteilbau.de
             www.systembauweise.de

Course L0597: Design of Prefabricated Concrete Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Klausur
Examination duration and scale Siehe korrespondierende Vorlesung
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1634: Forum I - Geotechnics and Construction Management
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content Lectures about projects and issues with practical and scientific relevance.
Literature --
Course L1635: Forum II - Geotechnics and Construction Management
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Prof. Jürgen Grabe
Language DE
Cycle SoSe
Content Lectures about projects and issues with practical and scientific relevance.
Literature --
Course L2447: Geotechnical Engineering Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 45 Min.
Lecturer Prof. Jürgen Grabe, Dr. Tim Pucker
Language DE
Cycle WiSe
Content

The focus of the course is on the design of geotechnical structures. Methods and fundamental approaches for the successful processing of geotechnical designs are taught. Theoretical approaches are backed up with examples from everyday work in industry. In parallel to the theoretical content, students are given a practical task for a geotechnical design at beginning of the course, which will be worked on in small teams. In addition to the application of the already acquired technical knowledge, topics like realisation, construction sequence planning, cost calculation, optimisation and evaluation criteria are also part of the course.

The event will be finished with the presentation of the designs.

Literature
Course L1151: Timber Structures
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 90 min
Lecturer Prof. Torsten Faber
Language DE
Cycle WiSe
Content
Literature
Course L1152: Glass Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Mündliche Prüfung
Examination duration and scale
Lecturer Marvin Matzik
Language DE
Cycle WiSe
Content

Glass structures

 - Introduction of the material glass (production, refinement, material characteristic)

 - design of facades

 - facade types

 - static calculation of glazing

 - static calculation of facades

 - load bearing behavior of glazing (plate or membrane stiffness)

 - vertical / horizontal glazing with safety-related requirements

 - glass structures

 - fire safety of glass facades

 - construction physics of facades and glazing

Literature
Course L1447: Glass Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale
Lecturer Marvin Matzik
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L2378: Special topics of civil engineering 1CP
Typ
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature Die Literatur wird kurzfristig festgelegt.
Course L2379: Special topics of civil engineering 2 LP
Typ
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dr. Jan Mittelstädt, Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature

Die Literatur wird kurzfristig festgelegt.

Course L2380: Special topics of civil engineering 3 LP
Typ
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature

Die Literatur wird kurzfristig festgelegt.

Course L1905: Wind turbine design
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Dr. Jörn Scheller
Language DE
Cycle WiSe
Content
Literature

Module M0997: Structural Analysis - Selected Topics

Courses
Title Typ Hrs/wk CP
Plates and Shells (L1199) Lecture 2 2
Nonlinear Analysis of Frame Structure (L1200) Lecture 2 2
Nonlinear Analysis of Frame Structure (L1201) Recitation Section (large) 2 2
Module Responsible Prof. Uwe Starossek
Admission Requirements None
Recommended Previous Knowledge

Mechanics I/II, Mathematics I/II, Differential Equations I


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of this module, students can explain selected elements of higher structural analysis.




Skills


After successful completion of this module, the students are able to assess the premises and the applicability of the presented methods of advanced structural analysis. They are able to use these methods for performing structural analyses.

Personal Competence
Social Competence

Students can

  • participate in subject-specific and interdisciplinary discussions,
  • defend their own work results in front of others
  • promote the scientific development of colleagues
  • Furthermore, they can give and accept professional constructive criticism
Autonomy

The students have the opportunity to voluntarily and independently work homework problems.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 135 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Course L1199: Plates and Shells
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Jürgen Priebe
Language DE
Cycle WiSe
Content

Theory of plates loaded in-plane

  • Governing equations (equilibrium, kinematics, constitutive law)
  • Differential equation
  • Airy stress function
  • Plane stress / plane strain
  • Structural behaviour of plates loaded in-plane

                                               Theory of plates in bending

  • Governing equations (equilibrium, kinematics, constitutive law)
  • Differential equation
  • Navier solution / Fourier series expansion
  • Approximation procedures
  • Structural behaviour of plates in bending

                                               Shell theory

  • Phenomenona of the structural behaviour of shells
  • Membrane and bending theory
  • Equilibrium equations of shells of revolution
  • Stress resultants and deformations of the spherical shell, the half spherical shell, and the cylindrical shell

                                               Stability problems (overview)

  • Plate buckling
  • Shell buckling


Literature
  • Basar, Y.: Krätzig, W.B. (1985): Mechanik der Flächentragwerke. Vieweg-Verlag, Braunschweig, Wiesbaden
  • Girkmann, K. (1963): Flächentragwerke, Springer Verlag, Wien, 1963, unveränderter Nachdruck 1986
  • Zienkiewicz, O.C. (1977): The Finite Element Method in Enginieering Science. McGraw-Hill, London


Course L1200: Nonlinear Analysis of Frame Structure
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle WiSe
Content

-Types of nonlinearity

-relevance of nonlinear effects on structural analysis

-comparison and classification of 1st  order theory, 2nd  order theory and 3rd order theory with regard to the coverage of geometric nonlinearity

-fundamentals of 2nd order elasticity theory for frame structures

-application of  2nd order elasticity theory using finite elements: common displacement method

-fundamentals of analytical application of 2nd order elasticity theory: derivation and solution of differential equation

-structurally applied methods of analytical application of 2nd order elasticity theory: common displacement method using analytical stiffness matrix, slope-deflection method for sway and non-sway frame structures, consideration of imperfections

1st order plastic hinge theory


Literature

Rothert, H.; Gensichen, V. (1987): Nichtlineare Stabstatik. Springer Verlag, Berlin


Course L1201: Nonlinear Analysis of Frame Structure
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1505: Adaptation to Climate Change in Hydraulic Engineering (AKWAS)

Courses
Title Typ Hrs/wk CP
Adaptation to climate change in hydraulic engineering (L2291) Project-/problem-based Learning 4 6
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge
  • Hydrology, Hydraulic Engineering
  • Hydromechanic, Hydraulics
  • Fundamentals of Coastal Engineering, Coastal- and Flood Protection
  • Hydrological Systems
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Climate protection and climate adaptation
  • Insights into climate change and its regional characteristics - fundamentals, climate modelling / climate models
  • Impacts of climate change on the components of the regional hydrological cycle
  • Fundamentals of analysis of climate data
  • Consequences of the impact of the climate change
  • Measures for climate adaptation
  • Assessment, prioritization and communication of adaptation measures
  • Fundamentals of the analysis of hydrometeorological and hydrological data
Skills
  • Critical thinking: analysis of processes and relations, assessment of needs for action
  • Creative thinking: development of adaptation strategies and adaptation measures
  • Practical thinking: inclusion of restrictions, application of calculation approaches, methods, numerical models, planning methods
  • Consideration of complex tasks


Personal Competence
Social Competence
  • Working in heterogenous groups
  • Working with different scientific / non-scientific disciplines
  • Self reflection
Autonomy
  • Application oriented use of knowledge and skills
  • Autonomous work on complex tasks
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Preparation of a written report and a presentation of a complex task.
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Course L2291: Adaptation to climate change in hydraulic engineering
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Peter Fröhle
Language DE
Cycle WiSe
Content
  • Climate protection and climate adaptation
  • Findings on climate change and its regional characteristics: fundamentals of climate change, climate modelling / climate models
  • Impacts of climate change on the components of the regional hydrological cycle(climate science view)
  • Fundamentals of the analysis of climate data
  • Concequences of the impacts of climate change (ingenieering science view)
  • Measures for climate change adaptation
  • Assessment, prioritization and communication of measures
  • Fundamentals of analysis of hydrometeorological and hydrological data
Literature
  • Bereitgestellte eLearning Plattform

Specialization Structural Engineering

Module M0699: Advanced Foundation Engineering and Soil Laboratory Course

Courses
Title Typ Hrs/wk CP
Soil Laboratory Course (L0499) Practical Course 1 2
Numerical Methods in Geotechnics (L0375) Lecture 3 3
Advanced Foundation Engineering (L0497) Lecture 2 2
Advanced Foundation Engineering (L0498) Recitation Section (large) 1 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 82, Study Time in Lecture 98
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0499: Soil Laboratory Course
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
  • Field experiments
  • Short lecture on laboratory tests
  • soil analysis
  • laboratory test
  • soil clasification
  • Creating a ground and foundation report
Literature
  • DIN-Taschenbuch 113, Erkundung und Untersuchung des Baugrundes


Course L0375: Numerical Methods in Geotechnics
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Hans Mathäus Stanford
Language DE
Cycle WiSe
Content

Topics:

  • numerical simulations
  • numerical algorithms
  • finite element method
  • application of finite element method in geomechanics
  • constitutive models for soils
  • contact models for soil structure interaction
  • selected applications
Literature
  • Wriggers P. (2001): Nichtlineare Finite-Elemente-Methoden, Springer Verlag, Berlin
  • Bathe Klaus-Jürgen (2002): Finite-Elemente-Methoden. Springer Verlag, Berlin
Course L0497: Advanced Foundation Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
  • Vertical drains
  • Piles
  • Ground improvement (Deep Compaction, Soil mixing)
  • Vibration driving
  • Jet grouting
  • Slurry wall
  • Deep excavation
Literature
  • EAK (2002): Empfehlungen für Küstenschutzbauwerke
  • EAU (2004): Empfehlungen des Arbeitsausschusses Uferbauwerke
  • EAB (1988): Empfehlungen des Arbeitskreises Baugruben
  • Grundbau-Taschenbuch, Teil 1-3, (1997), Ernst & Sohn Verlag
Course L0498: Advanced Foundation Engineering
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0713: Concrete Structures

Courses
Title Typ Hrs/wk CP
Concrete Structures (L0579) Seminar 1 1
Structural Concrete Members (L0577) Lecture 2 3
Structural Concrete Members (L0578) Recitation Section (large) 2 2
Module Responsible Prof. Günter Rombach
Admission Requirements None
Recommended Previous Knowledge

Basics of structural analysis, conception and dimensioning of structural concrete

Modules 'Concrete Structures I and II'

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students broaden their skills in structural engineering, especially in the field of buildings (houses, roofs, halls). They dispose of the knowledge for the conception and design of concrete buildings and structural members that are often used. 

Skills

The students are able to apply procedures of the conception and dimensioning to to practical problems of structural engineering. They are capable to draft concrete buildings and to design them for general action effects and to plan their detailing and execution. Moreover, they can make design and construction sketches and draw up technical descriptions. 

Personal Competence
Social Competence

The students are able to obtain results of high quality in teamwork. 

Autonomy

The students are able to carry out complex conception and dimensioning tasks of structures under the guidance of tutors.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation Es werden 2 Referate ausgegeben
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0579: Concrete Structures
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Björn Schütte
Language DE
Cycle WiSe
Content

With help of a project teamwork the subjects of the course "Concrete Structures" is practiced, discussed and presented.


Literature - Projektbezogene Unterlagen werden abgegeben.
Course L0577: Structural Concrete Members
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content
  • concrete buildings 
  • actions on structrues
  • bracing systems
  • slabs (line and point supported plates and floor slabs)
  • membranes and deep beams
  • shells and folded plates
  • reinforced and prestressed members
Literature

Vorlesungsunterlagen können im STUDiP heruntergeladen werden

  • Zilch K., Zehetmaier G.: Bemessung im konstruktiven Ingenieurbau. Springer, Heidelberg 2010
  • König, G., Liphardt S.: Hochhäuser aus Stahlbeton, Betonkalender 2003, Teil II, Seite 1-69, Verlag Ernst & Sohn, Berlin 2003
  • Phocas, Marios C.: Hochhäuser : Tragwerk und Konstruktion, Stuttgart, Teubner, 2005
  • Deutscher Ausschuss für Stahlbeton: Heft 600: Erläuterungen zu DIN EN 1992-1-1, Beuth Verlag, Berlin 2012
  • Deutscher Ausschuss für Stahlbeton: Heft 240: Hilfsmittel zur Berechnung der Schnittgrößen und Formänderungen von Stahlbetontragwerken, Verlag Ernst & Sohn, Berlin 1978
  • Stiglat, K., Wippel, H.: Massive Platten - Ausgewählte Kapitel der Schnittkraftermittlung und Bemessung, Betonkalender 1992, Teil I, 287-366, Verlag Ernst & Sohn, Berlin 1992
  • Stiglat/Wippel: Platten. Verlag Ernst & Sohn, Berlin,1973
  • Schlaich J.; Schäfer K.: Konstruieren im Stahlbetonbau. Betonkalender 1998, Teil II, S. 721ff, Verlag Ernst & Sohn, Berlin, 1998
  • Dames K.-H.: Rohbauzeichnungen Bewehrungszeichnungen. Bauverlag, Wiesbaden 1997



Course L0578: Structural Concrete Members
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Björn Schütte
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0963: Steel and Composite Structures

Courses
Title Typ Hrs/wk CP
Steel and Composite Structures (L1204) Lecture 2 2
Steel and Composite Structures (L1205) Recitation Section (large) 2 2
Steel Bridges (L1097) Lecture 2 2
Module Responsible Prof. Marcus Rutner
Admission Requirements None
Recommended Previous Knowledge

Basics of steel construction (i.e. Steel Structures I and II, BUBC)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completition, students can

  • describe the phenomenon of local buckling
  • explain warping torsion
  • illustrate the behaviour of composite structures
  • specify the principles in design of composite sttructures
  • sketch the contructions of steel and composite bridges
Skills

After successful participation students are able to

  • check stiffened and unstiffened plated structures
  • recognize and verify warping tosion in strucures
  • design composite structures
  • design bridges and o perform the detailing
Personal Competence
Social Competence --
Autonomy --
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 180 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L1204: Steel and Composite Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Marcus Rutner
Language DE
Cycle WiSe
Content
  • Local-buckling of plated structures
  • Warping torsion
  • Composite-girders, -columns, -slabs, -bridges
  • Principles in composite constructions
  • Bridge-design and -construction
Literature

Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag

Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag

Course L1205: Steel and Composite Structures
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Marcus Rutner
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1097: Steel Bridges
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Jörg Ahlgrimm
Language DE
Cycle WiSe
Content

Lecture Contents ,Steel Bridge Construction'
Dr.-Ing. Jörg Ahlgrimm

- From tendering and contracting to completion - the development of a steel bridge

- Contents of a bridge static - structural details, examples of analysis in detail:

   -> effective width in regard to the longitudinal stiffeners

   -> Bearing point, bearing stiffener

   -> Crossbeam breakthrough, crossbeam reinforcement

   -> Analysis of the Rib-to-Floorbeam (RF) connection (web-tooth of the floorbeam  between trapezoidal shaped Ribs)

- Steel grades, -designation, testing methods and approval certificates

- Nondestructive weld inspecting

- Corrosion protection

- Bridge bearing - types, format, function, dimensioning, installation

- Expansion Joints

- Oscillation of bridge hangers and cables - oscillation damper

- Opening bridges- Detailed reviews to different assembling procedures and - implements

- Selective damage events

Requirements: Basic knowledge in the calculation, dimensioning, and construction of structural elements and joints of constructional steelwork

Literature


  • Herbert Schmidt, Ulrich Schulte, Rainer Zwätz, Lothar Bär:
    Ausführung von Stahlbauten

  • Petersen, Christian: Stahlbau, Abschnitt Brückenbau


  • Ahlgrimm, J., Lohrer, I.: Erneuerung der Eisenbahnüberführung in Fulda-Horas über die Fulda, Stahlbau 74 (2005), Heft 2, S. 114

Module M0511: Electricity Generation from Wind and Hydro Power

Courses
Title Typ Hrs/wk CP
Renewable Energy Projects in Emerged Markets (L0014) Project Seminar 1 1
Hydro Power Use (L0013) Lecture 1 1
Wind Turbine Plants (L0011) Lecture 2 3
Wind Energy Use - Focus Offshore (L0012) Lecture 1 1
Module Responsible Dr. Joachim Gerth
Admission Requirements None
Recommended Previous Knowledge

Module: Technical Thermodynamics I,

Module: Technical Thermodynamics II,

Module: Fundamentals of Fluid Mechanics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

By ending this module students can explain in detail knowledge of wind turbines with a particular focus of wind energy use in offshore conditions and can critical comment these aspects in consideration of current developments. Furthermore, they are able to describe fundamentally the use of water power to generate electricity. The students reproduce and explain the basic procedure in the implementation of renewable energy projects in countries outside Europe.

Through active discussions of various topics within the seminar of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice.

Skills  Students are able to apply the acquired theoretical foundations on exemplary water or wind power systems and evaluate and assess technically the resulting relationships in the context of dimensioning and operation of these energy systems. They can in compare critically the special procedure for the implementation of renewable energy projects in countries outside Europe with the in principle applied approach in Europe and can apply this procedure on exemplary theoretical projects.

Personal Competence
Social Competence  Students can discuss scientific tasks subjet-specificly and multidisciplinary within a seminar.

Autonomy

Students can independently exploit sources in the context of the emphasis of the lecture material to clear the contents of the lecture and to acquire the particular knowledge about the subject area.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 3 hours written exam
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Energy Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0014: Renewable Energy Projects in Emerged Markets
Typ Project Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Andreas Wiese
Language DE
Cycle SoSe
Content
  1. Introduction
    • Development of renewable energies worldwide
      • History
      • Future markets
    • Special challenges in new markets - Overview
  2. Sample project wind farm Korea
    • Survey
    • Technical Description
    • Project phases and characteristics
  3. Funding and financing instruments for EE projects in new markets
    • Overview funding opportunitie
    • Overview countries with feed-in laws
    • Major funding programs
  4. CDM projects - why, how , examples
    • Overview CDM process
    • Examples
    • Exercise CDM
  5. Rural electrification and hybrid systems - an important future market for EE
    • Rural Electrification - Introduction
    • Types of Elektrizifierungsprojekten
    • The role of the EEInterpretation of hybrid systems
    • Project example: hybrid system Galapagos Islands
  6. Tendering process for EE projects - examples
    • South Africa
    • Brazil
  7. Selected projects from the perspective of a development bank - Wesley Urena Vargas, KfW Development Bank
    • Geothermal
    • Wind or CSP

Within the seminar, the various topics are actively discussed and applied to various cases of application.

Literature Folien der Vorlesung
Course L0013: Hydro Power Use
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Achleitner
Language DE
Cycle SoSe
Content
  • Introduction, importance of water power in the national and global context
  • Physical basics: Bernoulli's equation, usable height of fall, hydrological measures, loss mechanisms, efficiencies
  • Classification of Hydropower: Flow and Storage hydropower, low and high pressure systems
  • Construction of hydroelectric power plants: description of the individual components and their technical system interaction
  • Structural engineering components; representation of dams, weirs, dams, power houses, computer systems, etc.
  • Energy Technical Components: Illustration of the different types of hydraulic machinery, generators and grid connection
  • Hydropower and the Environment
  • Examples from practice

Literature
  • Schröder, W.; Euler, G.; Schneider, K.: Grundlagen des Wasserbaus; Werner, Düsseldorf, 1999, 4. Auflage
  • Quaschning, V.: Regenerative Energiesysteme: Technologie - Berechnung - Simulation; Carl Hanser, München, 2011, 7. Auflage
  • Giesecke, J.; Heimerl, S.; Mosony, E.: Wasserkraftanlagen ‑ Planung, Bau und Betrieb; Springer, Berlin, Heidelberg, 2009, 5. Auflage
  • von König, F.; Jehle, C.: Bau von Wasserkraftanlagen - Praxisbezogene Planungsunterlagen; C. F. Müller, Heidelberg, 2005, 4. Auflage
  • Strobl, T.; Zunic, F.: Wasserbau: Aktuelle Grundlagen - Neue Entwicklungen; Springer, Berlin, Heidelberg, 2006


Course L0011: Wind Turbine Plants
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Rudolf Zellermann, Dr. Jochen Oexmann
Language DE
Cycle SoSe
Content
  • Historical development
  • Wind: origins, geographic and temporal distribution, locations
  • Power coefficient, rotor thrust
  • Aerodynamics of the rotor
  • Operating performance
  • Power limitation, partial load, pitch and stall control
  • Plant selection, yield prediction, economy
  • Excursion
Literature

Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005


Course L0012: Wind Energy Use - Focus Offshore
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Martin Skiba
Language DE
Cycle SoSe
Content
  • Introduction, importance of offshore wind power generation, Specific requirements for offshore engineering
  • Physical fundamentals for utilization of wind energy
  • Design and operation of offshore wind turbines, presentation of different concepts of offshore wind turbines, representation of the individual system components and their system-technical relationships
  • Foundation engineering, offshore site investigation, presentation of different concepts of offshore foundation structures, planning and fabrication of foundation structures
  • Electrical infrastructure of an offshore wind farm, Inner Park cabling, offshore substation, grid connection
  • Installation of offshore wind farms, installation techniques and auxiliary devices, construction logistics
  • Development and planning of offshore wind farms
  • Operation and optimization of offshore wind farms
  • Day excursion
Literature
  • Gasch, R.; Twele, J.: Windkraftanlagen - Grundlagen, Entwurf, Planung und Betrieb; Vieweg + Teubner, Stuttgart, 2007, 7. Auflage
  • Molly, J. P.: Windenergie - Theorie, Anwendung, Messung; C. F. Müller, Heidel-berg, 1997, 3. Auflage
  • Hau, E.: Windkraftanalagen; Springer, Berlin, Heidelberg, 2008, 4.Auflage
  • Heier, S.: Windkraftanlagen - Systemauslegung, Integration und Regelung; Vieweg + Teubner, Stuttgart, 2009, 5. Auflage
  • Jarass, L.; Obermair, G.M.; Voigt, W.: Windenergie: Zuverlässige Integration in die Energieversorgung; Springer, Berlin, Heidelberg, 2009, 2. Auflage


Module M1351: Construction Processes

Courses
Title Typ Hrs/wk CP
Digital Building (L1908) Lecture 2 2
Lean Construction (L1910) Lecture 2 2
System Dynamics (L1909) Lecture 2 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L1908: Digital Building
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Katja Maaser
Language DE
Cycle SoSe
Content
Literature
Course L1910: Lean Construction
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Theo Herzog
Language DE
Cycle SoSe
Content
Literature
Course L1909: System Dynamics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Markus Salge
Language DE
Cycle SoSe
Content
Literature

Module M0723: Design of Prestressed Structures and Concrete Bridges

Courses
Title Typ Hrs/wk CP
Design of Prestressed Structures and Concreet Bridges (L0603) Lecture 3 4
Design of Prestressed Structures and Concreet Bridges (L0604) Recitation Section (large) 2 2
Module Responsible Prof. Günter Rombach
Admission Requirements None
Recommended Previous Knowledge

Detailed knowledge on the design of concrete structures.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know the main bridge types, their applications and the various loads. They can explain the basic design methods. They can explain the design of a prestressed bridge.

Skills

The students are able to design reinforced or prestressed concrete bridges.

Personal Competence
Social Competence

The students can design in teamwork a real concrete bridge.

Autonomy

The students are able to design a prestressed concrete bridge and discuss the problems and results with other students.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 180 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0603: Design of Prestressed Structures and Concreet Bridges
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content

prestressed structures

  • basis of prestressed structures
  • differences between reinforced and prestressed concrete structures
  • history of prestressing
  • construction materials: concrete, tendons, ducts, anchorage systems
  • construction: prestressing methods
  • prestressing forces and member forces (friction, elongation)
  • tendon layout
  • time dependant prestressing losses
  • design of prestressed structures
  • design of anchorage region
  • non-bonded prestressing
  • prestressed flat slabs


Concrete bridges

  • history of bridges
  • design of bridges
  • loads on bridges
  • member forces for slab, T-beam, hollow box, frame and arch bridges
  • precast bridges - precast segmental bridges
  • bearings
  • abutments, columns
  • construction methods
Literature
  • Vorlesungsumdruck
  • Rombach, G. (2003): Spannbetonbau. Ernst & Sohn, Berlin
  • Wicke, M. (2002): Anwendung des Spannbetons. Betonkalender 2002, Teil II, S. 113-180, Verlag Ernst & Sohn, Berlin
  • Leonhardt, F. (1980): Vorlesungen über Massivbau. Teil 5: Spannbeton. Berlin
  • Mehlhorn, G. (2007): Handbuch Brücken, Springer Verlag
  • Schäfer, H.; Kaufeld, K. (1997): Massivbrücken. Betonkalender Teil II, S. 443ff, Ernst & Sohn, Berlin
  • Menn, Ch. (1986): Stahlbetonbrücken. Springer Verlag, Wien
Course L0604: Design of Prestressed Structures and Concreet Bridges
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0807: Boundary Element Methods

Courses
Title Typ Hrs/wk CP
Boundary Element Methods (L0523) Lecture 2 3
Boundary Element Methods (L0524) Recitation Section (large) 2 3
Module Responsible Prof. Otto von Estorff
Admission Requirements None
Recommended Previous Knowledge

Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics)
Mathematics I, II, III (in particular differential equations)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method.



Skills

The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the corresponding system matrices, and solving the resulting system of equations.



Personal Competence
Social Competence

Students can work in small groups on specific problems to arrive at joint solutions.

Autonomy

The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 20 % Midterm
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Energy Systems: Core Qualification: Elective Compulsory
Mechanical Engineering and Management: Specialisation Product Development and Production: Elective Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Product Development, Materials and Production: Core Qualification: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Course L0523: Boundary Element Methods
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Otto von Estorff
Language EN
Cycle SoSe
Content

- Boundary value problems
- Integral equations
- Fundamental Solutions
- Element formulations
- Numerical integration
- Solving systems of equations (statics, dynamics)
- Special BEM formulations
- Coupling of FEM and BEM

- Hands-on Sessions (programming of BE routines)
- Applications

Literature

Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Course L0524: Boundary Element Methods
Typ Recitation Section (large)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Otto von Estorff
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0756: Soil Mechanics and -Dynamics

Courses
Title Typ Hrs/wk CP
Soil Mechanics - Selected Topics (L0374) Lecture 2 2
Soil Dynamics (L0452) Lecture 3 2
Experimental Researches in Geotechnics (L0706) Practical Course 1 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge

modules: Mathematics I-III, Mechanics I-II, Geotechnics I

courses: Soil laboratory course, (Applied structural dynamics)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After the successful completion of the module the students should be able to:

  • to derive and to apply the basic equation of a simple mass oscillator,
  • to understand the wave propagation in the soil under dynamic excitation and to detect the relevant parameters,
  • to know the essential laboratory and field tests to determine soil dynamic characteristics and to evaluate them,
  • to design machine foundations to dynamic load,
  • to measure shocks to perform vibration forecast,
  • to evaluate shocks in term to their effect on people and buildings,
  • to evaluate possibilities of isolation,
  • to understand mechanisms that cause earthquakes and evaluate earthquake in term of their magnitude and intensity,
  • to know methods to determine axial pile capacity, integrity and the dynamic bedding modulus,
  • to know the mechanisms that lead to a deformation accumulation due to cyclic loading and to estimate these deformations mathematically,
  • to distinguish the area of application of the method of elastodynamics and plastodynamics,

  • to detect the undrained shear strength as a function of a number of state variables,
  • to capture the visous behaviour of cohesive soils and to consider the effects of creep and rate-dependent shear strength in calculations,
  • to consider the impact of the partly saturated of a seepage and shear strength.
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 15 % Subject theoretical and practical work
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Course L0374: Soil Mechanics - Selected Topics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Hans Mathäus Stanford
Language DE
Cycle SoSe
Content

selected topis:

- continuum mechanis

- constitutive modelling

- time and rate dependend material behavior of soils

- cyclic loading

- undrained conditions

Literature Kolymbas D. (2007): Geotechnik - Bodenmechanik, Grundbau und Tunnelbau. Springer Verlag
Course L0452: Soil Dynamics
Typ Lecture
Hrs/wk 3
CP 2
Workload in Hours Independent Study Time 18, Study Time in Lecture 42
Lecturer Alexander Chmelnizkij
Language DE
Cycle SoSe
Content

• mass-spring-damper systems,

• wave propagation in soils,

• dynamic soil parameters,

• Determination of dynamic soil parameters,

• machine foundations,

• in-situ measurement of ground motion, ground motion prediction, evaluation of ground motion,

• ground motion shielding,

• introduction into earthquake engineering,

• dynamic pile tests,

• cyclic accumulation,

• plastodynamics

Literature
  • Das B.M.: Fundamentals of Soil Dynamics, Elsevier
  • Empfehlungen des Arbeitskreises Baugrunddynamik. Hrsg. Deutsche Gesellschaft für Geotechnik (DGGT)
  • Haupt W.: Bodendynamik. Vieweg und Teubner
  • Meskouris K. und Hinzen K.-G.: Bauwerke und Erdbeben. Vieweg Verlag
  • Studer J.A., Koller M.G. und Laue J.: Bodendynamik, Springer Verlag
Course L0706: Experimental Researches in Geotechnics
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Marius Milatz
Language DE
Cycle SoSe
Content

The students are supposed to:

  • become acquainted with geotechnical model tests, field tests and laboratory tests as well as corresponding measurement techniques. These compromise amongst others inclinometer measurements and geophone measurements as well as high-grade laboratory tests on the stress-strain relationship of soil specimens, e. g. triaxial tests, simple shear tests and resonant column tests.
  • gain insight into current soil mechanical research.
  • plan, coordinate, perform and evaluate soil mechanical tests in a team.
  • discuss, reflect, review and present the obtained results in a group.

An important learning target is the introduction to scientific work for students who plan a scientific career, and for those who will work in practice with the responsibility to order corresponding tests and evaluate the results.

The practical laboratory work is based on annualy changing problems, which are however related to the experience and results of the preceding year's course group.




Literature

- Grabe, J. (2004): Bodenmechanik und Grundbau, Band 3 der Veröffentlichungsreihe des Instituts für Geotechnik und Baubetrieb, Technische Universität Hamburg-Harburg.

- Kolymbas, D. (2007): Geotechnik - Bodenmechanik, Grundbau und Tunnelbau. 2., korrigierte und ergänzte Auflage, Springer Verlag.

- Normen zu geotechnischen Versuchsgeräten und Versuchsverfahren:
      - DIN 18135:2012-04: Baugrund, Untersuchung von Bodenproben -    
      Eindimensionaler Kompressionsversuch, Deutsches Institut für
      Normung, e. V.

    - DIN 18137-2:2011-04: Baugrund, Untersuchung von Bodenproben -
      Bestimmung der Scherfestigkeit - Teil 2: Triaxialversuch,
      Deutsches Institut für Normung e. V.

Module M0827: Modeling in Water Management

Courses
Title Typ Hrs/wk CP
Applied Groundwater Modeling (L0543) Lecture 1 1
Applied Groundwater Modeling (L0544) Recitation Section (small) 2 2
Modeling of Water Supply and Sewer Network (L0875) Project-/problem-based Learning 2 3
Module Responsible Dr. Klaus Johannsen
Admission Requirements None
Recommended Previous Knowledge

Groundwater

  • groundwater hydraulics and transport of substances

Pipe Systems

  • Knowledge on urban water infrastructures, in particular drinking water systemsand urban drainage systems including special structures
  • Hydraulics of drinking water supply systems and sewer systems
  • Basic knowledge on water management
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the modelling of groundwater flow and transport as well as urban water infrastructures. They can carry out systems analyses and can detect technical and conceptual weak points within the systems in case studies. Besides they are able to analyse interdependencies of hydraulic and toxic phenomena in soil and water.


Skills

The students are able to construct and apply scientific groundwater models indipendently. They can work on different scenarios and can compare or assess different solutions for existing problems by application of selected software products. The students are able to use different software solutions (e.g. EPANET, EPA-SWMM).



Personal Competence
Social Competence

Wird nicht vermittelt.

Autonomy

Wird nicht vermittelt.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 20 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0543: Applied Groundwater Modeling
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE/EN
Cycle SoSe
Content Introduction and application of the groundwater model MODFLOW (PMWIN); theoretical backround of the modell, students do work with the model PMWIN for practical case studies.
Literature

MODFLOW-Handbuch

Chiang, Wen Hsien: PMWIN


Course L0544: Applied Groundwater Modeling
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0875: Modeling of Water Supply and Sewer Network
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen, Weitere Mitarbeiter
Language DE
Cycle SoSe
Content
Literature Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014.

Module M0828: Urban Environmental Management

Courses
Title Typ Hrs/wk CP
Noise Protection (L1109) Lecture 2 2
Urban Infrastructures (L0874) Project-/problem-based Learning 2 4
Module Responsible Dr. Dorothea Rechtenbach
Admission Requirements None
Recommended Previous Knowledge
  • Knowledge on Urban planning
  • Knowledge on measures for climate protection
  • General knowledge of scientific writing/working
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students can describe urban development corridors as well as current and future urban environmental problems. They are able to explain the causes of environmental problems (like noise).

Students can specify applications for various technical innovations and explain why these contribute to the improvement of urban life. They can, for example, derive and discuss measures for effective noise abatement.

Skills Students are able to develop specific solutions for correcting existing or future environment-related problems of urban development. They can define a range of conceptual and technical solutions for environmental problems for different development paths. To solve specific urban environmental problems they can select technical innovations and integrate them into the urban context.
Personal Competence
Social Competence

The students can work together in international groups.

Autonomy

Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Written Report plus oral Presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1109: Noise Protection
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Jäschke
Language EN
Cycle SoSe
Content
Literature

1) Müller & Möser (2013): Handbook of Engineering Acoustics (also available in German)
2) WHO (1999): Guidelines for Community Noise
3) Environmental Noise Directive 2002/49/EG
4) ISO 9613-2 (1996): Acoustics, Attenuation of sound during propagation outdoors, Part 2: General method of calculation 

Course L0874: Urban Infrastructures
Typ Project-/problem-based Learning
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Dr. Dorothea Rechtenbach
Language EN
Cycle SoSe
Content

Problem Based Learning

Main topics are:

  • Central vs. Decentral Wastewater Treatment.
  • Compaction of Cities.
  • Car Free Cities.
  • Multifunctional Places in Cities.
  • The Sustainability of Freight Transport in Cities.


Literature Depends on chosen topic.

Module M0859: Coastal Hydraulic Engineering II

Courses
Title Typ Hrs/wk CP
Coastal- and Flood Protection (L0808) Lecture 2 3
Coastal- and Flood Protection (L1415) Project-/problem-based Learning 1 1
Maintennance and Defence of Flood Protection Structures (L1411) Lecture 2 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Coastal Engineering I
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students have the capability to define and explain in detail the important aspects of erosion protection and flood protection and are able to apply the aspects to practical coastal protection problems. They are able to design and dimension important coastal protection measures from the functional and from the constructional point of view.

Skills

The students are able to select design approaches for the functional and constructional design of erosion and flood protection measures and apply these approaches to practical design tasks.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in applied problems such as the functional and constructive design of coastal and flood protection structures. Additionaly, they will be able to work in team with engineers of other disciplines.
Autonomy The students will be able to independently extend their knowledge and apply it to new problems.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 130 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Course L0808: Coastal- and Flood Protection
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content

Protection of sandy coasts

  • Sediment transport
  • Morphology
  • Technical solution for the protection of sandy coasts
    • Construction in direction of the coast
    • Constructions perpendicular to the coast
    • Other Concepst
  • Calculation approaches and numerical models

Flood Protection

  • Classification of constructions / measures
  • Dikes
  • Dunes
  • Foreland - constructions
  • Flood-Protection Walls
  • Drainage of the hinterland


Literature

Vorlesungsumdruck

Coastal Engineering Manual CEM


Course L1415: Coastal- and Flood Protection
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1411: Maintennance and Defence of Flood Protection Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Olaf Müller
Language DE
Cycle SoSe
Content
  • Dike protection
  • Maintennance of flood protection measures


Literature

Vorlesungsumdruck

Module M0860: Harbour Engineering and Harbour Planning

Courses
Title Typ Hrs/wk CP
Harbour Engineering (L0809) Lecture 2 2
Harbour Engineering (L1414) Project-/problem-based Learning 1 2
Port Planning and Port Construction (L0378) Lecture 2 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Basics of coastal engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to define in details and to choose design approaches for the functional design of a port and apply them to design tasks. They can design the fundamental elements of a port.

Skills

The students are able to select and apply appropriate approaches for the functional design of ports.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in applied problems such as the functional design of ports. Additionaly, they will be able to work in team with engineers of other disciplines.
Autonomy The students will be able to independently extend their knowledge and apply it to new problems.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 150 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Course L0809: Harbour Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content
  • Fundamentals of harbor engineering
    • Maritime transportation and waterways engineering
    • Ships
  • Elements of harbors
    • Harbor approaches and water-side harbor areas
    • Terminal design and handling of cargo
    • Quay-walls and piers
    • Equipment of harbors
    • Sluices and other special constructions
  • Connection to inland transportation / inland waterway transportation
  • Protection of harbors
    • Breakwaters and Jetties
    • Wave protection of harbors
  • Fishery and other small harbors


Literature Brinkmann, B.: Seehäfen, Springer 2005
Course L1414: Harbour Engineering
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0378: Port Planning and Port Construction
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Frank Feindt
Language DE
Cycle SoSe
Content
  • Planning and implementation of major projects
  • Market analysis and traffic relations
  • Planning process and plan 
  • Port planning in urban neighborhood
  • Development of the logistics center "Port of Hamburg" in the metropolis
  • Quays and waterfront structure
  • Special planning Law Harbor - securing of a flexible use of the port
  • Dimensioning of quays
  • Flood protection structures
  • Port of Hamburg - Infrastructure and development
  • Preparation of areas
  • Scour formation in front of shore structures
Literature Vorlesungsumdruck, s. www.tu-harburg.de/gbt

Module M0861: Modelling of Hydraulic Engineering

Courses
Title Typ Hrs/wk CP
Hydraulic Models (L0813) Project-/problem-based Learning 1 1
Modelling of Waves (L0812) Project-/problem-based Learning 1 1
Modelling of Flow in Rivers and Estuaries (L0810) Lecture 3 4
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge

Coastal Hydraulic Engineering I

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to define in detail the basic processes that are related to the modelling of flows in hydraulic engineering. Besides, they can describe the basic aspects of numerical modelling and actual numerical models for the simulation of flows and waves.

Skills

Students are able to apply hydrodynamic-numerical models to practical hydraulic engineering tasks.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in simple applied problems. Additionaly, they will be able to work in team with others.
Autonomy The students will be able to independently extend their knowledge and apply it to new problems.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 3 hours. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Course L0813: Hydraulic Models
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content
  • Fundamentals of hydraulic models
  • Model laws
  • Pi theorem of Buckingham
  • Practical examples of hydraulic models


Literature

Strobl, Zunic: Wasserbau, Kap. 11 Hydraulische Modelle, Springer


Course L0812: Modelling of Waves
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content
  •   Waves, interactions with shallow water and constructions
  •   Wave theories
  •   Sea state and surges
  • Development of waves
  • Wave spectra
  •   Modelling of Waves / phase averaged and phase resolved models
  •   Application of a phase averaged model for wave prediction (SWAN)
  • ·  Application of phase resolved wave models (Mike)


Literature

Vorlesungsumdruck

Course L0810: Modelling of Flow in Rivers and Estuaries
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Dr. Edgar Nehlsen, Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content

Basics of numerial models / application of models

  • classification of models
  • model concept
  • modelling

1D Working Equation

Mathematical description of physical processes

  • Equation of motions
    • conservation of mass
    • conservation of momentum
  • Initial conditions and boundary conditions

Numerical Methods

  • Time step procedure
  • Finite differences
  • Finite volumes



Literature Vorlesungsskript

Module M0874: Wastewater Systems

Courses
Title Typ Hrs/wk CP
Wastewater Systems - Collection, Treatment and Reuse (L0934) Lecture 2 2
Wastewater Systems - Collection, Treatment and Reuse (L0943) Recitation Section (large) 1 1
Advanced Wastewater Treatment (L0357) Lecture 2 2
Advanced Wastewater Treatment (L0358) Recitation Section (large) 1 1
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Knowledge of wastewater management and the key processes involved in wastewater treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to outline key areas of the full range of treatment systems in waste water management, as well as their mutual dependence for sustainable water protection. They can describe relevant economic, environmental and social factors.

Skills

Students are able to pre-design and explain the available wastewater treatment processes and the scope of their application in municipal and for some industrial treatment plants.

Personal Competence
Social Competence

Social skills are not targeted in this module.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Environmental Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0934: Wastewater Systems - Collection, Treatment and Reuse
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content •Understanding the global situation with water and wastewater

•Regional planning and decentralised systems

•Overview on innovative approaches

•In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse

•Mathematical Modelling of Nitrogen Removal

•Exercises with calculations and design

Literature

Henze, Mogens:
Wastewater Treatment: Biological and Chemical Processes, Springer 2002, 430 pages

George Tchobanoglous, Franklin L. Burton, H. David Stensel:
Wastewater Engineering: Treatment and Reuse, Metcalf & Eddy
McGraw-Hill, 2004 - 1819 pages

Course L0943: Wastewater Systems - Collection, Treatment and Reuse
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0357: Advanced Wastewater Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language DE
Cycle SoSe
Content

Survey on advanced wastewater treatment

reuse of reclaimed municipal wastewater

Precipitation

Flocculation

Depth filtration

Membrane Processes

Activated carbon adsorption

Ozonation

"Advanced Oxidation Processes"

Disinfection

Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003
Course L0358: Advanced Wastewater Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Joachim Behrendt
Language DE
Cycle SoSe
Content

Aggregate organic compounds (sum parameters)

Industrial wastewater

Processes for industrial wastewater treatment

Precipitation

Flocculation

Activated carbon adsorption

Recalcitrant organic compounds


Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003

Module M0922: City Planning

Courses
Title Typ Hrs/wk CP
City Planning (L1066) Project-/problem-based Learning 4 6
Module Responsible Prof. Carsten Gertz
Admission Requirements None
Recommended Previous Knowledge

for "Principles of Urban Planning": none

for "Designing Urban Streetscapes": some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineering“


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to:

  • use technical terms of urban planning.
  • describe the main determinants of urban development.
  • explain and compare different possibilities of how urban development can be influenced.
  • discuss requirements for public streetscapes.
  • explain the importance of street design.


Skills

Students are able to:

  • read and analyze urban development concepts and designs for streetscapes
  • appraise such concepts in the context of competing requirements. 
  • design, justify and reflect their own solutions for concrete examples.


Personal Competence
Social Competence

Students are able to:

  • discuss intermediate results with each other.
  • constructively accept feedback on their own work. 
  • provide constructive feedback to others.


Autonomy

Students are able to:

  • independently complete a written report including drawings following a broadly pre-defined process.
  • assess the consequences of their proposed solutions.
  • independently acquire knowledge and apply this to new issues or problem areas.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale written assignment, designwork during the semester
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1066: City Planning
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Carsten Gertz
Language DE
Cycle SoSe
Content

„Principles of Urban Planning“ deals with the determinants of urban development and their interactions. Topics include:

  • legal framework,
  • instruments and methods of planning,
  • functional requirements,
  • stakeholders and actors
  • basic design requirements
  • different planning levels and
  • historical contexts.
The objective of the course is for students to acquire a basic understanding of urban development problems and approaches for solving them. They will also be able to comprehend the process of urban planning. The course also covers the various functional and aesthetic requirements for  designing streetscape as the most important elements of public space.
The project work deals with a real life scenario and includes drawing up a development plan, an urban design concept, a building masterplan and a street redesign.


Literature

Albers, Gerd; Wekel, Julian (2009) Stadtplanung: Eine illustrierte Einführung. Primus Verlag. Darmstadt.

Frick, Dieter (2008) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. Wasmuth-Verlag. Tübingen

Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen

Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York.


Module M0977: Construction Logistics and Project Management

Courses
Title Typ Hrs/wk CP
Construction Logistics (L1163) Lecture 1 2
Construction Logistics (L1164) Recitation Section (small) 1 2
Project Development and Management (L1161) Lecture 1 1
Project Development and Management (L1162) Project-/problem-based Learning 1 1
Module Responsible Prof. Heike Flämig
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can...

  • give definitions of the main terms of construction logistics and project development and management
  • name advantages and disadvantages of internal or external construction logistics
  • explain characteristics of products, demand and production of construction objects and their consequences for construction specific supply chains
  • differentiate constructions logistics from other logistics systems
Skills

Students can...

  • carry out project life cycle assessments
  • apply methods and instruments of construction logistics
  • apply methods and instruments of project development and management
  • apply methods and instruments of conflict management
  • design supply and waste removal concepts for a construction project
Personal Competence
Social Competence

Students can...

  • hold presentations in and for groups
  • apply methods of conflict solving skills in group work and case studies
Autonomy

Students can...

  • solve problems by holistic, systemic and flow oriented thinking
  • improve their creativity, negotiation skills, conflict and crises solution skills by applying methods of moderation in case studies
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Two written papers with presentations
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Course L1163: Construction Logistics
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heike Flämig
Language DE
Cycle SoSe
Content

The lecture gives deeper insight how important logistics are as a competetive factor for construction projects and which issues are to be adressed.

The following toppics are covered:

  • competetive factor logistics
  • the concept of systems, planning and coordination of logistics
  • material, equipment and reverse logistics
  • IT in construction logistics
  • elements of the planning model of construction logistics and their connections
  • flow oriented logistics systems for construction projects
  • logistics concepts for ready to use construction projects (especially procurement and waste removel logistics)
  • best practice examples (construction logistics Potsdamer Platz, recent case study of the region)

Contents of the lecture are deepened in special exercises.

Literature

Flämig, Heike: Produktionslogistik in Stadtregionen. In: Forschungsverbund Ökologische Mobilität (Hrsg.) Forschungsbericht Bd. 15.2. Wuppertal 2000.

Krauss, Siri: Die Baulogistik in der schlüsselfertigen Ausführung,  Bauwerk Verlag GmbH Berlin 2005.

Lipsmeier, Klaus: Abfallkennzahlen für Neubauleistungen im Hochbau : Verlag Forum für Abfallwirtschaft und Altlasten, 2004.

Schmidt, Norbert: Wettbewerbsfaktor Baulogistik. Neue Wertschöpfungspotenziale in der Baustoffversorgung. In: Klaus, Peter: Edition Logistik. Band 6. Deutscher Verkehrs-Verlag. Hamburg 2003.

Seemann, Y.F. (2007): Logistikkoordination als Organisationseinheit bei der Bauausführung Wissenschaftsverlag Mainz in Aachen, Aachen. (Mitteilungen aus dem Fachgebiet Baubetrieb und Bauwirtschaft (Hrsg. Kuhne, V.): Heft 20)


Course L1164: Construction Logistics
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heike Flämig
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1161: Project Development and Management
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Heike Flämig, Dr. Anton Worobei
Language DE
Cycle SoSe
Content

Within the lecture, the main aspects of project development and management are tought:

  • Terms and definitions of project management
  • Advantages and disadvantages of different ways of project handling
  • organization, information, coordination and documentation
  • cost and fincance management in projects
  • time- and capacity management in projects
  • specific methods and instruments for successful team work

Contents of the lecture are deepened in special exercises.

Literature Projektmanagement-Fachmann. Band 1 und Band 2. RKW-Verlag, Eschborn, 2004.
Course L1162: Project Development and Management
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Heike Flämig, Dr. Anton Worobei
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0998: Statics and Dynamics of Structures

Courses
Title Typ Hrs/wk CP
Structural Dynamics (L1202) Lecture 2 2
Structural Dynamics (L1203) Recitation Section (large) 2 2
Fracture mechanics and fatigue in steel structures (L0564) Lecture 1 1
Fracture Mechanics and Fatigue (L0565) Recitation Section (large) 1 1
Module Responsible Prof. Uwe Starossek
Admission Requirements None
Recommended Previous Knowledge

Knowledge of linear structural analysis of statically determinate and indeterminate structures; Mechanics I/II, Mathematics I/II, Differential equations I

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of this module, the student can explain the basic aspects of dynamic effects on structures and the respective methods.




Skills

After successful completion of this module, the students will be able to predict the response of material and structures to dynamics loading using the appropriate computational approaches and methods.



Personal Competence
Social Competence

Students can

  • participate in subject-specific and interdisciplinary discussions,
  • defend their own work results in front of others
  • promote the scientific development of colleagues
  • Furthermore, they can give and accept professional constructive criticism
Autonomy

Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of Structural Analysis.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 150 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L1202: Structural Dynamics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle SoSe
Content
  • Single-degree-of-freedom systems: undamped and damped vibration, free vibration, forced vibrations due to harmonic, periodical or arbitrary loading, natural frequency, damping
  • vibration isolation
  • solution in the frequency-domain (Fourier transformation), solution in the time-domain
  • multi-degree-of-freedom systems: continuous or discrete systems, modelling with finite elements, generalisation
  • modal analysis
  • power iteration according to v.Mises
  • earthquake loading: seismological basics, response spectrum method
  • wind-induced vibrations: engineering meteorology, aerodynamic, classification of excitation mechanisms
progressive collapse


Literature

Clough, R.W., Penzien, J.: Dynamics of Structures. 2. Aufl., McGraw-Hill, New York, 1993.


Course L1203: Structural Dynamics
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0564: Fracture mechanics and fatigue in steel structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ingo Hadrych
Language DE
Cycle SoSe
Content

    basics of fatigue stress and fatigue resistance and determination of fatigue strength,

    determination anduse of S-N-curves and classification of notch effects,

    set up of determination of fatigue strength under dynamic load using the accumulation formula by Palmgren-Miner,

    set up of determination of fatigue strength in different examples,

    basics of construction and design regarding the problem of material fatigue,

    basics of linear elastic fracture mechanics under static and dynamic load,

    determination of lifetime of steel construction based on linear elastic fracture mechanics in different examples.

Literature

    Seeßelberg, C.; Kranbahnen - Bemessung und konstruktive Gestaltung; 3. Auflage;      Bauwerk-Verlag; Berlin 2009

    Kuhlmann, Dürr, Günther; Kranbahnen und Betriebsfestigkeit; in Stahlbau Kalender 2003; Verlag Ernst & Sohn; Berlin 2003

    Deutscher Stahlbau-Verband (Hrsg.); Stahlbau Handbuch Band 1 Teil B; 3. Auflage; Stahlbau-Verlagsgesellschaft; Köln 1996

    Petersen, C.; Stahlbau; 3. überarb. und erw. Auflage; Vieweg-Verlag; Braunschweig 1993

    DIN V ENV 1993-1-1: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 1-1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau; 1993

    DIN V ENV 1993-6: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 6: Kranbahnen; 2001

    DIN-Fachbericht 126. Richtlinie zur Anwendung von DIN V ENV 1993-6; Nationales Anwendungsdokument (NAD); Berlin 2002











Course L0565: Fracture Mechanics and Fatigue
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ingo Hadrych
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0593: Building Materials and Building Preservation

Courses
Title Typ Hrs/wk CP
Repair of Structures (L0255) Lecture 1 1
Mineral Building Materials (L0253) Lecture 2 2
Technology of mineral Building Materials (L0256) Project-/problem-based Learning 1 2
Transport Processes in Building Materials and Damage Processes (L0254) Lecture 1 1
Module Responsible Prof. Frank Schmidt-Döhl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge about building materials, building physics and building chemistry, for example by the modules Principles of Building Materials and Building Physics and Building Materials and Building Chemistry.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the components of mineral building materials and their function in detail and to use them for the manufacture of special mineral building materials. They are able to show the characteristics of mineral building materials. They are able to describe the manufacture, properties and fields of application of special mortars and special concretes and the correlations of their material parameters. They are able to show the principles of anchor technology and design. 

Skills

The students are able to perform an optimization of granulometry of a mineral building material. They are able to design a special mineral mortar and to manufacture this mortar. The students are able to manufacture post installed rebar connections. They are able to recognize damages, to assess possible causes, to use the fundamentals of construction preservation and to select repair and strengthening measures.


Personal Competence
Social Competence

The students are able to develop in small grous the mixture of a special mortar. They present their results to the lecturer and the other students. In a critical discussion they defend and adjust their results. The students are able to manufacture their special building material on the basis of this feedback.


Autonomy

The students are able to responsibly use the resources of materials and lab equipment for their project and to investigate and to get missing components.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0255: Repair of Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Maintenance of structures, repair and strengthening, subsequent waterproofing of structures
Literature BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen
Course L0253: Mineral Building Materials
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Components of mineral building materials and their function, binding materials, concrete and mortar, special mortars, special concretes
Literature

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Course L0256: Technology of mineral Building Materials
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Design and production of a special mineral building material
Literature

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Course L0254: Transport Processes in Building Materials and Damage Processes
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Transport Processes in Building Materials and Damage Processes
Literature Blaich, J.: Bauschäden, Analyse und Vermeidung

Module M0999: Steel Construction Project

Courses
Title Typ Hrs/wk CP
Steel Construction Project (L1206) Project Seminar 4 6
Module Responsible Prof. Marcus Rutner
Admission Requirements None
Recommended Previous Knowledge Steel and Composite Structures
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students are able to prepare a part of the whole project and explain it to the others.
Skills Students can produce sketches and calculations of their part of the project. They are able to adjust their work in reaction to changing conditions resulting from other participants of the project.
Personal Competence
Social Competence

Students can present their results to other members of the group.

They have the ability to work for a broad agreement with respect to intergroup dependencies.

They can distribute and process tasks independently.

Autonomy Students can handle their part of the project on their own resposibility-
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale approx. 15-20 pages (without appendix)
Assignment for the Following Curricula Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Compulsory
Course L1206: Steel Construction Project
Typ Project Seminar
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Marcus Rutner
Language DE
Cycle SoSe
Content Design of a big construction project (i.e skyscraper, large bridge, roof of a stadiuim) in small groups
Literature

Wird je nach Projekt individuell angegeben.

Module M0663: Marine Geotechnics and Numerics

Courses
Title Typ Hrs/wk CP
Marine Geotechnics (L0548) Lecture 1 2
Marine Geotechnics (L0549) Recitation Section (large) 2 1
Numerical Methods in Geotechnics (L0375) Lecture 3 3
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge

complete modules: Geotechnics I-II, Mathematics I-III

courses: Soil laboratory course

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Course L0548: Marine Geotechnics
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jürgen Grabe
Language DE
Cycle SoSe
Content
  • Geotechnical investigation an description of the seabed
  • Foundations of Offshore-Constructions
  • cCliff erosion
  • Sea dikes
  • Port structures
  • Flood protection structures
Literature
  • EAK (2002): Empfehlungen für Küstenschutzbauwerke
  • EAU (2004): Empfehlungen des Arbeitsausschusses Uferbauwerke
  • Poulos H.G. (1988): Marine Geotechnics. Unwin Hyman, London
  • Wagner P. (1990): Meerestechnik: Eine Einführung für Bauingenieure. Ernst & Sohn, Berlin
Course L0549: Marine Geotechnics
Typ Recitation Section (large)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0375: Numerical Methods in Geotechnics
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Hans Mathäus Stanford
Language DE
Cycle SoSe
Content

Topics:

  • numerical simulations
  • numerical algorithms
  • finite element method
  • application of finite element method in geomechanics
  • constitutive models for soils
  • contact models for soil structure interaction
  • selected applications
Literature
  • Wriggers P. (2001): Nichtlineare Finite-Elemente-Methoden, Springer Verlag, Berlin
  • Bathe Klaus-Jürgen (2002): Finite-Elemente-Methoden. Springer Verlag, Berlin

Module M1350: Excavation Law and Projects

Courses
Title Typ Hrs/wk CP
Subsoil and Underground Engineering Law (L0395) Lecture 2 2
Service Contract and Procurement Law (L1906) Lecture 2 2
Project Geotechnics (L0708) Project-/problem-based Learning 2 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 15 min
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0395: Subsoil and Underground Engineering Law
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Günther Schalk
Language DE
Cycle WiSe
Content

• History of Civil Engineering Law (from 1700 BC to 2000 AD)

• Basics of foundation and excarvation law / engineering law (the participants in the case law of geotechnical law case studies)

• Legal aspects of technical regulations in civil engineering (with case studies)

• The civil engineering contract (including checklists for the special civil engineering contract design and execution)

• The liability of the planner and entrepreneur in civil engineering (practical examples, jurisprudence and law, inter alia, to the Ordinance on Combatants, liability for defects and traffic safety obligations, construction law and insurance questions)

• The ground / foundation risk and the systemic risk (also in the European context)

• The total debt in (low) building law (based on practice-oriented case constellations)

• The (construction) conflict, the dispute avoidance models and the construction process (practice-oriented presentation)

Literature

Folienskript (in der Vorlesung erhältlich)

weitere Literatur:

  • Englert, Grauvogel und Maurer: Handbuch des Baugrund- und Tiefbaurechts. Werner-Verlag

Course L1906: Service Contract and Procurement Law
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Günther Schalk, Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
Literature
Course L0708: Project Geotechnics
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content The students solve independently a project-based geotechnical problem in groups. Additional lectures concerning the problem will be held and material will be distributed as study basis. Every two weeks the groups present their current project status. The final work will be presentated in a final presentation.
Literature abhängig von der Fragestellung

Module M1345: Metallic and Hybrid Light-weight Materials

Courses
Title Typ Hrs/wk CP
Joining of Polymer-Metal Lightweight Structures (L0500) Lecture 2 2
Joining of Polymer-Metal Lightweight Structures (L0501) Practical Course 1 1
Metallic Light-weight Materials (L1660) Lecture 2 3
Module Responsible Prof. Marcus Rutner
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L0500: Joining of Polymer-Metal Lightweight Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Marcus Rutner
Language EN
Cycle WiSe
Content

Contents:

The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures.

Theoretical Lectures:

  • Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology
  • Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics
  • Mechanical Fastening of Polymer-Metal Hybrid Structures
  • Adhesive Bonding of Polymer-Metal Hybrid Structures
  • Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures
  • Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures

Laboratory Exercises:

  • Joining Processes: Introduction to state-of-the-art joining technologies
  • Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints

Course Outcomes:

After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields.

Literature
  • S. T. Amancio-Filho, L.-A. Blaga, Joining of Polymer-Metal Hybrid Structures, Wiley, 2018
  • J.F. Shackelford, Introduction to materials science for engineers, Prentice-Hall International
  • J. Rotheiser, Joining of Plastics, Handbook for designers and engineers, Hanser Publishers
  • D.A. Grewell, A. Benatar, J.B. Park, Plastics and Composites Welding Handbook
  • D. Lohwasser, Z. Chen, Friction Stir Welding, From basics to applications, Woodhead Publishing Limited
  • J. Friedrich, Metal-Polymer Systems: Interface Design and Chemical Bonding, Wiley, 2017

Course L0501: Joining of Polymer-Metal Lightweight Structures
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Marcus Rutner
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1660: Metallic Light-weight Materials
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Domonkos Tolnai
Language DE
Cycle WiSe
Content

Lightweight construction

- Structural lightweight construction

- Material lightweight construction

- Choice criteria for metallic lightweight construction materials

 Steel as lightweight construction materials

- Introduction to the fundamentals of steels

- Modern steels for the lightweight construction

  - Fine grain steels

  - High-strength low-alloyed steels

  - Multi-phase steels (dual phase, TRIP)

  - Weldability

  - Applications


Aluminium alloys:

Introduction to the fundamentals of aluminium materials

Alloy systems

Non age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications

Age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications

 

Magnesium alloys

Introduction to the fundamental of magnesium materials

Alloy systems

Magnesium casting alloys, processing, microstructure and qualities

Magnesium wrought alloys, processing, microstructure and qualities

Examples of applications


Titanium alloys

Introduction to the fundamental of the titanium materials

Alloy systems

Processing, microstructure and properties

Examples of applications

 

Exercises and excursions

Literature

George Krauss, Steels: Processing, Structure, and Performance, 978-0-87170-817-5, 2006, 613 S.

Hans Berns, Werner Theisen, Ferrous Materials: Steel and Cast Iron, 2008. http://dx.doi.org/10.1007/978-3-540-71848-2

C. W. Wegst, Stahlschlüssel = Key to steel = La Clé des aciers = Chiave dell'acciaio = Liave del acero ISBN/ISSN: 3922599095

Bruno C., De Cooman / John G. Speer: Fundamentals of Steel Product Physical Metallurgy, 2011, 642 S.

Harry Chandler, Steel Metallurgy for the Non-Metallurgist 0-87170-652-0, 2006, 84 S.

Catrin Kammer, Aluminium Taschenbuch 1, Grundlagen und Werkstoffe, Beuth,16. Auflage 2009. 784 S., ISBN 978-3-410-22028-2

Günter Drossel, Susanne Friedrich, Catrin Kammer und Wolfgang Lehnert, Aluminium Taschenbuch 2, Umformung von Aluminium-Werkstoffen, Gießen von Aluminiumteilen, Oberflächenbehandlung von Aluminium, Recycling und Ökologie, Beuth, 16. Auflage 2009. 768 S., ISBN 978-3-410-22029-9

Catrin Kammer, Aluminium Taschenbuch 3, Weiterverarbeitung und Anwendung, Beuith,17. Auflage 2014. 892 S., ISBN 978-3-410-22311-5

G. Lütjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397

Magnesium - Alloys and Technologies, K. U. Kainer (Hrsg.), Wiley-VCH, Weinheim 2003, ISBN 3-527-30570-x

Mihriban O. Pekguleryuz, Karl U. Kainer and Ali Kaya “Fundamentals of Magnesium Alloy Metallurgy”, Woodhead Publishing Ltd, 2013,ISBN 10: 0857090887




Module M0581: Water Protection

Courses
Title Typ Hrs/wk CP
Water Protection and Wastewater Management (L0226) Lecture 3 3
Water Protection and Wastewater Management (L2008) Project Seminar 3 3
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge in water management;
  • Good knowledge in urban drainage;
  • Good knowledge of wastewater treatment techniques;
  • Good knowledge of pollutants (e.g. COD, BOD, TS, N, P) and their properties;
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can describe the basic principles of the regulatory framework related to the international and European water sector. They can explain limnological processes, substance cycles and water morphology in detail. They are able to assess complex problems related to water protection, such as ecosystem service and wastewater treatment with a special focus on innovative solutions, remediation measures as well as conceptual approaches.

Skills

Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems.



Personal Competence
Social Competence

The students can work together in international groups.



Autonomy

Students are able to organize their work flow to prepare presentations and discussions. They can acquire appropriate knowledge by making enquiries independently.




Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale Term paper plus presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Course L0226: Water Protection and Wastewater Management
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content

The lecture focusses on:

  • Regulatory Framework (e.g. WFD)
  • Main instruments for the water management and protection
  • In depth knowledge of relevant measures of water pollution control
  • Urban drainage, treatment options in different regions on the world
  • Rainwater management, improved management of heavy rainfalls, downpours, rainwater harvesting, rainwater infiltration
  • Case Studies and Field Trips
Literature

The literature listed below is available in the library of the TUHH.

  • Water and wastewater technology Hammer, M. J. 1., & . (2012). (7. ed., internat. ed.). Boston [u.a.]: Pearson Education International.
  • Water and wastewater engineering : design principles and practice: Davis, M. L. 1. (2011). . New York, NY: McGraw-Hill.
  • Biological wastewater treatment: (2011). C. P. Leslie Grady, Jr.  (3. ed.). London, Boca Raton,  Fla. [u.a.]: IWA Publ. 
Course L2008: Water Protection and Wastewater Management
Typ Project Seminar
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content
Literature

Module M0595: Examination of Materials, Structural Condition and Damages

Courses
Title Typ Hrs/wk CP
Examination of Materials, Structural Condition and Damages (L0260) Lecture 3 4
Examination of Materials, Structural Condition and Damages (L0261) Recitation Section (small) 1 2
Module Responsible Prof. Frank Schmidt-Döhl
Admission Requirements None
Recommended Previous Knowledge Basic knowledge about building materials or material science, for example by the module Building Materials and Building Chemistry.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the rules for trading, use and marking of construction products in Germany. They know which methods for the testing of building material properties are usable and know the limitations and characterics of the most important testing methods.

Skills

The students are able to responsibly discover the rules for trading and using of building products in Germany. 
They are able to chose suitable methods for the testing and inspection of construction products, the examination of damages and the examination of the structural conditions of buildings. They are able to conclude from symptons to the cause of damages. They are able to  describe an examination in form of a test report or expert opinion.


Personal Competence
Social Competence

The students can describe the different roles of manufacturers as well as testing, supervisory and certification bodies within the framework of material testing. They can describe the different roles of the participants in legal proceedings.


Autonomy The students are able to make the timing and the operation steps to learn the specialist knowledge of a very extensive field.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L0260: Examination of Materials, Structural Condition and Damages
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle WiSe
Content Materials testing and marking process of construction products, testing methods for building materials and structures, testing reports and expert opinions, describing the condition of a structure, from symptons to the cause of damages
Literature Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013.
Course L0261: Examination of Materials, Structural Condition and Damages
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0603: Nonlinear Structural Analysis

Courses
Title Typ Hrs/wk CP
Nonlinear Structural Analysis (L0277) Lecture 3 4
Nonlinear Structural Analysis (L0279) Recitation Section (small) 1 2
Module Responsible Prof. Alexander Düster
Admission Requirements None
Recommended Previous Knowledge

Knowledge of partial differential equations is recommended.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to
+ give an overview of the different nonlinear phenomena in structural mechanics.
+ explain the mechanical background of nonlinear phenomena in structural mechanics.
+ to specify problems of nonlinear structural analysis, to identify them in a given situation and to explain their mathematical and mechanical background.

Skills

Students are able to
+ model nonlinear structural problems.
+ select for a given nonlinear structural problem a suitable computational procedure.
+ apply finite element procedures for nonlinear structural analysis.
+ critically verify and judge results of nonlinear finite elements.
+ to transfer their knowledge of nonlinear solution procedures to new problems.

Personal Competence
Social Competence

Students are able to
+ solve problems in heterogeneous groups and to document the corresponding results.
+ share new knowledge with group members.

Autonomy

Students are able to
+
acquire independently knowledge to solve complex problems.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Materials Science: Specialisation Modeling: Elective Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Product Development, Materials and Production: Core Qualification: Elective Compulsory
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory
Ship and Offshore Technology: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory
Course L0277: Nonlinear Structural Analysis
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Alexander Düster
Language DE/EN
Cycle WiSe
Content

1. Introduction
2. Nonlinear phenomena
3. Mathematical preliminaries
4. Basic equations of continuum mechanics
5. Spatial discretization with finite elements
6. Solution of nonlinear systems of equations
7. Solution of elastoplastic problems
8. Stability problems
9. Contact problems

Literature

[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014.
[2] Peter Wriggers, Nonlinear Finite Element Methods, Springer 2008.
[3] Peter Wriggers, Nichtlineare Finite-Elemente-Methoden, Springer 2001.
[4] Javier Bonet and Richard D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, 2008.

Course L0279: Nonlinear Structural Analysis
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Alexander Düster
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0619: Waste Treatment Technologies

Courses
Title Typ Hrs/wk CP
Waste and Environmental Chemistry (L0328) Practical Course 2 2
Biological Waste Treatment (L0318) Project-/problem-based Learning 3 4
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge chemical and biological basics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module aims possess knowledge concerning the planning of biological waste treatment plants. Students are able to explain the design and layout of anaerobic and aerobic waste treatment plants in detail, describe different techniques for waste gas treatment plants for biological waste treatment plants and explain different methods for waste analytics.


Skills

The students are able to discuss the compilation of design and layout of plants. They can critically evaluate techniques and quality control measurements. The students can recherché and evaluate literature and date connected to the tasks given in der module and plan additional tests. They are capable of reflecting and evaluating findings in the group.


Personal Competence
Social Competence

Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development in front of colleagues. Furthermore, they can give and accept professional constructive criticism.


Autonomy

Students can independently tap knowledge from literature, business or test reports and transform it to the course projects. They are capable, in consultation with supervisors as well as in the interim presentation, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Presentation
Examination duration and scale Elaboration and Presentation (15-25 minutes in groups)
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Energy and Environmental Engineering: Specialisation Environmental Engineering: Elective Compulsory
Environmental Engineering: Core Qualification: Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Course L0328: Waste and Environmental Chemistry
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language DE/EN
Cycle WiSe
Content

The participants are divided into groups. Each group prepares a transcript on the experiment performed, which is then used as basis for discussing the results and to evaluate the performance of the group and the individual student.

In some experiments the test procedure and the results are presented in seminar form, accompanied by discussion and results evaluation.

Experiments ar e.g.

Screening  and particle size determination

Fos/Tac

AAS

Chalorific value

Literature Scripte
Course L0318: Biological Waste Treatment
Typ Project-/problem-based Learning
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content
  1. Introduction
  2. biological basics
  3. determination process specific material characterization
  4. aerobic degradation ( Composting, stabilization)
  5. anaerobic degradation (Biogas production, fermentation)
  6. Technical layout and process design
  7. Flue gas treatment
  8. Plant design practical phase
Literature

Module M0705: Groundwater

Courses
Title Typ Hrs/wk CP
Geohydraulic and Solute Transport (L0539) Lecture 2 2
Geohydraulic and Solute Transport (L0540) Recitation Section (small) 1 1
Simulation in Groundwater Hydrology (L0541) Lecture 1 1
Simulation in Groundwater Hydrology (L0542) Recitation Section (small) 2 2
Module Responsible NN
Admission Requirements None
Recommended Previous Knowledge
  • Ground water hydrology
  • Hydromechanics


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to describe the fate of solutes in the subsurface along the path between soil and water body quantitatively and qualitatively. They are able to do this with simulation models.
Skills The students are able to describe conceptually movement and storage of water in the unsaturated zone. They are able to analyse pF- functions and Ku functions. They can model transport of solutes in the unsaturated and saturated zoned. They are able to determine dispersiities, sorption coefficients, decay rates and dissolution rates for organic and inorganic substances.
Personal Competence
Social Competence The students can help to each other.
Autonomy none
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min written exam and written papers
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0539: Geohydraulic and Solute Transport
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content Pump test analysis, water content-water suction functions, unsaturated hydraulic conductivity function, Brooks-Corey relation, van Genuchten relation, solute transport in unsaturated zone, solute transport and reactions in groundwater
Literature

Todd; K. (2005): Groundwater Hydrology

Fetter, C.W. (2001): Applied Hydrogeology

Hölting & Coldewey (2005): Hydrogeologie

Charbeneau, R.J. (2000): Groundwater Hydraulics and pollutant Transport

Course L0540: Geohydraulic and Solute Transport
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0541: Simulation in Groundwater Hydrology
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content Basics and theoretical background of simulation models frequently used in science and practise for pumping test analysis, water movement in vadose zone, solute transport in vadose zone, groundwater recharge, solute transport in groundwater
Literature Handbücher der verwendeten Slumationsmodelle werden bereitgestellt.
Course L0542: Simulation in Groundwater Hydrology
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0722: Computational Analysis of Concrete Structures

Courses
Title Typ Hrs/wk CP
Computational Analysis of Concrete Structures (L0598) Lecture 2 3
Computational Analysis of Concrete Structures (L0599) Recitation Section (large) 1 1
FE-Modeling of Concrete Structures (L0600) Project-/problem-based Learning 2 2
Module Responsible Prof. Günter Rombach
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge in structural analysis and design of reinforced concrete structures (beams, slabs, shear walls).

Lectures  'Concrete Structures I und II'

Lectures  'Structural Analysis I and II'

Lecture 'Concrete Structures'

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know the problems of numerical modeling and design of an arbitrary concrete structure.

Skills

The students can model and design an arbitrary concrete structure by means of a finite element software package.

Personal Competence
Social Competence

The students can model and design in teamwork a real concrete structure by means of a finite element software package.

Autonomy

The students can model and design a real concrete structure based on a finite element software package and discuss the problems and results with other students.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Attestation Am Ende des Semster ist ein Tragsystem mit dem Rechenprogramm zu modellieren
Yes None Excercises Es ist ein Tragsystem mit TEDDY zu modellieren
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0598: Computational Analysis of Concrete Structures
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content
  • Modeling of beam and truss structures
    - Discontinuity regions, like frame corners, openings, shear walls with large openings
    - Bracing of high-rise buildings
    - Modeling of bridges 
    - Nonlinear analysis 
  • Finite-Elemente-analysis of slabs: support conditions, singularity regions
  • Finite-Elemente-Berechnungen of shear walls and deep beams: support condition, design
  • Coupled systems 
  • Modeling of slab supported on beams
  • Shell structures
  • 3D building models
  • Nonlinear analysis of slabs and shells
  • Documentation
Literature
  • Vorlesungsumdruck
  • Rombach, G.A. (2007): Anwendung der Finite-Elemente-Methode im Betonbau. 2. Auflage, Verlag Ernst & Sohn, Berlin
  • Rombach G.A. (2011): Finite-Element Design of Concrete Structures, 2nd edition, ICE publishing
  • Hartmann, F., Katz, C. (2002): Statik mit finiten Elementen. Springer, Berlin
Course L0599: Computational Analysis of Concrete Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0600: FE-Modeling of Concrete Structures
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Lukas Henze
Language DE
Cycle WiSe
Content

Finite Element Modeling and computational design of concrete structures by ‘SOFiSTiK’

Literature
  • Rombach G.: Anwendung der Finite - Elemente - Methode im Betonbau. 2. Auflage. Verlag Ernst &.Sohn, Berlin, 2007
  • Rombach G.: Finite-Element Design of Concrete Structures. 2nd edition, ICE Publishing, London, 2011, ISBN 0 7277 32749
  • Rombach G.: EDV-unterstützte Berechnungen im Stahlbetonbau. in: „Stahlbetonbau aktuell 2014“ (ed. Gorris A., Hegger J., Mark P.), Berlin 2014 (S. C1.-C.36)


Module M0801: Water Resources and -Supply

Courses
Title Typ Hrs/wk CP
Chemistry of Drinking Water Treatment (L0311) Lecture 2 1
Chemistry of Drinking Water Treatment (L0312) Recitation Section (large) 1 2
Water Resource Management (L0402) Lecture 2 2
Water Resource Management (L0403) Recitation Section (small) 1 1
Module Responsible Prof. Mathias Ernst
Admission Requirements None
Recommended Previous Knowledge

Knowledge of water management and the key processes involved in water treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to outline key areas of conflict in water management, as well as their mutual dependence for sustainable water supply. They will understand relevant economic, environmental and social factors. Students will be able to explain and outline the organisational structures of water companies. They will be able to explain the available water treatment processes and the scope of their application.

Skills

Students will be able to assess complex problems in drinking water production and establish solutions involving water management and technical measures. They will be able to assess the evaluation methods that can be used for this. Students will be able to carry out chemical calculations for selected treatment processes and apply generally accepted technical rules and standards to these processes.

Personal Competence
Social Competence

Working in a diverse group of specialists, students will be able to develop and document complex solutions for the management and treatment of drinking water. They will be able to take an appropriate professional position, for example representing user interests. They will be able to develop joint solutions in teams of diverse experts and present these solutions to others.

Autonomy

Students will be in a position to work on a subject independently and present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min (chemistry) + presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0311: Chemistry of Drinking Water Treatment
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content

The topic of this course is water chemistry with respect to drinking water treatment and water distribution

Major topics are solubility of gases, carbonic acid system and calcium carbonate,  blending, softening, redox processes, materials and legal requirements on drinking water treatment. Focus is put on generally accepted rules of technology (DVGW- and DIN-standards).

Special emphasis is put on calculations using realistic analysis data  (e.g. calculation of pH or calcium carbonate dissolution potential) in exercises. Students can get a feedback and gain extra points for exam by solving problems for homework.

Knowledge of drinking water treatment processes is vital for this lecture. Therefore the most important processes are explained coordinated with the course “ Water resources management“ in the beginning of the semester.


Literature

MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005.

Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996.

DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004.

Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003.


Course L0312: Chemistry of Drinking Water Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0402: Water Resource Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content

The lecture provides comprehensive knowledge on interaction of water ressource management and drinking water supply. Content overview:

  • Current situation of global water resources

-        User and Stakeholder conflicts

-        Wasserressourcenmanagement in urbane Gebieten

-        Rechtliche Aspekte, Organisationsformen Trinkwasserversorgungsunternehmen.

-        Ökobilanzierung, Benchmarking in der Wasserversorgung

Literature
  • Aktuelle UN World Water Development Reports
  • Branchenbild der deutschen Wasserwirtschaft, VKU (2011)
  • Aktuelle Artikel wissenschaftlicher Zeitschriften
  • Ppt der Vorlesung
Course L0403: Water Resource Management
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0858: Coastal Hydraulic Engineering I

Courses
Title Typ Hrs/wk CP
Basics of Coastal Engineering (L0807) Lecture 3 4
Basics of Coastal Engineering (L1413) Project-/problem-based Learning 1 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Basics of hydraulic engineering, hydrology and hydromechanics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to define and explain the basic concepts of coastal engineering and port engineering. They are able to apply the concepts to selected practical problems of coastal engineering. Students can define and determine the basics for design and dimensioning of coastal engineering constructions.

Skills

The students are capable to apply basic design approaches to selected and pre-defined design tasks in coastal engineering.

Personal Competence
Social Competence

The students are able to deploy their gained knowledge in applied problems such as the design of coastal protection structures. Additionaly, they will be able to work in team with engineers of other disciplines, for instance designing of coastal breakwaters.

Autonomy

The students will be able to independently extend their knowledge and applyit to new problems.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 2 hours. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0807: Basics of Coastal Engineering
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Peter Fröhle
Language DE
Cycle WiSe
Content
  • Basics of planning and design
    • Water levels
    • Currents
    • Waves
    • Ice
  • Planning and Design in Coastal Engineering
    • Functional and constructional design
    • Determination of design parameters
    • Design-approaches
      • Filter
      • Rubble mound constructions
      • Piles
      • Vertical constructions


Literature

Coastal Engineering Manual, CEM

Vorlesungsumdruck


Course L1413: Basics of Coastal Engineering
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0923: Integrated Transportation Planning

Courses
Title Typ Hrs/wk CP
Integrated Transportation Planning (L1068) Project-/problem-based Learning 4 6
Module Responsible Prof. Carsten Gertz
Admission Requirements None
Recommended Previous Knowledge

some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineerin

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to:

  • describe interdependencies between land-use/location choice and transportation/mobility behaviour
  • explain and evaluate the social, ecological and economic effects of transport and land-use policy measures.
  • relate current issues in the area of integrated transport planning and formulate an opinion on them.


Skills

Students are able to:

  • quantify important parameters, which influence travel demand or are influenced by it.
  • comprehensively examine a pre-defined or self-selected topic from a transportation studies perspective and document the results in accordance with scientific conventions.


Personal Competence
Social Competence

Students are able to:

  • provide feedback on topical contents and their teaching.
  • constructively handle feedback on their own work.
  • produce results in group work and document these.


Autonomy

Students are able to:

  • assess potential consequences of their future professional activities
  • independently plan working on a pre-defined project topic, acquire the necessary knowledge and use appropriate means for its execution.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale written assignment with presentation during the semester
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1068: Integrated Transportation Planning
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Carsten Gertz, Dr. Philine Gaffron, Jacqueline Bianca Maaß
Language DE
Cycle WiSe
Content

The course will provide students with an understanding of interdependencies between land-use and transportation. Specific topics include a.o.:

  • interactions between transport and the environment and consequent limitations
  • characteristics of integrated planning
  • complex planning processes
  • interdependencies of location choice and mobility behaviour
  • transport and land-use policies
  • project on current issues in transportation studies


Literature

Kutter, Eckhard (2005) Entwicklung innovativer Verkehrsstrategien für die mobile Gesellschaft. Erich Schmidt Verlag. Berlin.

Bracher, Tilman u. a. (Hrsg.) (68. Ergänzung 2013) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen)


Module M0964: Underground Constructions

Courses
Title Typ Hrs/wk CP
Applied Tunnel Constructions (L2407) Lecture 2 3
Steel Structures in Foundation and Hydraulic Engineering (L1146) Lecture 2 3
Underground Constructions (L0707) Lecture 1 2
Underground Constructions (L1811) Recitation Section (large) 1 1
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge

Modules from Bachelor studies Civil and environmental engineering:

  • Geotechnics I-II
  • Steel Structures I-II
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Knowledge of different tunnel construction types as well as special methods and techniques of subsoil construction. The students get deeper knowledge of steel and ground engineering as well as constructions knowledge concerning quay walls. Futhermore, the students get all the neccessary knowledge to design singular construction elements for sheet pile walls and they know how to choose the right construction elements depending on the influencing conditions.
Skills Basic knowledge of tunnel design as well as practical skills in structural tunnel analysis. Furthermore, the students are able to dimension sheet pile wall construction regarding all constrution elements, to choose the suitable construction elements with respect to the influencing conditions, to design all kinds of sheet pile walls (wave sheet pile walls and combined sheet pile walls) and to dimension all construction elements and connections.
Personal Competence
Social Competence Capacity for teamwork concerning project management and design of tunnels.
Autonomy Promotion of independent and creative work flow in the framework of a design exercise.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L2407: Applied Tunnel Constructions
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe, Tim Babendererde
Language DE
Cycle WiSe
Content
Literature
Course L1146: Steel Structures in Foundation and Hydraulic Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Frank Feindt
Language DE
Cycle WiSe
Content Design of a sheet pile wall, design of a combined sheet pile wall, piles, walings, connections, fatigue
Literature EAU 2012, EA-Pfähle, EAB
Course L0707: Underground Constructions
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Marius Milatz
Language DE
Cycle WiSe
Content
  • Definitions
  • Historical development in tunneling
  • Geology for tunneling
  • Hard rock tunneling (construction composite and machines)
  • Tunnelung in temporarly stable soil with conventional construction methods
  • Tunneling in soft soils (form of supports, shield types, compressed air application)
  • Pipe jacking
  • Tunnel Lining, tunnel supporting structures
  • Calculation approaches for supporting structures in shield-driven tunnels
  • Surveying for tunneling
  • Safety requirements
  • Construction Contract
  • Literature and sources
Literature
  • Vorlesung/Übung s. www.tu-harburg.de/gbt
Course L1811: Underground Constructions
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Marius Milatz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0969: Selected Topics in Civil Engineering

Courses
Title Typ Hrs/wk CP
Analysis of Offshore Structures (L1867) Lecture 1 1
Excellence in International Project Delivery (L2387) Integrated Lecture 2 2
Design of Prefabricated Concrete Structures (L0596) Lecture 1 1
Design of Prefabricated Concrete Structures (L0597) Recitation Section (large) 1 1
Forum I - Geotechnics and Construction Management (L1634) Seminar 1 1
Forum II - Geotechnics and Construction Management (L1635) Seminar 1 1
Geotechnical Engineering Design (L2447) Lecture 2 3
Timber Structures (L1151) Seminar 2 2
Glass Structures (L1152) Lecture 2 2
Glass Structures (L1447) Recitation Section (large) 1 1
Special topics of civil engineering 1CP (L2378) 1 1
Special topics of civil engineering 2 LP (L2379) 2 2
Special topics of civil engineering 3 LP (L2380) 3 3
Wind turbine design (L1905) Lecture 1 1
Module Responsible Prof. Uwe Starossek
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to find their way through selected special areas within civil and structural engineering.
  • Students are able to explain basic models and procedures in selected special areas of civil and structural engineering.
  • Students are able to interrelate scientific and technical knowledge.


Skills
  • Students are able to apply basic methods in selected areas of civil and structural engineering.
Personal Competence
Social Competence ---
Autonomy
  • Students can chose independently, in which fields they want to deepen their knowledge and skills through the election of courses.
Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L1867: Analysis of Offshore Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Dr. Said Fawad Mohammadi
Language DE/EN
Cycle SoSe
Content

Topic 1: Types of Offshore Structures, Fixed and floating structures for Oil & Gas and Offshore Wind industry

Topic 2: Wave Forces, Morisons equation

Topic 3: Irregular Seastates, Power spectrum and application of FFT

Topic 4: Additional Environmental Forces, wind spectra, current forces

Topic 5: Linear-Time-Invariant Systems, response of an LTI-system in frequency domain

Topic 6: Tubular Welded Connections, stress concentration factors, weld geometry

Topic 7: Introduction to Fracture Mechanics, criteria for fracture initiation and crack growth

Topic 8: Time and Frequency Domain Fatigue Analyses, rainflow counting, application of LTI-systems for frequency domain fatigue

Topic 9: Offshore Installation and Exam, installation of structures, pile driving, pipe laying techniques

Literature

Chakrabarti, Handbook of Offshore Engineering, 2005

Sarpkaya, Wave Forces on Offshore Structures, 2010

Faltinsen, Sea Loads on Ships and Offshore Structures, 1998

Sorensen, Basic Coastal Engineering, 2006

Dowling, Mechanical Behavior of Materials, 2007

Haibach, Betriebsfestigkeit, 2006

Marshall, Design of Welded Tubular Connections, 1992

Newland, Random vibrations, spectral and wavelet analysis, 1993


Course L2387: Excellence in International Project Delivery
Typ Integrated Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dr. Jens Huckfeldt
Language EN
Cycle SoSe
Content
Literature
Course L0596: Design of Prefabricated Concrete Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content
  • application and advantages and disadvantages of precast concrete structures
  • basics of design - precast element production - construction - tolerances
  • elements of a warehouse
  • design of a beam - joints
  • design of D-regions: half joints, corbels, openings
  • slab types - walls - facades
  • footings: pocket and block foundations
  • joints - connections
  • shear design of the interface between concrete cast at different times
  • unreinforced concrete structures
Literature
  • Bachmann H., Steinle A.; Hahn V.: Bauen mit Betonfertigteilen. Betonkalender 2009, Teil I, Verlag Ernst & Sohn, Berlin
  • Bindseil P.: Stahlbetonfertigteile. Werner Verlag, 1998
  • FIP: FIP Handbuch für Planung und Entwerfen von Fertigteilbauten (siehe Zeitschrift: Beton- und Fertigteiltechnik ab 3/1996)
  • Bergmeister K.: Konstruieren von Fertigteilen. Betonkalender 2005 Teil 2, S. 163-240
  • Reineck K.-H.: Modellierung der D-Bereiche von Fertigteilen. Betonkalender 2005 Teil 2, S. 241-296
  • Graubner C.-A. et. al.: Bemessung von Fertigteilen nach DIN 1045-1. Betonkalender 2005 Teil 2, S. 297-374

 Broschüren der Fachvereinigung Deutscher Betonfertigteilbau e.V.
siehe:   www.fdb-fertigteilbau.de
             www.systembauweise.de

Course L0597: Design of Prefabricated Concrete Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Klausur
Examination duration and scale Siehe korrespondierende Vorlesung
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1634: Forum I - Geotechnics and Construction Management
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content Lectures about projects and issues with practical and scientific relevance.
Literature --
Course L1635: Forum II - Geotechnics and Construction Management
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Prof. Jürgen Grabe
Language DE
Cycle SoSe
Content Lectures about projects and issues with practical and scientific relevance.
Literature --
Course L2447: Geotechnical Engineering Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 45 Min.
Lecturer Prof. Jürgen Grabe, Dr. Tim Pucker
Language DE
Cycle WiSe
Content

The focus of the course is on the design of geotechnical structures. Methods and fundamental approaches for the successful processing of geotechnical designs are taught. Theoretical approaches are backed up with examples from everyday work in industry. In parallel to the theoretical content, students are given a practical task for a geotechnical design at beginning of the course, which will be worked on in small teams. In addition to the application of the already acquired technical knowledge, topics like realisation, construction sequence planning, cost calculation, optimisation and evaluation criteria are also part of the course.

The event will be finished with the presentation of the designs.

Literature
Course L1151: Timber Structures
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 90 min
Lecturer Prof. Torsten Faber
Language DE
Cycle WiSe
Content
Literature
Course L1152: Glass Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Mündliche Prüfung
Examination duration and scale
Lecturer Marvin Matzik
Language DE
Cycle WiSe
Content

Glass structures

 - Introduction of the material glass (production, refinement, material characteristic)

 - design of facades

 - facade types

 - static calculation of glazing

 - static calculation of facades

 - load bearing behavior of glazing (plate or membrane stiffness)

 - vertical / horizontal glazing with safety-related requirements

 - glass structures

 - fire safety of glass facades

 - construction physics of facades and glazing

Literature
Course L1447: Glass Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale
Lecturer Marvin Matzik
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L2378: Special topics of civil engineering 1CP
Typ
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature Die Literatur wird kurzfristig festgelegt.
Course L2379: Special topics of civil engineering 2 LP
Typ
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dr. Jan Mittelstädt, Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature

Die Literatur wird kurzfristig festgelegt.

Course L2380: Special topics of civil engineering 3 LP
Typ
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature

Die Literatur wird kurzfristig festgelegt.

Course L1905: Wind turbine design
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Dr. Jörn Scheller
Language DE
Cycle WiSe
Content
Literature

Module M0997: Structural Analysis - Selected Topics

Courses
Title Typ Hrs/wk CP
Plates and Shells (L1199) Lecture 2 2
Nonlinear Analysis of Frame Structure (L1200) Lecture 2 2
Nonlinear Analysis of Frame Structure (L1201) Recitation Section (large) 2 2
Module Responsible Prof. Uwe Starossek
Admission Requirements None
Recommended Previous Knowledge

Mechanics I/II, Mathematics I/II, Differential Equations I


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of this module, students can explain selected elements of higher structural analysis.




Skills


After successful completion of this module, the students are able to assess the premises and the applicability of the presented methods of advanced structural analysis. They are able to use these methods for performing structural analyses.

Personal Competence
Social Competence

Students can

  • participate in subject-specific and interdisciplinary discussions,
  • defend their own work results in front of others
  • promote the scientific development of colleagues
  • Furthermore, they can give and accept professional constructive criticism
Autonomy

The students have the opportunity to voluntarily and independently work homework problems.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 135 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Course L1199: Plates and Shells
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Jürgen Priebe
Language DE
Cycle WiSe
Content

Theory of plates loaded in-plane

  • Governing equations (equilibrium, kinematics, constitutive law)
  • Differential equation
  • Airy stress function
  • Plane stress / plane strain
  • Structural behaviour of plates loaded in-plane

                                               Theory of plates in bending

  • Governing equations (equilibrium, kinematics, constitutive law)
  • Differential equation
  • Navier solution / Fourier series expansion
  • Approximation procedures
  • Structural behaviour of plates in bending

                                               Shell theory

  • Phenomenona of the structural behaviour of shells
  • Membrane and bending theory
  • Equilibrium equations of shells of revolution
  • Stress resultants and deformations of the spherical shell, the half spherical shell, and the cylindrical shell

                                               Stability problems (overview)

  • Plate buckling
  • Shell buckling


Literature
  • Basar, Y.: Krätzig, W.B. (1985): Mechanik der Flächentragwerke. Vieweg-Verlag, Braunschweig, Wiesbaden
  • Girkmann, K. (1963): Flächentragwerke, Springer Verlag, Wien, 1963, unveränderter Nachdruck 1986
  • Zienkiewicz, O.C. (1977): The Finite Element Method in Enginieering Science. McGraw-Hill, London


Course L1200: Nonlinear Analysis of Frame Structure
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle WiSe
Content

-Types of nonlinearity

-relevance of nonlinear effects on structural analysis

-comparison and classification of 1st  order theory, 2nd  order theory and 3rd order theory with regard to the coverage of geometric nonlinearity

-fundamentals of 2nd order elasticity theory for frame structures

-application of  2nd order elasticity theory using finite elements: common displacement method

-fundamentals of analytical application of 2nd order elasticity theory: derivation and solution of differential equation

-structurally applied methods of analytical application of 2nd order elasticity theory: common displacement method using analytical stiffness matrix, slope-deflection method for sway and non-sway frame structures, consideration of imperfections

1st order plastic hinge theory


Literature

Rothert, H.; Gensichen, V. (1987): Nichtlineare Stabstatik. Springer Verlag, Berlin


Course L1201: Nonlinear Analysis of Frame Structure
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0965: Study Work Structural Engineering

Courses
Title Typ Hrs/wk CP
Module Responsible Dozenten des SD B
Admission Requirements None
Recommended Previous Knowledge Subjects of the Structural Engineering specialisation.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to demonstrate their detailed knowledge in the field of structural and construction engineering. They can exemplify the state of technology and application and discuss critically in the context of actual problems and general conditions of science and society.

The students can develop solving strategies and approaches for fundamental and practical problems in structural and construction engineering. They may apply theory based procedures and integrate safety-related, ecological, ethical, and economic view points of science and society.

Scientific work techniques that are used can be described and critically reviewed.

Skills

The students are able to independently select methods for the project work and to justify this choice. They can explain how these methods relate to the field of work and how the context of application has to be adjusted. General findings and further developments may essentially be outlined.

Personal Competence
Social Competence

The students are able to condense the relevance and the structure of the project work, the work steps and the sub-problems for the presentation and discussion in front of a bigger group. They can lead the discussion and give a feedback on the project to their colleagues.

Autonomy

The students are capable of independently planning and documenting the work steps and procedures while considering the given deadlines. This includes the ability to accurately procure the newest scientific information. Furthermore, they can obtain feedback from experts with regard to the progress of the work, and to accomplish results on the state of the art in science and technology.

Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Study work
Examination duration and scale see FSPO
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory

Module M1505: Adaptation to Climate Change in Hydraulic Engineering (AKWAS)

Courses
Title Typ Hrs/wk CP
Adaptation to climate change in hydraulic engineering (L2291) Project-/problem-based Learning 4 6
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge
  • Hydrology, Hydraulic Engineering
  • Hydromechanic, Hydraulics
  • Fundamentals of Coastal Engineering, Coastal- and Flood Protection
  • Hydrological Systems
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Climate protection and climate adaptation
  • Insights into climate change and its regional characteristics - fundamentals, climate modelling / climate models
  • Impacts of climate change on the components of the regional hydrological cycle
  • Fundamentals of analysis of climate data
  • Consequences of the impact of the climate change
  • Measures for climate adaptation
  • Assessment, prioritization and communication of adaptation measures
  • Fundamentals of the analysis of hydrometeorological and hydrological data
Skills
  • Critical thinking: analysis of processes and relations, assessment of needs for action
  • Creative thinking: development of adaptation strategies and adaptation measures
  • Practical thinking: inclusion of restrictions, application of calculation approaches, methods, numerical models, planning methods
  • Consideration of complex tasks


Personal Competence
Social Competence
  • Working in heterogenous groups
  • Working with different scientific / non-scientific disciplines
  • Self reflection
Autonomy
  • Application oriented use of knowledge and skills
  • Autonomous work on complex tasks
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Preparation of a written report and a presentation of a complex task.
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Course L2291: Adaptation to climate change in hydraulic engineering
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Peter Fröhle
Language DE
Cycle WiSe
Content
  • Climate protection and climate adaptation
  • Findings on climate change and its regional characteristics: fundamentals of climate change, climate modelling / climate models
  • Impacts of climate change on the components of the regional hydrological cycle(climate science view)
  • Fundamentals of the analysis of climate data
  • Concequences of the impacts of climate change (ingenieering science view)
  • Measures for climate change adaptation
  • Assessment, prioritization and communication of measures
  • Fundamentals of analysis of hydrometeorological and hydrological data
Literature
  • Bereitgestellte eLearning Plattform

Specialization Water and Traffic

Module M0964: Structures in Foundation and Hydraulic Engineering

Courses
Title Typ Hrs/wk CP
Applied Tunnel Constructions (L2407) Lecture 2 3
Steel Structures in Foundation and Hydraulic Engineering (L1146) Lecture 2 3
Underground Constructions (L0707) Lecture 1 2
Underground Constructions (L1811) Recitation Section (large) 1 1
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge

Modules from Bachelor studies Civil and environmental engineering:

  • Geotechnics I-II
  • Steel Structures I-II
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Knowledge of different tunnel construction types as well as special methods and techniques of subsoil construction. The students get deeper knowledge of steel and ground engineering as well as constructions knowledge concerning quay walls. Futhermore, the students get all the neccessary knowledge to design singular construction elements for sheet pile walls and they know how to choose the right construction elements depending on the influencing conditions.
Skills Basic knowledge of tunnel design as well as practical skills in structural tunnel analysis. Furthermore, the students are able to dimension sheet pile wall construction regarding all constrution elements, to choose the suitable construction elements with respect to the influencing conditions, to design all kinds of sheet pile walls (wave sheet pile walls and combined sheet pile walls) and to dimension all construction elements and connections.
Personal Competence
Social Competence Capacity for teamwork concerning project management and design of tunnels.
Autonomy Promotion of independent and creative work flow in the framework of a design exercise.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L2407: Applied Tunnel Constructions
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe, Tim Babendererde
Language DE
Cycle WiSe
Content
Literature
Course L1146: Steel Structures in Foundation and Hydraulic Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Frank Feindt
Language DE
Cycle WiSe
Content Design of a sheet pile wall, design of a combined sheet pile wall, piles, walings, connections, fatigue
Literature EAU 2012, EA-Pfähle, EAB
Course L0707: Underground Constructions
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Marius Milatz
Language DE
Cycle WiSe
Content
  • Definitions
  • Historical development in tunneling
  • Geology for tunneling
  • Hard rock tunneling (construction composite and machines)
  • Tunnelung in temporarly stable soil with conventional construction methods
  • Tunneling in soft soils (form of supports, shield types, compressed air application)
  • Pipe jacking
  • Tunnel Lining, tunnel supporting structures
  • Calculation approaches for supporting structures in shield-driven tunnels
  • Surveying for tunneling
  • Safety requirements
  • Construction Contract
  • Literature and sources
Literature
  • Vorlesung/Übung s. www.tu-harburg.de/gbt
Course L1811: Underground Constructions
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Marius Milatz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0595: Examination of Materials, Structural Condition and Damages

Courses
Title Typ Hrs/wk CP
Examination of Materials, Structural Condition and Damages (L0260) Lecture 3 4
Examination of Materials, Structural Condition and Damages (L0261) Recitation Section (small) 1 2
Module Responsible Prof. Frank Schmidt-Döhl
Admission Requirements None
Recommended Previous Knowledge Basic knowledge about building materials or material science, for example by the module Building Materials and Building Chemistry.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the rules for trading, use and marking of construction products in Germany. They know which methods for the testing of building material properties are usable and know the limitations and characterics of the most important testing methods.

Skills

The students are able to responsibly discover the rules for trading and using of building products in Germany. 
They are able to chose suitable methods for the testing and inspection of construction products, the examination of damages and the examination of the structural conditions of buildings. They are able to conclude from symptons to the cause of damages. They are able to  describe an examination in form of a test report or expert opinion.


Personal Competence
Social Competence

The students can describe the different roles of manufacturers as well as testing, supervisory and certification bodies within the framework of material testing. They can describe the different roles of the participants in legal proceedings.


Autonomy The students are able to make the timing and the operation steps to learn the specialist knowledge of a very extensive field.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L0260: Examination of Materials, Structural Condition and Damages
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle WiSe
Content Materials testing and marking process of construction products, testing methods for building materials and structures, testing reports and expert opinions, describing the condition of a structure, from symptons to the cause of damages
Literature Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013.
Course L0261: Examination of Materials, Structural Condition and Damages
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0923: Integrated Transportation Planning

Courses
Title Typ Hrs/wk CP
Integrated Transportation Planning (L1068) Project-/problem-based Learning 4 6
Module Responsible Prof. Carsten Gertz
Admission Requirements None
Recommended Previous Knowledge

some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineerin

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to:

  • describe interdependencies between land-use/location choice and transportation/mobility behaviour
  • explain and evaluate the social, ecological and economic effects of transport and land-use policy measures.
  • relate current issues in the area of integrated transport planning and formulate an opinion on them.


Skills

Students are able to:

  • quantify important parameters, which influence travel demand or are influenced by it.
  • comprehensively examine a pre-defined or self-selected topic from a transportation studies perspective and document the results in accordance with scientific conventions.


Personal Competence
Social Competence

Students are able to:

  • provide feedback on topical contents and their teaching.
  • constructively handle feedback on their own work.
  • produce results in group work and document these.


Autonomy

Students are able to:

  • assess potential consequences of their future professional activities
  • independently plan working on a pre-defined project topic, acquire the necessary knowledge and use appropriate means for its execution.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale written assignment with presentation during the semester
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1068: Integrated Transportation Planning
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Carsten Gertz, Dr. Philine Gaffron, Jacqueline Bianca Maaß
Language DE
Cycle WiSe
Content

The course will provide students with an understanding of interdependencies between land-use and transportation. Specific topics include a.o.:

  • interactions between transport and the environment and consequent limitations
  • characteristics of integrated planning
  • complex planning processes
  • interdependencies of location choice and mobility behaviour
  • transport and land-use policies
  • project on current issues in transportation studies


Literature

Kutter, Eckhard (2005) Entwicklung innovativer Verkehrsstrategien für die mobile Gesellschaft. Erich Schmidt Verlag. Berlin.

Bracher, Tilman u. a. (Hrsg.) (68. Ergänzung 2013) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen)


Module M0801: Water Resources and -Supply

Courses
Title Typ Hrs/wk CP
Chemistry of Drinking Water Treatment (L0311) Lecture 2 1
Chemistry of Drinking Water Treatment (L0312) Recitation Section (large) 1 2
Water Resource Management (L0402) Lecture 2 2
Water Resource Management (L0403) Recitation Section (small) 1 1
Module Responsible Prof. Mathias Ernst
Admission Requirements None
Recommended Previous Knowledge

Knowledge of water management and the key processes involved in water treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to outline key areas of conflict in water management, as well as their mutual dependence for sustainable water supply. They will understand relevant economic, environmental and social factors. Students will be able to explain and outline the organisational structures of water companies. They will be able to explain the available water treatment processes and the scope of their application.

Skills

Students will be able to assess complex problems in drinking water production and establish solutions involving water management and technical measures. They will be able to assess the evaluation methods that can be used for this. Students will be able to carry out chemical calculations for selected treatment processes and apply generally accepted technical rules and standards to these processes.

Personal Competence
Social Competence

Working in a diverse group of specialists, students will be able to develop and document complex solutions for the management and treatment of drinking water. They will be able to take an appropriate professional position, for example representing user interests. They will be able to develop joint solutions in teams of diverse experts and present these solutions to others.

Autonomy

Students will be in a position to work on a subject independently and present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min (chemistry) + presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0311: Chemistry of Drinking Water Treatment
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content

The topic of this course is water chemistry with respect to drinking water treatment and water distribution

Major topics are solubility of gases, carbonic acid system and calcium carbonate,  blending, softening, redox processes, materials and legal requirements on drinking water treatment. Focus is put on generally accepted rules of technology (DVGW- and DIN-standards).

Special emphasis is put on calculations using realistic analysis data  (e.g. calculation of pH or calcium carbonate dissolution potential) in exercises. Students can get a feedback and gain extra points for exam by solving problems for homework.

Knowledge of drinking water treatment processes is vital for this lecture. Therefore the most important processes are explained coordinated with the course “ Water resources management“ in the beginning of the semester.


Literature

MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005.

Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996.

DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004.

Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003.


Course L0312: Chemistry of Drinking Water Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0402: Water Resource Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content

The lecture provides comprehensive knowledge on interaction of water ressource management and drinking water supply. Content overview:

  • Current situation of global water resources

-        User and Stakeholder conflicts

-        Wasserressourcenmanagement in urbane Gebieten

-        Rechtliche Aspekte, Organisationsformen Trinkwasserversorgungsunternehmen.

-        Ökobilanzierung, Benchmarking in der Wasserversorgung

Literature
  • Aktuelle UN World Water Development Reports
  • Branchenbild der deutschen Wasserwirtschaft, VKU (2011)
  • Aktuelle Artikel wissenschaftlicher Zeitschriften
  • Ppt der Vorlesung
Course L0403: Water Resource Management
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0830: Environmental Protection and Management

Courses
Title Typ Hrs/wk CP
Integrated Pollution Control (L0502) Lecture 2 2
Health, Safety and Environmental Management (L0387) Lecture 2 3
Health, Safety and Environmental Management (L0388) Recitation Section (small) 1 1
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge
  • Good knowledge in Technologies for Environmental Protection (end-of-pipe, integrated solutions)
  • Good knowledge of the relevant Environmental Legislation
  • Basic knowledge of instruments for Environmental Assessment
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the basics of regulations, economic instruments, voluntary initiatives, fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements. They can analyse and discuss industrial processes, substance cycles and approaches from end-of-pipe technology to eco-efficiency and eco-effectiveness, showing their sound knowledge of complex industry related problems. They are able to judge environmental issues and to widely consider, apply or carry out innovative technical solutions, remediation measures and further interventions as well as conceptual problem solving approaches in the full range of problems in different industrial sectors.


Skills

Students are able to assess current problems and situations in the field of environmental protection. They can consider the best available techniques and to plan and suggest concrete actions in a company- or branch-specific context. By this means they can solve problems on a technical, administrative and legislative level.


Personal Competence
Social Competence

The students can work together in international groups.


Autonomy

Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Energy and Environmental Engineering: Specialisation Environmental Engineering: Elective Compulsory
Environmental Engineering: Core Qualification: Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0502: Integrated Pollution Control
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content

The lecture focusses on:

  • The Regulatory Framework
  • Pollution & Impacts, Characteristics of Pollutants
  • Approaches of Integrated Pollution Control
  • Sevilla Process, Best Available Technologies & BREF Documents
  • Case Studies: paper industry, cement industry, automotive industry
  • Field Trip
Literature

Förstner, Ulrich (1998): Integrated Pollution Control, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-80313-0

Shen, Thomas T. (1999): Industrial Pollution Prevention, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-65208-3






Course L0387: Health, Safety and Environmental Management
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Hans-Joachim Nau
Language EN
Cycle WiSe
Content
  • Objectives of and benefit from HSE management
  • From dilution and end-of-pipe technology to eco-efficiency and eco-effectiveness Behaviour control: regulations, economic instruments and voluntary initiatives
  • Fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements Environmental performance evaluation Risk management: hazard, risk and safety Health and safety at the workplace
  • Crisis management
Literature

C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315)

Exercises can be downloaded from StudIP

Course L0388: Health, Safety and Environmental Management
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Hans-Joachim Nau
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0902: Wastewater Treatment and Air Pollution Abatement

Courses
Title Typ Hrs/wk CP
Biological Wastewater Treatment (L0517) Lecture 2 3
Air Pollution Abatement (L0203) Lecture 2 3
Module Responsible Dr. Ernst-Ulrich Hartge
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of biology and chemistry

basic knowledge of solids process engineering and separation technology


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module students are able to

  • name and explain  biological processes for waste water treatment,
  • characterize waste water and sewage sludge
  • discuss legal regulations in the area of emissions and air quality
  • classify off gas tretament processes and to define their area of application
Skills

Students are able to

  • choose and design processs steps for the biological waste water treatment
  • combine processes for cleaning of off-gases depending on the pollutants contained in the gases
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Environmental Engineering: Elective Compulsory
Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0517: Biological Wastewater Treatment
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language DE/EN
Cycle WiSe
Content

Charaterisation of Wastewater
Metobolism of Microorganisms
Kinetic of mirobiotic processes
Calculation of bioreactor for wastewater treatment
Concepts of Wastewater treatment
Design of WWTP
Excursion to a WWTP
Biofilms
Biofim Reactors
Anaerobic Wastewater and sldge treatment
resources oriented sanitation technology
Future challenges of wastewater treatment

Literature

Gujer, Willi
Siedlungswasserwirtschaft : mit 84 Tabellen
ISBN: 3540343296 (Gb.) URL: http://www.gbv.de/dms/bs/toc/516261924.pdf URL: http://deposit.d-nb.de/cgi-bin/dokserv?id=2842122&prov=M&dok_var=1&dok_ext=htm
Berlin [u.a.] : Springer, 2007
TUB_HH_Katalog
Henze, Mogens
Wastewater treatment : biological and chemical processes
ISBN: 3540422285 (Pp.)
Berlin [u.a.] : Springer, 2002
TUB_HH_Katalog
Imhoff, Karl (Imhoff, Klaus R.;)
Taschenbuch der Stadtentwässerung : mit 10 Tafeln
ISBN: 3486263331 ((Gb.))
München [u.a.] : Oldenbourg, 1999
TUB_HH_Katalog
Lange, Jörg (Otterpohl, Ralf; Steger-Hartmann, Thomas;)
Abwasser : Handbuch zu einer zukunftsfähigen Wasserwirtschaft
ISBN: 3980350215 (kart.) URL: http://www.gbv.de/du/services/agi/52567E5D44DA0809C12570220050BF25/000000700334
Donaueschingen-Pfohren : Mall-Beton-Verl., 2000
TUB_HH_Katalog
Mudrack, Klaus (Kunst, Sabine;)
Biologie der Abwasserreinigung : 18 Tabellen
ISBN: 382741427X URL: http://www.gbv.de/du/services/agi/94B581161B6EC747C1256E3F005A8143/420000114903
Heidelberg [u.a.] : Spektrum, Akad. Verl., 2003
TUB_HH_Katalog
Tchobanoglous, George (Metcalf & Eddy, Inc., ;)
Wastewater engineering : treatment and reuse
ISBN: 0070418780 (alk. paper) ISBN: 0071122508 (ISE (*pbk))
Boston [u.a.] : McGraw-Hill, 2003
TUB_HH_Katalog
Henze, Mogens
Activated sludge models ASM1, ASM2, ASM2d and ASM3
ISBN: 1900222248
London : IWA Publ., 2002
TUB_HH_Katalog
Kunz, Peter
Umwelt-Bioverfahrenstechnik
Vieweg, 1992
Bauhaus-Universität., Arbeitsgruppe Weiterbildendes Studium Wasser und Umwelt (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, ;)
Abwasserbehandlung : Gewässerbelastung, Bemessungsgrundlagen, Mechanische Verfahren, Biologische Verfahren, Reststoffe aus der Abwasserbehandlung, Kleinkläranlagen
ISBN: 3860682725 URL: http://www.gbv.de/dms/weimar/toc/513989765_toc.pdf URL: http://www.gbv.de/dms/weimar/abs/513989765_abs.pdf
Weimar : Universitätsverl, 2006
TUB_HH_Katalog
Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall
DWA-Regelwerk
Hennef : DWA, 2004
TUB_HH_Katalog
Wiesmann, Udo (Choi, In Su; Dombrowski, Eva-Maria;)
Fundamentals of biological wastewater treatment
ISBN: 3527312196 (Gb.) URL: http://deposit.ddb.de/cgi-bin/dokserv?id=2774611&prov=M&dok_var=1&dok_ext=htm
Weinheim : WILEY-VCH, 2007
TUB_HH_Katalog

Course L0203: Air Pollution Abatement
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Ernst-Ulrich Hartge, Dr. Swantje Pietsch-Braune
Language EN
Cycle WiSe
Content

In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators.

Literature

Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002
Atmospheric pollution : history, science, and regulation, Mark Zachary Jacobson. - Cambridge [u.a.] : Cambridge Univ. Press, 2002
Air pollution control technology handbook, Karl B. Schnelle. - Boca Raton [u.a.] : CRC Press, c 2002
Air pollution, Jeremy Colls. - 2. ed. - London [u.a.] : Spon, 2002

Module M0826: Biology, Geology and Chemistry

Courses
Title Typ Hrs/wk CP
Biology (L1428) Lecture 2 2
Geology and Soil Science (L0903) Lecture 2 1
Environmental Analysis (L0354) Lecture 2 3
Module Responsible Dr. Dorothea Rechtenbach
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of inorganic/organic chemistry and biology (knowledge acquired at school)


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

With the completion of this module students acquire profound knowledge of the geo- and pedosphere, biogeochemical processes and the fate of migrating compounds in soil and groundwater. They learn about methods to investigate sites for different use.  

Skills

With the completion of this module students can apply the acquired theoretical knowledge to model sites and assess the situation technically and conceptually. They are able to draw comparisons on different investigation strategies and techniques. Model projects can be devised and treated.

Personal Competence
Social Competence

Students can discuss technical and scientific tasks within a seminar subject specific and interdisciplinary .

Autonomy

Students can independently exploit sources , acquire the particular knowledge of the subject and apply it to new problems.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 2 Std. 15 Min.
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Water and Environmental Engineering: Core Qualification: Compulsory
Course L1428: Biology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Anna Krüger, Prof. Garabed Antranikian
Language DE
Cycle WiSe
Content
Literature Umweltmikrobiologie, Reineke, W. und Schlömann, M. (2015) 2. Aufl., Springer Spektrum Verlag
Course L0903: Geology and Soil Science
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dr. Joachim Gerth, Sonja Götz
Language DE
Cycle WiSe
Content

Geology: formation of the Earth, plate tectonics, macroscopic rock identification, introduction to Earth history, introduction to halokinesis.

Soil science:  soil use and function in ecosystems, faktors and processes of soil formation, mineral and organic components, surface types and properties, retention of nutrients and pollutants, hazards from faulty land use, erosion, salinization, and contamination, measures to preserve soils

Literature

R. Vinx (2011): "Gesteinsbestimmung im Gelände"

H. Bahlburg & C. Breitkreutz (2012): "Grundlagen der Geologie", TUB Signatur GWB-318

R. Walter (2003): "Ergeschichte" TUB Signatur: 2816-1769

F.Scheffer und P. Schachtschabel (2002): "Lehrbuch der Bodenkunde" TUB Signatur AGG-308

W.E.H. Blum (2007): "Bodenkunde in Stichworten" TUB Signatur AGG-317

Course L0354: Environmental Analysis
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Dorothea Rechtenbach, Dr. Henning Mangels
Language EN
Cycle WiSe
Content

Introduction

Sampling in different environmental compartments, sample transportation, sample storage

Sample preparation

Photometry

Wastewater analysis

Introduction into chromatography

Gas chromatography

HPLC

Mass spectrometry

Optical emission spectrometry

Atom absorption spectrometry

Quality assurance in environmental analysis
Literature

Roger Reeve, Introduction to Environmental Analysis, John Wiley & Sons Ltd., 2002 (TUB: USD-728)

Pradyot Patnaik, Handbook of environmental analysis: chemical pollutants in air, water, soil, and solid wastes, CRC Press, Boca Raton, 2010 (TUB: USD-716)

Chunlong Zhang, Fundamentals of Environmental Sampling and Analysis,  John Wiley & Sons Ltd., Hoboken, New Jersey, 2007 (TUB: USD-741)

Miroslav Radojević, Vladimir N. Bashkin, Practical Environmental Analysis
RSC Publ., Cambridge, 2006 (TUB: USD-720)

Werner Funk, Vera Dammann, Gerhild Donnevert, Sarah Iannelli (Translator), Eric Iannelli (Translator), Quality Assurance in Analytical Chemistry: Applications in Environmental, Food and Materials Analysis, Biotechnology, and Medical Engineering, 2nd Edition, WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim, 2007 (TUB: CHF-350)

STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 21st Edition, Andrew D. Eaton, Leonore S. Clesceri, Eugene W. Rice, and Arnold E. Greenberg, editors, 2005 (TUB:CHF-428)


K. Robards, P. R. Haddad, P. E. Jackson, Principles and Practice of
Modern Chromatographic Methods, Academic Press

G. Schwedt, Chromatographische Trennmethoden, Thieme Verlag

H. M. McNair, J. M. Miller, Basic Gas Chromatography, Wiley

W. Gottwald, GC für Anwender, VCH

B. A. Bidlingmeyer, Practical HPLC Methodology and Applications, Wiley

K. K. Unger, Handbuch der HPLC, GIT Verlag

G. Aced, H. J. Möckel, Liquidchromatographie, VCH

Charles B. Boss and Kenneth J. Fredeen, Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry
Perkin-Elmer Corporation 1997, On-line available at:
http://files.instrument.com.cn/bbs/upfile/2006291448.pdf

Atomic absorption spectrometry: theory, design and applications, ed. by S. J. Haswell 1991 (TUB: 2727-5614)

Royal Society of Chemistry, Atomic absorption spectometry (http://www.kau.edu.sa/Files/130002/Files/6785_AAs.pdf)

Module M1403: Construction and Simulation of Sewerage Systems

Courses
Title Typ Hrs/wk CP
Construction and renovation of urban sewer systems (L1998) Seminar 3 3
Simulation of sewerage systems (L2006) Seminar 3 3
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge
  • Hydraulics in pipes and gravity-sewers
  • Mechanics
  • Soil mechanics and foundation engineering
  • Knowledge about urban sewerage systems and water management
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can describe urban wastewater systems by means of software-based modeling. In case studies they can perform system and weak point analyzes. In addition, they can analyze the hydraulic effects quantitatively. Furthermore, they have the knowledge to comprehend flow events in gravity-sewers based on the St. Venant equations.

Students have knowledge of static and structural requirements of the sewer system. Cases of damage are investigated and the knowledge regarding different renovation technologies for sewer systems is acquired.

Skills

The students can simulate different run-off events in sewer systems and are able to dimension the sewer systems accordingly. Moreover, they can determine suitable construction materials and static requirements for different cases of application.

Personal Competence
Social Competence

Students are able to apply the acquired skills in a team and can impart this knowledge.

Autonomy

Students can solve problems in the field of wastewater systems independently, concerning in particular dimensioning and simulation of sewer systems. Furthermore, they are able to present and justify their solutions.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 20 % Presentation
Examination Written elaboration
Examination duration and scale nach Absprache
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Course L1998: Construction and renovation of urban sewer systems
Typ Seminar
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Ingo Weidlich
Language EN
Cycle WiSe
Content

The lecture focusses on construction and renovation of urban sewer pipelines.

Construction:

  • Pipe materials, types and joint technology
  • Open trenches
  • Trenchless technologies

Pipe Statics:

  • Design of sewers according to ATV A 127
  • Earth pressure on pipes, pipe deformation, cutting forces
  • Comparison with other international calculation approaches

Renovation:

  • Failure case study
  • Overview on the different renovation technologies
  • Liner design according to DWA-A 143
Literature
Nr. Titel
1 ATV A 127, Abwassertechnische Vereinigung e.V., Arbeitsblatt A 127, Regelwerk Abwasser-Abfall, Vertrieb: GFA, DK 628.22 (083),A 127, 2000
2 DIN EN 1610, Verlegung und Prüfung von Abwasserleitungen und -kanälen, Beuth Verlag, Berlin, 1997
3 Arbeitsblatt DWA-A 143-1, Sanierung von Entwässerungssystemen außerhalb von Gebäuden, Teil 1: Planung und Überwachung von Sanierungsmaßnahmen Februar 2015
4 Arbeitsblatt DWA-A 143-2, Sanierung von Entwässerungssystemen außerhalb von Gebäuden Teil 2: Statische Berechnung zur Sanierung von Abwasserleitungen und -kanälen mit Lining und Montageverfahren, Juli 2015
5 DIN EN 752:2008, 2008: Entwässerungssysteme außerhalb von Gebäuden - Kanalmanagement.
6 Zeitschrift 3R, Fachzeitschrift für sichere und effiziente Rohrleitungssysteme
7 Handbuch für den Rohrleitungsbau Band 1 und 2, 4. Auflage, Günter Wossog, 2015
8 Rohrleitungstechnik, Walter Wagner, Vogel Buchverlag, 2006
9 Stein D., Stein R., „Instandhaltung von Kanalisationen“, 1008 S., ISBN 978-3-9810648-4-1 | Verlag Prof. Dr.-Ing. Stein & Partner GmbH, 2014
10 Stein, D., „Grabenloser Leitungsbau“, 1. Auflage, Gebundene Ausgabe - 1166 Seiten, Ernst & Sohn Verlag, 2003, ISBN: 3433017786
11 Willoughby D:A: „Horizontal Directional Drilling: Utility and Pipeline Applications” Digital Engineering Library @ McGraw-Hill -The McGraw-Hill Companies, Inc., 2005
12 Weidlich I., „Erddruck auf Rohre“, 1. Auflage, ISBN 3-89999-027-7, 227 Seiten, 2012
Course L2006: Simulation of sewerage systems
Typ Seminar
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content

Modeling of sewer systems:

  • Modeling approaches in wastewater management, especially approaches to integrated modeling
  • Planning processes, calculations and design approaches for elements of gravity-sewers
  • Model setup
  • St. Venant equation and simplifications of models (kinematic wave etc.)
  • Calculation & modeling of solids transport (advection, diffusion, dispersion and sales processes)
  • Examples for modeling with SWMM (EPA, USA)

Literature

Module M0874: Wastewater Systems

Courses
Title Typ Hrs/wk CP
Wastewater Systems - Collection, Treatment and Reuse (L0934) Lecture 2 2
Wastewater Systems - Collection, Treatment and Reuse (L0943) Recitation Section (large) 1 1
Advanced Wastewater Treatment (L0357) Lecture 2 2
Advanced Wastewater Treatment (L0358) Recitation Section (large) 1 1
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Knowledge of wastewater management and the key processes involved in wastewater treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to outline key areas of the full range of treatment systems in waste water management, as well as their mutual dependence for sustainable water protection. They can describe relevant economic, environmental and social factors.

Skills

Students are able to pre-design and explain the available wastewater treatment processes and the scope of their application in municipal and for some industrial treatment plants.

Personal Competence
Social Competence

Social skills are not targeted in this module.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Environmental Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0934: Wastewater Systems - Collection, Treatment and Reuse
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content •Understanding the global situation with water and wastewater

•Regional planning and decentralised systems

•Overview on innovative approaches

•In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse

•Mathematical Modelling of Nitrogen Removal

•Exercises with calculations and design

Literature

Henze, Mogens:
Wastewater Treatment: Biological and Chemical Processes, Springer 2002, 430 pages

George Tchobanoglous, Franklin L. Burton, H. David Stensel:
Wastewater Engineering: Treatment and Reuse, Metcalf & Eddy
McGraw-Hill, 2004 - 1819 pages

Course L0943: Wastewater Systems - Collection, Treatment and Reuse
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0357: Advanced Wastewater Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language DE
Cycle SoSe
Content

Survey on advanced wastewater treatment

reuse of reclaimed municipal wastewater

Precipitation

Flocculation

Depth filtration

Membrane Processes

Activated carbon adsorption

Ozonation

"Advanced Oxidation Processes"

Disinfection

Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003
Course L0358: Advanced Wastewater Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Joachim Behrendt
Language DE
Cycle SoSe
Content

Aggregate organic compounds (sum parameters)

Industrial wastewater

Processes for industrial wastewater treatment

Precipitation

Flocculation

Activated carbon adsorption

Recalcitrant organic compounds


Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003

Module M0828: Urban Environmental Management

Courses
Title Typ Hrs/wk CP
Noise Protection (L1109) Lecture 2 2
Urban Infrastructures (L0874) Project-/problem-based Learning 2 4
Module Responsible Dr. Dorothea Rechtenbach
Admission Requirements None
Recommended Previous Knowledge
  • Knowledge on Urban planning
  • Knowledge on measures for climate protection
  • General knowledge of scientific writing/working
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students can describe urban development corridors as well as current and future urban environmental problems. They are able to explain the causes of environmental problems (like noise).

Students can specify applications for various technical innovations and explain why these contribute to the improvement of urban life. They can, for example, derive and discuss measures for effective noise abatement.

Skills Students are able to develop specific solutions for correcting existing or future environment-related problems of urban development. They can define a range of conceptual and technical solutions for environmental problems for different development paths. To solve specific urban environmental problems they can select technical innovations and integrate them into the urban context.
Personal Competence
Social Competence

The students can work together in international groups.

Autonomy

Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Written Report plus oral Presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1109: Noise Protection
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Jäschke
Language EN
Cycle SoSe
Content
Literature

1) Müller & Möser (2013): Handbook of Engineering Acoustics (also available in German)
2) WHO (1999): Guidelines for Community Noise
3) Environmental Noise Directive 2002/49/EG
4) ISO 9613-2 (1996): Acoustics, Attenuation of sound during propagation outdoors, Part 2: General method of calculation 

Course L0874: Urban Infrastructures
Typ Project-/problem-based Learning
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Dr. Dorothea Rechtenbach
Language EN
Cycle SoSe
Content

Problem Based Learning

Main topics are:

  • Central vs. Decentral Wastewater Treatment.
  • Compaction of Cities.
  • Car Free Cities.
  • Multifunctional Places in Cities.
  • The Sustainability of Freight Transport in Cities.


Literature Depends on chosen topic.

Module M0703: Soil and Groundwater Contamination

Courses
Title Typ Hrs/wk CP
Contamination and Remediation (L0547) Project Seminar 3 3
NAPL in Soil and Groundwater (L0545) Lecture 1 1
NAPL in Soil and Groundwater (L0546) Recitation Section (small) 2 2
Module Responsible NN
Admission Requirements None
Recommended Previous Knowledge
  • Ground water hydrology
  • Geohydraulic and solute transport
  • Hydromechanics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to analyse contamination in soils and groundwater. They are able to create remediation concepts for LNAPL contamnations. They are faminliar with Monitored Natural Attenuation

.

Skills The students are able to analyse contaminations in soils and groundwater using special engineering methods. They can do transport modelling in the unsaturated zone, estimations of groundwater pollution and analyse the impacts of remediation measures. They can forecast die distribution, mobility and remediation of non aquaous phase liquids in soil and groundwater.
Personal Competence
Social Competence The students are able to prepare complex contamination issues in teamwork and are able to find remediation measures.
Autonomy None
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale Klausur 60 min; Referat 15 min;
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0547: Contamination and Remediation
Typ Project Seminar
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Wilfried Schneider
Language DE
Cycle SoSe
Content Processing of a complex soil and groundwater contamination site. Students perform analyses of data to detect the contamination and to analyse the groundwater hazard and to develop a concept for remediation of the damage.
Literature entfällt
Course L0545: NAPL in Soil and Groundwater
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Wilfried Schneider
Language DE
Cycle SoSe
Content concept of capillarity, multi phase distribution in poraus media, residual saturation, rellative permeability, infiltration of NAPL into the subsurface, vertical distribution of LNAPL, specific volume
Literature

Charbeneau, R.J. (2000): Groundwater Hydraulics and pollutant Transport

Course L0546: NAPL in Soil and Groundwater
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Wilfried Schneider
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1351: Construction Processes

Courses
Title Typ Hrs/wk CP
Digital Building (L1908) Lecture 2 2
Lean Construction (L1910) Lecture 2 2
System Dynamics (L1909) Lecture 2 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L1908: Digital Building
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Katja Maaser
Language DE
Cycle SoSe
Content
Literature
Course L1910: Lean Construction
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Theo Herzog
Language DE
Cycle SoSe
Content
Literature
Course L1909: System Dynamics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Markus Salge
Language DE
Cycle SoSe
Content
Literature

Module M0871: Hydrological Systems

Courses
Title Typ Hrs/wk CP
Applied Surface Hydrology (L0289) Lecture 2 2
Applied Surface Hydrology (L1412) Project-/problem-based Learning 1 2
Interaction Water - Environment in Fluvial Areas (L0295) Project-/problem-based Learning 1 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Fundamentals of Hydromechanics and Hydraulic Engineering: Hydraulic Engineering I and Hydraulic Engineering II
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to define the basic concepts of hydrology and water management. They are able to describe and quantify the relevant processes of the hydrological water cycle. Besides, the students know the main aspects of rainfall-run-off-models and are able to theoretically derive established reservoir / storage models and a unit-hydrograph.

Skills

The students are able to use the basic hydrological concepts and approaches and are able to theoretically derive established reservoir / storage models or a unit-hydrograph as the basis for rainfall-run-off-models. The student are able to explain the basic concepts of measurements of hydrological and hydrodynamic values in nature and are able to perform, analyze and statistically assess these measurements. Furthermore, they are able to apply a hydrological model to basic hydrological problems.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in applied problems of the hydrology and water management. Additionaly, they will be able to work in team with engineers of other disciplines.
Autonomy

The students will be able to independently extend their knowledge and apply it to new problems

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 90 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0289: Applied Surface Hydrology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content

Basics of hydrology:

  • Hydrological cycle
  • Data acquisition
  • Data analyses and statistical assessment
  • Statistics of extremes
  • Regionalization methods for hydrological values
  • Rainfall-run-off modelling on the basis of a unit hydrograph conceps
  • Application of rainfall-run-off models on the basis of Kalypso-Hydrology which is an OpenSource Software Tool.


Literature

http://de.wikipedia.org/wiki/Kalypso_(Software)

http://kalypso.bjoernsen.de/

http://sourceforge.net/projects/kalypso/


Course L1412: Applied Surface Hydrology
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0295: Interaction Water - Environment in Fluvial Areas
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content

A problem based learning course. The problem will be solved by the students more or less self-contained. The topics will be introduced and elaborated over the semester.

Literature -

Module M0875: Nexus Engineering - Water, Soil, Food and Energy

Courses
Title Typ Hrs/wk CP
Ecological Town Design - Water, Energy, Soil and Food Nexus (L1229) Seminar 2 2
Water & Wastewater Systems in a Global Context (L0939) Lecture 2 4
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of the global situation with rising poverty, soil degradation, migration to cities, lack of water resources and sanitation

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can describe the facets of the global water situation. Students can judge the enormous potential of the implementation of synergistic systems in Water, Soil, Food and Energy supply.

Skills

Students are able to design ecological settlements for different geographic and socio-economic conditions for the main climates around the world.

Personal Competence
Social Competence

The students are able to develop a specific topic in a team and to work out milestones according to a given plan.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information can be found at the beginning of the smester in the StudIP course module handbook.
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L1229: Ecological Town Design - Water, Energy, Soil and Food Nexus
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content
  • Participants Workshop: Design of the most attractive productive Town
  • Keynote lecture and video
  • The limits of Urbanization / Green Cities
  • The tragedy of the Rural: Soil degradation, agro chemical toxification, migration to cities
  • Global Ecovillage Network: Upsides and Downsides around the World
  • Visit of an Ecovillage
  • Participants Workshop: Resources for thriving rural areas, Short presentations by participants, video competion
  • TUHH Rural Development Toolbox
  • Integrated New Town Development
  • Participants workshop: Design of New Towns: Northern, Arid and Tropical cases
  • Outreach: Participants campaign
  • City with the Rural: Resilience, quality of live and productive biodiversity


Literature
  • Ralf Otterpohl 2013: Gründer-Gruppen als Lebensentwurf: "Synergistische Wertschöpfung in erweiterten Kleinstadt- und Dorfstrukturen", in „Regionales Zukunftsmanagement Band 7: Existenzgründung unter regionalökonomischer Perspektive, Pabst Publisher, Lengerich
  • http://youtu.be/9hmkgn0nBgk (Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation)
  • TEDx New Town Ralf Otterpohl: http://youtu.be/_M0J2u9BrbU
Course L0939: Water & Wastewater Systems in a Global Context
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content


  • Keynote lecture and video
  • Water & Soil: Water availability as a consequence of healthy soils
  • Water and it’s utilization, Integrated Urban Water Management
  • Water & Energy, lecture and panel discussion pro and con for a specific big dam project
  • Rainwater Harvesting on Catchment level, Holistic Planned Grazing, Multi-Use-Reforestation
  • Sanitation and Reuse of water, nutrients and soil conditioners, Conventional and Innovative Approaches
  • Why are there excreta in water? Public Health, Awareness Campaigns
  • Rehearsal session, Q&A


Literature
  • Montgomery, David R. 2007: Dirt: The Erosion of Civilizations, University of California Press
  • Liu, John D.: http://eempc.org/hope-in-a-changing_climate/ (Integrated regeneration of the Loess Plateau, China, and sites in Ethiopia and Rwanda)
  • http://youtu.be/9hmkgn0nBgk (Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation)

Module M0922: City Planning

Courses
Title Typ Hrs/wk CP
City Planning (L1066) Project-/problem-based Learning 4 6
Module Responsible Prof. Carsten Gertz
Admission Requirements None
Recommended Previous Knowledge

for "Principles of Urban Planning": none

for "Designing Urban Streetscapes": some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineering“


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to:

  • use technical terms of urban planning.
  • describe the main determinants of urban development.
  • explain and compare different possibilities of how urban development can be influenced.
  • discuss requirements for public streetscapes.
  • explain the importance of street design.


Skills

Students are able to:

  • read and analyze urban development concepts and designs for streetscapes
  • appraise such concepts in the context of competing requirements. 
  • design, justify and reflect their own solutions for concrete examples.


Personal Competence
Social Competence

Students are able to:

  • discuss intermediate results with each other.
  • constructively accept feedback on their own work. 
  • provide constructive feedback to others.


Autonomy

Students are able to:

  • independently complete a written report including drawings following a broadly pre-defined process.
  • assess the consequences of their proposed solutions.
  • independently acquire knowledge and apply this to new issues or problem areas.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale written assignment, designwork during the semester
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L1066: City Planning
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Carsten Gertz
Language DE
Cycle SoSe
Content

„Principles of Urban Planning“ deals with the determinants of urban development and their interactions. Topics include:

  • legal framework,
  • instruments and methods of planning,
  • functional requirements,
  • stakeholders and actors
  • basic design requirements
  • different planning levels and
  • historical contexts.
The objective of the course is for students to acquire a basic understanding of urban development problems and approaches for solving them. They will also be able to comprehend the process of urban planning. The course also covers the various functional and aesthetic requirements for  designing streetscape as the most important elements of public space.
The project work deals with a real life scenario and includes drawing up a development plan, an urban design concept, a building masterplan and a street redesign.


Literature

Albers, Gerd; Wekel, Julian (2009) Stadtplanung: Eine illustrierte Einführung. Primus Verlag. Darmstadt.

Frick, Dieter (2008) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. Wasmuth-Verlag. Tübingen

Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen

Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York.


Module M0977: Construction Logistics and Project Management

Courses
Title Typ Hrs/wk CP
Construction Logistics (L1163) Lecture 1 2
Construction Logistics (L1164) Recitation Section (small) 1 2
Project Development and Management (L1161) Lecture 1 1
Project Development and Management (L1162) Project-/problem-based Learning 1 1
Module Responsible Prof. Heike Flämig
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can...

  • give definitions of the main terms of construction logistics and project development and management
  • name advantages and disadvantages of internal or external construction logistics
  • explain characteristics of products, demand and production of construction objects and their consequences for construction specific supply chains
  • differentiate constructions logistics from other logistics systems
Skills

Students can...

  • carry out project life cycle assessments
  • apply methods and instruments of construction logistics
  • apply methods and instruments of project development and management
  • apply methods and instruments of conflict management
  • design supply and waste removal concepts for a construction project
Personal Competence
Social Competence

Students can...

  • hold presentations in and for groups
  • apply methods of conflict solving skills in group work and case studies
Autonomy

Students can...

  • solve problems by holistic, systemic and flow oriented thinking
  • improve their creativity, negotiation skills, conflict and crises solution skills by applying methods of moderation in case studies
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Two written papers with presentations
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Course L1163: Construction Logistics
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heike Flämig
Language DE
Cycle SoSe
Content

The lecture gives deeper insight how important logistics are as a competetive factor for construction projects and which issues are to be adressed.

The following toppics are covered:

  • competetive factor logistics
  • the concept of systems, planning and coordination of logistics
  • material, equipment and reverse logistics
  • IT in construction logistics
  • elements of the planning model of construction logistics and their connections
  • flow oriented logistics systems for construction projects
  • logistics concepts for ready to use construction projects (especially procurement and waste removel logistics)
  • best practice examples (construction logistics Potsdamer Platz, recent case study of the region)

Contents of the lecture are deepened in special exercises.

Literature

Flämig, Heike: Produktionslogistik in Stadtregionen. In: Forschungsverbund Ökologische Mobilität (Hrsg.) Forschungsbericht Bd. 15.2. Wuppertal 2000.

Krauss, Siri: Die Baulogistik in der schlüsselfertigen Ausführung,  Bauwerk Verlag GmbH Berlin 2005.

Lipsmeier, Klaus: Abfallkennzahlen für Neubauleistungen im Hochbau : Verlag Forum für Abfallwirtschaft und Altlasten, 2004.

Schmidt, Norbert: Wettbewerbsfaktor Baulogistik. Neue Wertschöpfungspotenziale in der Baustoffversorgung. In: Klaus, Peter: Edition Logistik. Band 6. Deutscher Verkehrs-Verlag. Hamburg 2003.

Seemann, Y.F. (2007): Logistikkoordination als Organisationseinheit bei der Bauausführung Wissenschaftsverlag Mainz in Aachen, Aachen. (Mitteilungen aus dem Fachgebiet Baubetrieb und Bauwirtschaft (Hrsg. Kuhne, V.): Heft 20)


Course L1164: Construction Logistics
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heike Flämig
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1161: Project Development and Management
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Heike Flämig, Dr. Anton Worobei
Language DE
Cycle SoSe
Content

Within the lecture, the main aspects of project development and management are tought:

  • Terms and definitions of project management
  • Advantages and disadvantages of different ways of project handling
  • organization, information, coordination and documentation
  • cost and fincance management in projects
  • time- and capacity management in projects
  • specific methods and instruments for successful team work

Contents of the lecture are deepened in special exercises.

Literature Projektmanagement-Fachmann. Band 1 und Band 2. RKW-Verlag, Eschborn, 2004.
Course L1162: Project Development and Management
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Heike Flämig, Dr. Anton Worobei
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0593: Building Materials and Building Preservation

Courses
Title Typ Hrs/wk CP
Repair of Structures (L0255) Lecture 1 1
Mineral Building Materials (L0253) Lecture 2 2
Technology of mineral Building Materials (L0256) Project-/problem-based Learning 1 2
Transport Processes in Building Materials and Damage Processes (L0254) Lecture 1 1
Module Responsible Prof. Frank Schmidt-Döhl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge about building materials, building physics and building chemistry, for example by the modules Principles of Building Materials and Building Physics and Building Materials and Building Chemistry.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the components of mineral building materials and their function in detail and to use them for the manufacture of special mineral building materials. They are able to show the characteristics of mineral building materials. They are able to describe the manufacture, properties and fields of application of special mortars and special concretes and the correlations of their material parameters. They are able to show the principles of anchor technology and design. 

Skills

The students are able to perform an optimization of granulometry of a mineral building material. They are able to design a special mineral mortar and to manufacture this mortar. The students are able to manufacture post installed rebar connections. They are able to recognize damages, to assess possible causes, to use the fundamentals of construction preservation and to select repair and strengthening measures.


Personal Competence
Social Competence

The students are able to develop in small grous the mixture of a special mortar. They present their results to the lecturer and the other students. In a critical discussion they defend and adjust their results. The students are able to manufacture their special building material on the basis of this feedback.


Autonomy

The students are able to responsibly use the resources of materials and lab equipment for their project and to investigate and to get missing components.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0255: Repair of Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Maintenance of structures, repair and strengthening, subsequent waterproofing of structures
Literature BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen
Course L0253: Mineral Building Materials
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Components of mineral building materials and their function, binding materials, concrete and mortar, special mortars, special concretes
Literature

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Course L0256: Technology of mineral Building Materials
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Design and production of a special mineral building material
Literature

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Course L0254: Transport Processes in Building Materials and Damage Processes
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Transport Processes in Building Materials and Damage Processes
Literature Blaich, J.: Bauschäden, Analyse und Vermeidung

Module M0998: Statics and Dynamics of Structures

Courses
Title Typ Hrs/wk CP
Structural Dynamics (L1202) Lecture 2 2
Structural Dynamics (L1203) Recitation Section (large) 2 2
Fracture mechanics and fatigue in steel structures (L0564) Lecture 1 1
Fracture Mechanics and Fatigue (L0565) Recitation Section (large) 1 1
Module Responsible Prof. Uwe Starossek
Admission Requirements None
Recommended Previous Knowledge

Knowledge of linear structural analysis of statically determinate and indeterminate structures; Mechanics I/II, Mathematics I/II, Differential equations I

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of this module, the student can explain the basic aspects of dynamic effects on structures and the respective methods.




Skills

After successful completion of this module, the students will be able to predict the response of material and structures to dynamics loading using the appropriate computational approaches and methods.



Personal Competence
Social Competence

Students can

  • participate in subject-specific and interdisciplinary discussions,
  • defend their own work results in front of others
  • promote the scientific development of colleagues
  • Furthermore, they can give and accept professional constructive criticism
Autonomy

Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of Structural Analysis.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 150 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L1202: Structural Dynamics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle SoSe
Content
  • Single-degree-of-freedom systems: undamped and damped vibration, free vibration, forced vibrations due to harmonic, periodical or arbitrary loading, natural frequency, damping
  • vibration isolation
  • solution in the frequency-domain (Fourier transformation), solution in the time-domain
  • multi-degree-of-freedom systems: continuous or discrete systems, modelling with finite elements, generalisation
  • modal analysis
  • power iteration according to v.Mises
  • earthquake loading: seismological basics, response spectrum method
  • wind-induced vibrations: engineering meteorology, aerodynamic, classification of excitation mechanisms
progressive collapse


Literature

Clough, R.W., Penzien, J.: Dynamics of Structures. 2. Aufl., McGraw-Hill, New York, 1993.


Course L1203: Structural Dynamics
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Starossek
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0564: Fracture mechanics and fatigue in steel structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ingo Hadrych
Language DE
Cycle SoSe
Content

    basics of fatigue stress and fatigue resistance and determination of fatigue strength,

    determination anduse of S-N-curves and classification of notch effects,

    set up of determination of fatigue strength under dynamic load using the accumulation formula by Palmgren-Miner,

    set up of determination of fatigue strength in different examples,

    basics of construction and design regarding the problem of material fatigue,

    basics of linear elastic fracture mechanics under static and dynamic load,

    determination of lifetime of steel construction based on linear elastic fracture mechanics in different examples.

Literature

    Seeßelberg, C.; Kranbahnen - Bemessung und konstruktive Gestaltung; 3. Auflage;      Bauwerk-Verlag; Berlin 2009

    Kuhlmann, Dürr, Günther; Kranbahnen und Betriebsfestigkeit; in Stahlbau Kalender 2003; Verlag Ernst & Sohn; Berlin 2003

    Deutscher Stahlbau-Verband (Hrsg.); Stahlbau Handbuch Band 1 Teil B; 3. Auflage; Stahlbau-Verlagsgesellschaft; Köln 1996

    Petersen, C.; Stahlbau; 3. überarb. und erw. Auflage; Vieweg-Verlag; Braunschweig 1993

    DIN V ENV 1993-1-1: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 1-1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau; 1993

    DIN V ENV 1993-6: Eurocode 3; Bemessung und Konstruktion von Stahlbauwerken; Teil 6: Kranbahnen; 2001

    DIN-Fachbericht 126. Richtlinie zur Anwendung von DIN V ENV 1993-6; Nationales Anwendungsdokument (NAD); Berlin 2002











Course L0565: Fracture Mechanics and Fatigue
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ingo Hadrych
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0982: Transportation Modelling

Courses
Title Typ Hrs/wk CP
Transportation Modelling (L1180) Project-/problem-based Learning 4 6
Module Responsible Prof. Carsten Gertz
Admission Requirements None
Recommended Previous Knowledge

some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineering"

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to understand the operation and potential applications of transport models.

Skills

Students are able to:

  • use travel demand modelling software packages for solving practical problems.
  • design a database structure for travel demand models.
  • assess modelling results.
  • appraise potential applications and limitations of such models.


Personal Competence
Social Competence Students are able to independently develop and document solutions.
Autonomy

Students are able to:

  • independently organise, manage and solve set tasks.
  • independently prepare written reports.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale written assignment with presentation during the semester
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L1180: Transportation Modelling
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Carsten Gertz
Language DE
Cycle SoSe
Content
  • Principles of transport modelling
  • Role of transport modelling in the planning process
  • Fundamentals of mobility behaviour
  • Design and evaluation of transport/mobility surveys
  • mode of operation and data requirements for different stages of modelling
  • Forecasting and scenarios in the transport planning
  • The range of model applications (from transport infrastructure planning over simulation of traffic flows to integrated land-use and transport models as well as the use of models for evaluating locations)
  • Practice-oriented project for assessing consequences of infrastructure projects and changes in land-use


Literature

Lohse, Dieter und Schnabel, Werner (2011): Grundlagen der Straßenverkehrstechnik und der Verkehrsplanung – Band 2. 3. Auflage. Beuth.

Ortúzar, Juan de Dios und Willumsen, Luis G. (2011): Modelling Transport. 4. Auflage. John Wiley & Sons.


Module M0749: Waste Treatment and Solid Matter Process Technology

Courses
Title Typ Hrs/wk CP
Solid Matter Process Technology for Biomass (L0052) Lecture 2 2
Thermal Waste Treatment (L0320) Lecture 2 2
Thermal Waste Treatment (L1177) Recitation Section (large) 1 2
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge

Basics of

  • thermo dynamics
  • fluid dynamics
  • chemistry
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can name, describe current issue and problems in the field of thermal waste treatment and particle process engineering and contemplate them in the context of their field. 

The industrial application of unit operations as part of process engineering is explained by actual examples of waste incineration technologies and solid biomass processes. Compostion, particle sizes, transportation and dosing, drying and agglomeration of renewable resources and wastes are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, electricity , heat and mineral recyclables.

Skills

The students are able to select suitable processes for the treatment of wastes or raw material with respect to their characteristics and the process aims. They can evaluate the efforts and costs for processes and select economically feasible treatment concepts.

Personal Competence
Social Competence

Students can

  • respectfully work together as a team and discuss technical tasks
  • participate in subject-specific and interdisciplinary discussions,
  • develop cooperated solutions 
  •  promote the scientific development and accept professional constructive criticism.
Autonomy

Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0052: Solid Matter Process Technology for Biomass
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Werner Sitzmann
Language DE
Cycle SoSe
Content The industrial application of unit operations as part of process engineering is explained by actual examples of solid biomass processes. Size reduction, transportation and dosing, drying and agglomeration of renewable resources are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, when making Btl - and WPC - products. Aspects of explosion protection and plant design complete the lecture.
Literature

Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe,

Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de

Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175


Course L0320: Thermal Waste Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle SoSe
Content
  • Introduction, actual state-of-the-art of waste incineration, aims. legal background, reaction principals
  • basics of incineration processes: waste composition, calorific value, calculation of air demand and flue gas composition 
  • Incineration techniques: grate firing, ash transfer, boiler
  • Flue gas cleaning: Volume, composition, legal frame work and emission limits, dry treatment, scrubber, de-nox techniques, dioxin elimination, Mercury elimination
  • Ash treatment: Mass, quality, treatment concepts, recycling, disposal
Literature

Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013.

Course L1177: Thermal Waste Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0827: Modeling in Water Management

Courses
Title Typ Hrs/wk CP
Applied Groundwater Modeling (L0543) Lecture 1 1
Applied Groundwater Modeling (L0544) Recitation Section (small) 2 2
Modeling of Water Supply and Sewer Network (L0875) Project-/problem-based Learning 2 3
Module Responsible Dr. Klaus Johannsen
Admission Requirements None
Recommended Previous Knowledge

Groundwater

  • groundwater hydraulics and transport of substances

Pipe Systems

  • Knowledge on urban water infrastructures, in particular drinking water systemsand urban drainage systems including special structures
  • Hydraulics of drinking water supply systems and sewer systems
  • Basic knowledge on water management
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the modelling of groundwater flow and transport as well as urban water infrastructures. They can carry out systems analyses and can detect technical and conceptual weak points within the systems in case studies. Besides they are able to analyse interdependencies of hydraulic and toxic phenomena in soil and water.


Skills

The students are able to construct and apply scientific groundwater models indipendently. They can work on different scenarios and can compare or assess different solutions for existing problems by application of selected software products. The students are able to use different software solutions (e.g. EPANET, EPA-SWMM).



Personal Competence
Social Competence

Wird nicht vermittelt.

Autonomy

Wird nicht vermittelt.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 20 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0543: Applied Groundwater Modeling
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE/EN
Cycle SoSe
Content Introduction and application of the groundwater model MODFLOW (PMWIN); theoretical backround of the modell, students do work with the model PMWIN for practical case studies.
Literature

MODFLOW-Handbuch

Chiang, Wen Hsien: PMWIN


Course L0544: Applied Groundwater Modeling
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0875: Modeling of Water Supply and Sewer Network
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen, Weitere Mitarbeiter
Language DE
Cycle SoSe
Content
Literature Mutschmann/Stimmelmayr: Taschenbuch der Wasserversorgung, 16. Auflage. Springer Vieweg - Verlag. Wiesbaden 2014.

Module M0870: Management of Surface Water

Courses
Title Typ Hrs/wk CP
Modelling of Flow in Rivers and Estuaries (L0810) Lecture 3 4
Nature-Oriented Hydraulic Engineering / Integrated Flood Protection (L0961) Project-/problem-based Learning 2 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Fundamentals of Hydromechanics, Hydraulics, Hydrology and Hydraulic Engineering; Hydraulic Engineering I and Hydraulic Engineering II
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to define in detail the basic processes that are related to the modelling of flows in hydraulic engineering. Besides, they can describe the basic aspects of numerical modelling and actual numerical models for the simulation of flows and waves. They can also depict the concepts of nature oriented hydraulic engineering.

Skills

Students are able to apply hydrodynamic-numerical models to practical hydraulic engineering tasks. Furthermore, the students are able to set up flood-risk management concepts and are able to apply basic concepts of renaturation to practical problems.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in applied problems of the practical nature-based hydraulic engineering. Additionaly, they will be able to work in team with engineers of other disciplines.
Autonomy

The students will be able to independently extend their knowledge and apply it to new problems.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 150 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0810: Modelling of Flow in Rivers and Estuaries
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Dr. Edgar Nehlsen, Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content

Basics of numerial models / application of models

  • classification of models
  • model concept
  • modelling

1D Working Equation

Mathematical description of physical processes

  • Equation of motions
    • conservation of mass
    • conservation of momentum
  • Initial conditions and boundary conditions

Numerical Methods

  • Time step procedure
  • Finite differences
  • Finite volumes



Literature Vorlesungsskript
Course L0961: Nature-Oriented Hydraulic Engineering / Integrated Flood Protection
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Natasa Manojlovic, Prof. Peter Fröhle
Language DE/EN
Cycle SoSe
Content
  • Regime-Theory and application for the development of environmental guiding priciples of rivers
  • Engineering - biological measures for the stabilization of rivers
  • Risk management in flood protection  
  • Design techniques in technical flood protection 
  • Methods for the assessment of flood caused damages


Literature

Vorlesungsumdruck

Module M0860: Harbour Engineering and Harbour Planning

Courses
Title Typ Hrs/wk CP
Harbour Engineering (L0809) Lecture 2 2
Harbour Engineering (L1414) Project-/problem-based Learning 1 2
Port Planning and Port Construction (L0378) Lecture 2 2
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge Basics of coastal engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to define in details and to choose design approaches for the functional design of a port and apply them to design tasks. They can design the fundamental elements of a port.

Skills

The students are able to select and apply appropriate approaches for the functional design of ports.

Personal Competence
Social Competence The students are able to deploy their gained knowledge in applied problems such as the functional design of ports. Additionaly, they will be able to work in team with engineers of other disciplines.
Autonomy The students will be able to independently extend their knowledge and apply it to new problems.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale The duration of the examination is 150 min. The examination includes tasks with respect to the general understanding of the lecture contents and calculations tasks.
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Course L0809: Harbour Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content
  • Fundamentals of harbor engineering
    • Maritime transportation and waterways engineering
    • Ships
  • Elements of harbors
    • Harbor approaches and water-side harbor areas
    • Terminal design and handling of cargo
    • Quay-walls and piers
    • Equipment of harbors
    • Sluices and other special constructions
  • Connection to inland transportation / inland waterway transportation
  • Protection of harbors
    • Breakwaters and Jetties
    • Wave protection of harbors
  • Fishery and other small harbors


Literature Brinkmann, B.: Seehäfen, Springer 2005
Course L1414: Harbour Engineering
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Peter Fröhle
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0378: Port Planning and Port Construction
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Frank Feindt
Language DE
Cycle SoSe
Content
  • Planning and implementation of major projects
  • Market analysis and traffic relations
  • Planning process and plan 
  • Port planning in urban neighborhood
  • Development of the logistics center "Port of Hamburg" in the metropolis
  • Quays and waterfront structure
  • Special planning Law Harbor - securing of a flexible use of the port
  • Dimensioning of quays
  • Flood protection structures
  • Port of Hamburg - Infrastructure and development
  • Preparation of areas
  • Scour formation in front of shore structures
Literature Vorlesungsumdruck, s. www.tu-harburg.de/gbt

Module M0857: Geochemical Engineering

Courses
Title Typ Hrs/wk CP
Contaminated Sites and Landfilling (L0906) Lecture 2 2
Contaminated Sites and Landfilling (L0907) Recitation Section (large) 1 2
Geochemical Engineering (L0904) Lecture 2 2
Module Responsible Dr. Marco Ritzkowski
Admission Requirements None
Recommended Previous Knowledge

Module: General and Inorganic Chemistry,

Module:Organic Chemistry,

Biology (Basic Knowledge)


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

With the completion of this module students acquire profound knowledge of biogeochemical processes, the fate of pollutants in soil and groundwater, and techniques to deposit contaminated waste material. They are able to describe in principle the behaviour of chemicals in the environment. Students can explain and report the approach to remediate contaminated sites.

Skills

With the completion of this module students can apply the acquired theoretical knowledge to model cases of site pollution and critically assess the situation technically and conceptually. They are able to draw comparisons on different remediation strategies and techniques. Model projects can be devised and treated.

Personal Competence
Social Competence

 Students can discuss technical and scientific tasks within a seminar subject specific and interdisciplinary .

Autonomy

Students can independently exploit sources , acquire the particular knowledge of the subject and apply it to new problems.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 2 hours
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0906: Contaminated Sites and Landfilling
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Marco Ritzkowski, Dr. Joachim Gerth
Language EN
Cycle SoSe
Content

The part Contaminated Sites gives an introduction into different scales of pollution and identifies key pollutants.  Geochemical attenuation  mechanisms and the role of organisms are highlighted affecting the fate of pollutants in leachate and groundwater. Techniques for site characterization and remediation are discussed including economical aspects.

The part Landfilling is introduced by discussing fundamental aspects and the worldwide situation of waste management. The lecture highlights transformation processes in landfill bodies, emissions of gases and leachate, and the long-term behaviour of landfill sites with measures of aftercare.

Literature

1) Waste Management. Bernd Bilitewski; Georg Härdtle; Klaus Marek (Eds.), ISBN: 9783540592105 , Springer Verlag
Lehrbuchsammlung der TUB, Signatur     USH-305

2) Solid Waste Technology and Management. Thomas Christensen (Ed.), ISBN: 978-1-4051-7517-3 , Wiley Verlag
Lesesaal 2: US - Umweltschutz, Signatur     USH-332 

3) Natural attenuation of fuels and chlorinated solvents in the subsurface. Todd H. Wiedemeier(Ed.), ISBN: 0471197491  

Lesesaal 2: US - Umweltschutz, Signatur USH-844

Course L0907: Contaminated Sites and Landfilling
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Marco Ritzkowski, Dr. Joachim Gerth
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0904: Geochemical Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Joachim Gerth
Language EN
Cycle SoSe
Content

As an introduction cases are presented in which geochemical engineering was used to solve environmental problems. Environmentally important minerals are discussed and methods for their detection. It is demonstrated how solution equilibria can be modified to eliminate elevated concentrations of unwanted species in solution and how carbon dioxide concentration affects pH and the dissolution of carbonate minerals. Modifications of redox conditions, pH, and electrolyte concentration are shown to be effective tools for controlling the mobility and fate of hazardous species in the environment.



Literature

Geochemistry, groundwater and pollution. C. A. J. Appelo; D. Postma

Leiden [u.a.] Balkema 2005

Lehrbuchsammlung der TUB, Signatur GWC-515

Module M1350: Excavation Law and Projects

Courses
Title Typ Hrs/wk CP
Subsoil and Underground Engineering Law (L0395) Lecture 2 2
Service Contract and Procurement Law (L1906) Lecture 2 2
Project Geotechnics (L0708) Project-/problem-based Learning 2 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 15 min
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0395: Subsoil and Underground Engineering Law
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Günther Schalk
Language DE
Cycle WiSe
Content

• History of Civil Engineering Law (from 1700 BC to 2000 AD)

• Basics of foundation and excarvation law / engineering law (the participants in the case law of geotechnical law case studies)

• Legal aspects of technical regulations in civil engineering (with case studies)

• The civil engineering contract (including checklists for the special civil engineering contract design and execution)

• The liability of the planner and entrepreneur in civil engineering (practical examples, jurisprudence and law, inter alia, to the Ordinance on Combatants, liability for defects and traffic safety obligations, construction law and insurance questions)

• The ground / foundation risk and the systemic risk (also in the European context)

• The total debt in (low) building law (based on practice-oriented case constellations)

• The (construction) conflict, the dispute avoidance models and the construction process (practice-oriented presentation)

Literature

Folienskript (in der Vorlesung erhältlich)

weitere Literatur:

  • Englert, Grauvogel und Maurer: Handbuch des Baugrund- und Tiefbaurechts. Werner-Verlag

Course L1906: Service Contract and Procurement Law
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Günther Schalk, Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
Literature
Course L0708: Project Geotechnics
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content The students solve independently a project-based geotechnical problem in groups. Additional lectures concerning the problem will be held and material will be distributed as study basis. Every two weeks the groups present their current project status. The final work will be presentated in a final presentation.
Literature abhängig von der Fragestellung

Module M0705: Groundwater

Courses
Title Typ Hrs/wk CP
Geohydraulic and Solute Transport (L0539) Lecture 2 2
Geohydraulic and Solute Transport (L0540) Recitation Section (small) 1 1
Simulation in Groundwater Hydrology (L0541) Lecture 1 1
Simulation in Groundwater Hydrology (L0542) Recitation Section (small) 2 2
Module Responsible NN
Admission Requirements None
Recommended Previous Knowledge
  • Ground water hydrology
  • Hydromechanics


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to describe the fate of solutes in the subsurface along the path between soil and water body quantitatively and qualitatively. They are able to do this with simulation models.
Skills The students are able to describe conceptually movement and storage of water in the unsaturated zone. They are able to analyse pF- functions and Ku functions. They can model transport of solutes in the unsaturated and saturated zoned. They are able to determine dispersiities, sorption coefficients, decay rates and dissolution rates for organic and inorganic substances.
Personal Competence
Social Competence The students can help to each other.
Autonomy none
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min written exam and written papers
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0539: Geohydraulic and Solute Transport
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content Pump test analysis, water content-water suction functions, unsaturated hydraulic conductivity function, Brooks-Corey relation, van Genuchten relation, solute transport in unsaturated zone, solute transport and reactions in groundwater
Literature

Todd; K. (2005): Groundwater Hydrology

Fetter, C.W. (2001): Applied Hydrogeology

Hölting & Coldewey (2005): Hydrogeologie

Charbeneau, R.J. (2000): Groundwater Hydraulics and pollutant Transport

Course L0540: Geohydraulic and Solute Transport
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0541: Simulation in Groundwater Hydrology
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content Basics and theoretical background of simulation models frequently used in science and practise for pumping test analysis, water movement in vadose zone, solute transport in vadose zone, groundwater recharge, solute transport in groundwater
Literature Handbücher der verwendeten Slumationsmodelle werden bereitgestellt.
Course L0542: Simulation in Groundwater Hydrology
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Sonja Götz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0619: Waste Treatment Technologies

Courses
Title Typ Hrs/wk CP
Waste and Environmental Chemistry (L0328) Practical Course 2 2
Biological Waste Treatment (L0318) Project-/problem-based Learning 3 4
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge chemical and biological basics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module aims possess knowledge concerning the planning of biological waste treatment plants. Students are able to explain the design and layout of anaerobic and aerobic waste treatment plants in detail, describe different techniques for waste gas treatment plants for biological waste treatment plants and explain different methods for waste analytics.


Skills

The students are able to discuss the compilation of design and layout of plants. They can critically evaluate techniques and quality control measurements. The students can recherché and evaluate literature and date connected to the tasks given in der module and plan additional tests. They are capable of reflecting and evaluating findings in the group.


Personal Competence
Social Competence

Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development in front of colleagues. Furthermore, they can give and accept professional constructive criticism.


Autonomy

Students can independently tap knowledge from literature, business or test reports and transform it to the course projects. They are capable, in consultation with supervisors as well as in the interim presentation, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Presentation
Examination duration and scale Elaboration and Presentation (15-25 minutes in groups)
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Energy and Environmental Engineering: Specialisation Environmental Engineering: Elective Compulsory
Environmental Engineering: Core Qualification: Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Course L0328: Waste and Environmental Chemistry
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language DE/EN
Cycle WiSe
Content

The participants are divided into groups. Each group prepares a transcript on the experiment performed, which is then used as basis for discussing the results and to evaluate the performance of the group and the individual student.

In some experiments the test procedure and the results are presented in seminar form, accompanied by discussion and results evaluation.

Experiments ar e.g.

Screening  and particle size determination

Fos/Tac

AAS

Chalorific value

Literature Scripte
Course L0318: Biological Waste Treatment
Typ Project-/problem-based Learning
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content
  1. Introduction
  2. biological basics
  3. determination process specific material characterization
  4. aerobic degradation ( Composting, stabilization)
  5. anaerobic degradation (Biogas production, fermentation)
  6. Technical layout and process design
  7. Flue gas treatment
  8. Plant design practical phase
Literature

Module M0949: Rural Development and Resources Oriented Sanitation for different Climate Zones

Courses
Title Typ Hrs/wk CP
Rural Development and Resources Oriented Sanitation for different Climate Zones (L0942) Seminar 2 3
Rural Development and Resources Oriented Sanitation for different Climate Zones (L0941) Lecture 2 3
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of the global situation with rising poverty, soil degradation, lack of water resources and sanitation

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can describe resources oriented wastewater systems mainly based on source control in detail. They can comment on techniques designed for reuse of water, nutrients and soil conditioners.

Students are able to discuss a wide range of proven approaches in Rural Development from and for many regions of the world.


Skills

Students are able to design low-tech/low-cost sanitation, rural water supply, rainwater harvesting systems, measures for the rehabilitation of top soil quality combined with food and water security. Students can consult on the basics of soil building through “Holisitc Planned Grazing” as developed by Allan Savory.

Personal Competence
Social Competence

The students are able to develop a specific topic in a team and to work out milestones according to a given plan.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information will be provided at the beginning of the smester.
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Energy and Environmental Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0942: Rural Development and Resources Oriented Sanitation for different Climate Zones
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content


  • Central part of this module is a group work on a subtopic of the lectures. The focus of these projects will be based on an interview with a target audience, practitioners or scientists.
  • The group work is divided into several Milestones and Assignments. The outcome will be presented in a final presentation at the end of the semester.



Literature
  • J. Lange, R. Otterpohl 2000: Abwasser - Handbuch zu einer zukunftsfähigen Abwasserwirtschaft. Mallbeton Verlag (TUHH Bibliothek)
  • Winblad, Uno and Simpson-Hébert, Mayling 2004: Ecological Sanitation, EcoSanRes, Sweden (free download)
  • Schober, Sabine: WTO/TUHH Award winning Terra Preta Toilet Design: http://youtu.be/w_R09cYq6ys
Course L0941: Rural Development and Resources Oriented Sanitation for different Climate Zones
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content
  • Living Soil - THE key element of Rural Development
  • Participatory Approaches
  • Rainwater Harvesting
  • Ecological Sanitation Principles and practical examples
  • Permaculture Principles of Rural Development
  • Performance and Resilience of Organic Small Farms
  • Going Further: The TUHH Toolbox for Rural Development
  • EMAS Technologies, Low cost drinking water supply


Literature
  • Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation: http://youtu.be/9hmkgn0nBgk
  • Montgomery, David R. 2007: Dirt: The Erosion of Civilizations, University of California Press

Module M0822: Process Modeling in Water Technology

Courses
Title Typ Hrs/wk CP
Process Modelling of Wastewater Treatment (L0522) Project-/problem-based Learning 2 3
Process Modeling in Drinking Water Treatment (L0314) Project-/problem-based Learning 2 3
Module Responsible Dr. Klaus Johannsen
Admission Requirements None
Recommended Previous Knowledge

Knowledge of the most important processes in drinking water and waste water treatment. 

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain selected processes of drinking water and waste water treatment in detail. They are able to explain basics as well as possibilities and limitations of dynamic modeling.

Skills

Students are able to use the most important features Modelica offers. They are able to transpose selected processes in drinking water and waste water treatment into a mathematical model in Modelica with respect to equilibrium, kinetics and mass balances. They are able to set up and apply models and assess their possibilities and limitations.


Personal Competence
Social Competence

Students are able to solve problems and document solutions in a group with members of different technical background. They are able to give appropriate feedback and can work constructively with feedback concerning their work.


Autonomy

Students are able to define a problem, gain the required knowledge and set up a model.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 1,5 hours
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0522: Process Modelling of Wastewater Treatment
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language DE/EN
Cycle WiSe
Content

Mass and energy balances

Tracer modelling

Activated Sludge Model

Wastewater Treatment Plant Modelling (continously and SBR)

Sludge Treatment (ADM, aerobic autothermal)

Biofilm Modelling

Literature

Henze, Mogens (Seminar on Activated Sludge Modelling, ; Kollekolle Seminar on Activated Sludge Modelling, ;)
Activated sludge modelling : processes in theory and practice ; selected proceedings of the 5th Kollekolle Seminar on Activated Sludge Modelling, held in Kollekolle, Denmark, 10 - 12 September 2001
ISBN: 1843394146
[London] : IWA Publ., 2002
TUB_HH_Katalog
Henze, Mogens
Activated sludge models ASM1, ASM2, ASM2d and ASM3
ISBN: 1900222248
London : IWA Publ., 2002
TUB_HH_Katalog
Henze, Mogens
Wastewater treatment : biological and chemical processes
ISBN: 3540422285 (Pp.)
Berlin [u.a.] : Springer, 2002
TUB_HH_Katalog
Wiesmann, Udo (Choi, In Su; Dombrowski, Eva-Maria;)
Fundamentals of biological wastewater treatment
ISBN: 3527312196 (Gb.) URL: http://deposit.ddb.de/cgi-bin/dokserv?id=2774611&prov=M&dok_var=1&dok_ext=htm
Weinheim : WILEY-VCH, 2007
TUB_HH_Katalog

Course L0314: Process Modeling in Drinking Water Treatment
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen
Language DE/EN
Cycle WiSe
Content

In this course selected drinking water treatment processes (e.g. aeration or activated carbon adsorption) are modeled dynamically using the programming language Modelica,  that is increasingly used in industry.  In this course OpenModelica is used, an free access frontend of the programming language Modelica.

In the beginning of the course  the use of OpenModelica is explainded by means of simple examples. Together required elements and structure of the model are developed. The implementation in OpenModelica and the application of the model is done individually or in groups respectively. Students get feedback and can gain extra points for the exam. 


Literature

OpenModelica: https://openmodelica.org/index.php/download/download-windows

OpenModelica - Modelica Tutorial: https://openmodelica.org/index.php/useresresources/userdocumentation

OpenModelica - Users Guide: https://openmodelica.org/index.php/useresresources/userdocumentation

Peter Fritzson: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,Wiley-IEEE Press, ISBN 0-471-471631.

MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005.

Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996.

DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004.


Module M0620: Special Aspects of Waste Resource Management

Courses
Title Typ Hrs/wk CP
Advanced Topics in Waste Resource Management (L1055) Project-/problem-based Learning 3 3
International Waste Management (L0317) Project-/problem-based Learning 2 3
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge basics in waste treatment technologies
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe waste as a resource as well as advanced technologies for recycling and recovery of resources from waste in detail. This covers collection, transport, treatment and disposal in national and international contexts.

Skills

Students are able to select suitable processes for the treatment with respect to the national or cultural and developmental context. They can evaluate the ecological impact and the technical effort of different technologies and management systems.

Personal Competence
Social Competence

Students can work together as a team of 2-5 persons, participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of colleagues. Furthermore, they can give and accept professional constructive criticisms.

Autonomy

Students can independently gain additional knowledge of the subject area and apply it in solving the given course tasks and projects. 

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Written elaboration
Examination Presentation
Examination duration and scale PowerPoint presentation (10-15 minutes)
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L1055: Advanced Topics in Waste Resource Management
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Rüdiger Siechau
Language EN
Cycle WiSe
Content

Focus of the course "Advanced topics of waste resource management" lies on the organisational structures in waste management - such as planning, financing and logistics. One excursion will be offered to take part in (incineration plant, vehicle fleet and waste collection systems).

The course is split into two parts:
1. part: “Conventional” lecture (development of waste management, legislation, collection, transportation and organisation of waste management, costs, fees and revenues).

2. part: Project base learning: You will get a project to work out in groups of 4 to 6 students; all tools and data you need to work out the project were given before during the conventional lecture. Course documents are published in StudIP and communication during project work takes place via StudIP.

The results of the project work are presented at the end of the semester. The final mark for the course consists of the grade for the presentation.


Literature

Einführung in die Abfallwirtschaft; Martin Kranert, Klaus Cord-Landwehr (Hrsg.); Vieweg + Teubner Verlag; 2010 

PowerPoint slides in Stud IP

Course L0317: International Waste Management
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content

Waste avoidance and recycling are the focus of this lecture. Additionally, waste logistics ( Collection, transport, export, fees and taxes) as well as international waste shipment solutions are presented.

Other specific wastes, e.g. industrial waste, treatment concepts will be presented and developed by students themselves

Waste composition and production on international level, wast eulogistic, collection and treatment in emerging and developing countries.

Single national projects and studies will be prepared and presented by students

Literature

Basel convention


Module M0713: Concrete Structures

Courses
Title Typ Hrs/wk CP
Concrete Structures (L0579) Seminar 1 1
Structural Concrete Members (L0577) Lecture 2 3
Structural Concrete Members (L0578) Recitation Section (large) 2 2
Module Responsible Prof. Günter Rombach
Admission Requirements None
Recommended Previous Knowledge

Basics of structural analysis, conception and dimensioning of structural concrete

Modules: Reinforced Concrete Structures I+II, Structural Analysis I+II, Mechanics I+II



Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students broaden their skills in structural engineering, especially in the field of buildings (houses, roofs, halls). They dispose of the knowledge for the conception and design of concrete buildings and structural members that are often used. 

Skills

The students are able to apply procedures of the conception and dimensioning to to practical problems of structural engineering. They are capable to draft concrete buildings and to design them for general action effects and to plan their detailing and execution. Moreover, they can make design and construction sketches and draw up technical descriptions. 

Personal Competence
Social Competence

The students are able to obtain results of high quality in teamwork. 

Autonomy

The students are able to carry out complex conception and dimensioning tasks of structures under the guidance of tutors.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation Es werden 2 Referate ausgegeben
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0579: Concrete Structures
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Björn Schütte
Language DE
Cycle WiSe
Content

With help of a project teamwork the subjects of the course "Concrete Structures" is practiced, discussed and presented.


Literature - Projektbezogene Unterlagen werden abgegeben.
Course L0577: Structural Concrete Members
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content
  • concrete buildings 
  • actions on structrues
  • bracing systems
  • slabs (line and point supported plates and floor slabs)
  • membranes and deep beams
  • shells and folded plates
  • reinforced and prestressed members
Literature

Vorlesungsunterlagen können im STUDiP heruntergeladen werden

  • Zilch K., Zehetmaier G.: Bemessung im konstruktiven Ingenieurbau. Springer, Heidelberg 2010
  • König, G., Liphardt S.: Hochhäuser aus Stahlbeton, Betonkalender 2003, Teil II, Seite 1-69, Verlag Ernst & Sohn, Berlin 2003
  • Phocas, Marios C.: Hochhäuser : Tragwerk und Konstruktion, Stuttgart, Teubner, 2005
  • Deutscher Ausschuss für Stahlbeton: Heft 600: Erläuterungen zu DIN EN 1992-1-1, Beuth Verlag, Berlin 2012
  • Deutscher Ausschuss für Stahlbeton: Heft 240: Hilfsmittel zur Berechnung der Schnittgrößen und Formänderungen von Stahlbetontragwerken, Verlag Ernst & Sohn, Berlin 1978
  • Stiglat, K., Wippel, H.: Massive Platten - Ausgewählte Kapitel der Schnittkraftermittlung und Bemessung, Betonkalender 1992, Teil I, 287-366, Verlag Ernst & Sohn, Berlin 1992
  • Stiglat/Wippel: Platten. Verlag Ernst & Sohn, Berlin,1973
  • Schlaich J.; Schäfer K.: Konstruieren im Stahlbetonbau. Betonkalender 1998, Teil II, S. 721ff, Verlag Ernst & Sohn, Berlin, 1998
  • Dames K.-H.: Rohbauzeichnungen Bewehrungszeichnungen. Bauverlag, Wiesbaden 1997



Course L0578: Structural Concrete Members
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Björn Schütte
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0722: Computational Analysis of Concrete Structures

Courses
Title Typ Hrs/wk CP
Computational Analysis of Concrete Structures (L0598) Lecture 2 3
Computational Analysis of Concrete Structures (L0599) Recitation Section (large) 1 1
FE-Modeling of Concrete Structures (L0600) Project-/problem-based Learning 2 2
Module Responsible Prof. Günter Rombach
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge in structural analysis and design of reinforced concrete structures (beams, slabs, shear walls).

Lectures  'Concrete Structures I und II'

Lectures  'Structural Analysis I and II'

Lecture 'Concrete Structures'

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know the problems of numerical modeling and design of an arbitrary concrete structure.

Skills

The students can model and design an arbitrary concrete structure by means of a finite element software package.

Personal Competence
Social Competence

The students can model and design in teamwork a real concrete structure by means of a finite element software package.

Autonomy

The students can model and design a real concrete structure based on a finite element software package and discuss the problems and results with other students.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Attestation Am Ende des Semster ist ein Tragsystem mit dem Rechenprogramm zu modellieren
Yes None Excercises Es ist ein Tragsystem mit TEDDY zu modellieren
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L0598: Computational Analysis of Concrete Structures
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content
  • Modeling of beam and truss structures
    - Discontinuity regions, like frame corners, openings, shear walls with large openings
    - Bracing of high-rise buildings
    - Modeling of bridges 
    - Nonlinear analysis 
  • Finite-Elemente-analysis of slabs: support conditions, singularity regions
  • Finite-Elemente-Berechnungen of shear walls and deep beams: support condition, design
  • Coupled systems 
  • Modeling of slab supported on beams
  • Shell structures
  • 3D building models
  • Nonlinear analysis of slabs and shells
  • Documentation
Literature
  • Vorlesungsumdruck
  • Rombach, G.A. (2007): Anwendung der Finite-Elemente-Methode im Betonbau. 2. Auflage, Verlag Ernst & Sohn, Berlin
  • Rombach G.A. (2011): Finite-Element Design of Concrete Structures, 2nd edition, ICE publishing
  • Hartmann, F., Katz, C. (2002): Statik mit finiten Elementen. Springer, Berlin
Course L0599: Computational Analysis of Concrete Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Günter Rombach
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0600: FE-Modeling of Concrete Structures
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Lukas Henze
Language DE
Cycle WiSe
Content

Finite Element Modeling and computational design of concrete structures by ‘SOFiSTiK’

Literature
  • Rombach G.: Anwendung der Finite - Elemente - Methode im Betonbau. 2. Auflage. Verlag Ernst &.Sohn, Berlin, 2007
  • Rombach G.: Finite-Element Design of Concrete Structures. 2nd edition, ICE Publishing, London, 2011, ISBN 0 7277 32749
  • Rombach G.: EDV-unterstützte Berechnungen im Stahlbetonbau. in: „Stahlbetonbau aktuell 2014“ (ed. Gorris A., Hegger J., Mark P.), Berlin 2014 (S. C1.-C.36)


Module M0963: Steel and Composite Structures

Courses
Title Typ Hrs/wk CP
Steel and Composite Structures (L1204) Lecture 2 2
Steel and Composite Structures (L1205) Recitation Section (large) 2 2
Steel Bridges (L1097) Lecture 2 2
Module Responsible Prof. Marcus Rutner
Admission Requirements None
Recommended Previous Knowledge

Basics of steel construction (i.e. Steel Structures I and II, BUBC)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completition, students can

  • describe the phenomenon of local buckling
  • explain warping torsion
  • illustrate the behaviour of composite structures
  • specify the principles in design of composite sttructures
  • sketch the contructions of steel and composite bridges
Skills

After successful participation students are able to

  • check stiffened and unstiffened plated structures
  • recognize and verify warping tosion in strucures
  • design composite structures
  • design bridges and o perform the detailing
Personal Competence
Social Competence --
Autonomy --
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 180 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L1204: Steel and Composite Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Marcus Rutner
Language DE
Cycle WiSe
Content
  • Local-buckling of plated structures
  • Warping torsion
  • Composite-girders, -columns, -slabs, -bridges
  • Principles in composite constructions
  • Bridge-design and -construction
Literature

Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag

Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag

Course L1205: Steel and Composite Structures
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Marcus Rutner
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1097: Steel Bridges
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Jörg Ahlgrimm
Language DE
Cycle WiSe
Content

Lecture Contents ,Steel Bridge Construction'
Dr.-Ing. Jörg Ahlgrimm

- From tendering and contracting to completion - the development of a steel bridge

- Contents of a bridge static - structural details, examples of analysis in detail:

   -> effective width in regard to the longitudinal stiffeners

   -> Bearing point, bearing stiffener

   -> Crossbeam breakthrough, crossbeam reinforcement

   -> Analysis of the Rib-to-Floorbeam (RF) connection (web-tooth of the floorbeam  between trapezoidal shaped Ribs)

- Steel grades, -designation, testing methods and approval certificates

- Nondestructive weld inspecting

- Corrosion protection

- Bridge bearing - types, format, function, dimensioning, installation

- Expansion Joints

- Oscillation of bridge hangers and cables - oscillation damper

- Opening bridges- Detailed reviews to different assembling procedures and - implements

- Selective damage events

Requirements: Basic knowledge in the calculation, dimensioning, and construction of structural elements and joints of constructional steelwork

Literature


  • Herbert Schmidt, Ulrich Schulte, Rainer Zwätz, Lothar Bär:
    Ausführung von Stahlbauten

  • Petersen, Christian: Stahlbau, Abschnitt Brückenbau


  • Ahlgrimm, J., Lohrer, I.: Erneuerung der Eisenbahnüberführung in Fulda-Horas über die Fulda, Stahlbau 74 (2005), Heft 2, S. 114

Module M0969: Selected Topics in Civil Engineering

Courses
Title Typ Hrs/wk CP
Analysis of Offshore Structures (L1867) Lecture 1 1
Excellence in International Project Delivery (L2387) Integrated Lecture 2 2
Design of Prefabricated Concrete Structures (L0596) Lecture 1 1
Design of Prefabricated Concrete Structures (L0597) Recitation Section (large) 1 1
Forum I - Geotechnics and Construction Management (L1634) Seminar 1 1
Forum II - Geotechnics and Construction Management (L1635) Seminar 1 1
Geotechnical Engineering Design (L2447) Lecture 2 3
Timber Structures (L1151) Seminar 2 2
Glass Structures (L1152) Lecture 2 2
Glass Structures (L1447) Recitation Section (large) 1 1
Special topics of civil engineering 1CP (L2378) 1 1
Special topics of civil engineering 2 LP (L2379) 2 2
Special topics of civil engineering 3 LP (L2380) 3 3
Wind turbine design (L1905) Lecture 1 1
Module Responsible Prof. Uwe Starossek
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to find their way through selected special areas within civil and structural engineering.
  • Students are able to explain basic models and procedures in selected special areas of civil and structural engineering.
  • Students are able to interrelate scientific and technical knowledge.


Skills
  • Students are able to apply basic methods in selected areas of civil and structural engineering.
Personal Competence
Social Competence ---
Autonomy
  • Students can chose independently, in which fields they want to deepen their knowledge and skills through the election of courses.
Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Course L1867: Analysis of Offshore Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Dr. Said Fawad Mohammadi
Language DE/EN
Cycle SoSe
Content

Topic 1: Types of Offshore Structures, Fixed and floating structures for Oil & Gas and Offshore Wind industry

Topic 2: Wave Forces, Morisons equation

Topic 3: Irregular Seastates, Power spectrum and application of FFT

Topic 4: Additional Environmental Forces, wind spectra, current forces

Topic 5: Linear-Time-Invariant Systems, response of an LTI-system in frequency domain

Topic 6: Tubular Welded Connections, stress concentration factors, weld geometry

Topic 7: Introduction to Fracture Mechanics, criteria for fracture initiation and crack growth

Topic 8: Time and Frequency Domain Fatigue Analyses, rainflow counting, application of LTI-systems for frequency domain fatigue

Topic 9: Offshore Installation and Exam, installation of structures, pile driving, pipe laying techniques

Literature

Chakrabarti, Handbook of Offshore Engineering, 2005

Sarpkaya, Wave Forces on Offshore Structures, 2010

Faltinsen, Sea Loads on Ships and Offshore Structures, 1998

Sorensen, Basic Coastal Engineering, 2006

Dowling, Mechanical Behavior of Materials, 2007

Haibach, Betriebsfestigkeit, 2006

Marshall, Design of Welded Tubular Connections, 1992

Newland, Random vibrations, spectral and wavelet analysis, 1993


Course L2387: Excellence in International Project Delivery
Typ Integrated Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dr. Jens Huckfeldt
Language EN
Cycle SoSe
Content
Literature
Course L0596: Design of Prefabricated Concrete Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content
  • application and advantages and disadvantages of precast concrete structures
  • basics of design - precast element production - construction - tolerances
  • elements of a warehouse
  • design of a beam - joints
  • design of D-regions: half joints, corbels, openings
  • slab types - walls - facades
  • footings: pocket and block foundations
  • joints - connections
  • shear design of the interface between concrete cast at different times
  • unreinforced concrete structures
Literature
  • Bachmann H., Steinle A.; Hahn V.: Bauen mit Betonfertigteilen. Betonkalender 2009, Teil I, Verlag Ernst & Sohn, Berlin
  • Bindseil P.: Stahlbetonfertigteile. Werner Verlag, 1998
  • FIP: FIP Handbuch für Planung und Entwerfen von Fertigteilbauten (siehe Zeitschrift: Beton- und Fertigteiltechnik ab 3/1996)
  • Bergmeister K.: Konstruieren von Fertigteilen. Betonkalender 2005 Teil 2, S. 163-240
  • Reineck K.-H.: Modellierung der D-Bereiche von Fertigteilen. Betonkalender 2005 Teil 2, S. 241-296
  • Graubner C.-A. et. al.: Bemessung von Fertigteilen nach DIN 1045-1. Betonkalender 2005 Teil 2, S. 297-374

 Broschüren der Fachvereinigung Deutscher Betonfertigteilbau e.V.
siehe:   www.fdb-fertigteilbau.de
             www.systembauweise.de

Course L0597: Design of Prefabricated Concrete Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Klausur
Examination duration and scale Siehe korrespondierende Vorlesung
Lecturer Prof. Günter Rombach
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1634: Forum I - Geotechnics and Construction Management
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content Lectures about projects and issues with practical and scientific relevance.
Literature --
Course L1635: Forum II - Geotechnics and Construction Management
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Prof. Jürgen Grabe
Language DE
Cycle SoSe
Content Lectures about projects and issues with practical and scientific relevance.
Literature --
Course L2447: Geotechnical Engineering Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 45 Min.
Lecturer Prof. Jürgen Grabe, Dr. Tim Pucker
Language DE
Cycle WiSe
Content

The focus of the course is on the design of geotechnical structures. Methods and fundamental approaches for the successful processing of geotechnical designs are taught. Theoretical approaches are backed up with examples from everyday work in industry. In parallel to the theoretical content, students are given a practical task for a geotechnical design at beginning of the course, which will be worked on in small teams. In addition to the application of the already acquired technical knowledge, topics like realisation, construction sequence planning, cost calculation, optimisation and evaluation criteria are also part of the course.

The event will be finished with the presentation of the designs.

Literature
Course L1151: Timber Structures
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 90 min
Lecturer Prof. Torsten Faber
Language DE
Cycle WiSe
Content
Literature
Course L1152: Glass Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Mündliche Prüfung
Examination duration and scale
Lecturer Marvin Matzik
Language DE
Cycle WiSe
Content

Glass structures

 - Introduction of the material glass (production, refinement, material characteristic)

 - design of facades

 - facade types

 - static calculation of glazing

 - static calculation of facades

 - load bearing behavior of glazing (plate or membrane stiffness)

 - vertical / horizontal glazing with safety-related requirements

 - glass structures

 - fire safety of glass facades

 - construction physics of facades and glazing

Literature
Course L1447: Glass Structures
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale
Lecturer Marvin Matzik
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L2378: Special topics of civil engineering 1CP
Typ
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature Die Literatur wird kurzfristig festgelegt.
Course L2379: Special topics of civil engineering 2 LP
Typ
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dr. Jan Mittelstädt, Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature

Die Literatur wird kurzfristig festgelegt.

Course L2380: Special topics of civil engineering 3 LP
Typ
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form laut FSPO
Examination duration and scale wird zu Beginn der Lehrveranstaltung festgelegt
Lecturer Dozenten des SD B
Language DE
Cycle WiSe/SoSe
Content

The course occurs only if required. The content is defined at short notice.

Literature

Die Literatur wird kurzfristig festgelegt.

Course L1905: Wind turbine design
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Dr. Jörn Scheller
Language DE
Cycle WiSe
Content
Literature

Module M0699: Geotechnics III

Courses
Title Typ Hrs/wk CP
Soil Laboratory Course (L0499) Practical Course 1 2
Numerical Methods in Geotechnics (L0375) Lecture 3 3
Advanced Foundation Engineering (L0497) Lecture 2 2
Advanced Foundation Engineering (L0498) Recitation Section (large) 1 2
Module Responsible Prof. Jürgen Grabe
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 82, Study Time in Lecture 98
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Course L0499: Soil Laboratory Course
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
  • Field experiments
  • Short lecture on laboratory tests
  • soil analysis
  • laboratory test
  • soil clasification
  • Creating a ground and foundation report
Literature
  • DIN-Taschenbuch 113, Erkundung und Untersuchung des Baugrundes


Course L0375: Numerical Methods in Geotechnics
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Hans Mathäus Stanford
Language DE
Cycle WiSe
Content

Topics:

  • numerical simulations
  • numerical algorithms
  • finite element method
  • application of finite element method in geomechanics
  • constitutive models for soils
  • contact models for soil structure interaction
  • selected applications
Literature
  • Wriggers P. (2001): Nichtlineare Finite-Elemente-Methoden, Springer Verlag, Berlin
  • Bathe Klaus-Jürgen (2002): Finite-Elemente-Methoden. Springer Verlag, Berlin
Course L0497: Advanced Foundation Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content
  • Vertical drains
  • Piles
  • Ground improvement (Deep Compaction, Soil mixing)
  • Vibration driving
  • Jet grouting
  • Slurry wall
  • Deep excavation
Literature
  • EAK (2002): Empfehlungen für Küstenschutzbauwerke
  • EAU (2004): Empfehlungen des Arbeitsausschusses Uferbauwerke
  • EAB (1988): Empfehlungen des Arbeitskreises Baugruben
  • Grundbau-Taschenbuch, Teil 1-3, (1997), Ernst & Sohn Verlag
Course L0498: Advanced Foundation Engineering
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jürgen Grabe
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0864: Practical Course in Water and Wastewater Technology

Courses
Title Typ Hrs/wk CP
Practical Course in Water and Wastewater Technology I (L0503) Practical Course 2 3
Practicle Course of Wastewater Technology II (L0607) Practical Course 3 3
Module Responsible Dr. Dorothea Rechtenbach
Admission Requirements None
Recommended Previous Knowledge Basic knowledge in chemistry and physics (knowledge acquired at school)
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students know basic analytical procedures for evaluating the quality of water and wastewater. They have knowledge about fundamental process engineering features of important water and wastewater treatment technologies.
Skills The students are able to understand and to practically apply methodologies for wastewater analysis as well as descriptions of experiments and experimental setups in wastewater technology.
Personal Competence
Social Competence
Autonomy The students are able to conduct experiments following written procedures without external assistance.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale ca. 5 Stunden
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0503: Practical Course in Water and Wastewater Technology I
Typ Practical Course
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Dorothea Rechtenbach
Language EN
Cycle WiSe
Content

- Impact of pretreatment of wastewater samples on analytical results

- Analysis of nutrients in wastewater samples (different methods for nitrate analysis)

- Alkalinity

- TOC, COD

- microscopic analysis of microorganisms relevant in wastewater treatment

Literature Skript auf StudIP
Course L0607: Practicle Course of Wastewater Technology II
Typ Practical Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Joachim Behrendt
Language DE/EN
Cycle WiSe
Content

Experiments:

Oxygen transfer

Oxygen Uptake rate

Sludge dewatering

Tracer

Flocculation

Literature Skript/Script

Module M1401: Study work Water and Traffic

Courses
Title Typ Hrs/wk CP
Module Responsible Dozenten des SD B
Admission Requirements None
Recommended Previous Knowledge

Subjects of the Water Management and Waste specialisation.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to demonstrate their detailed knowledge in the field of water management and waste. They can exemplify the state of technology and application and discuss critically in the context of actual problems and general conditions of science and society.

The students can develop solving strategies and approaches for fundamental and practical problems in the field of water management and waste. They may apply theory based procedures and integrate safety-related, ecological, ethical, and economic view points of science and society.

Scientific work techniques that are used can be described and critically reviewed.

Skills

The students are able to independently select methods or planning approaches for the project work and to justify their choice. They can explain how these methods or approaches relate to solutions in the field of work and how the context of application has to be adjusted. General findings and further developments may essentially be outlined.

Personal Competence
Social Competence

The students are able to condense the relevance and the structure of the project work, the work steps and the sub-problems for the presentation and discussion in front of a bigger group. They can lead the discussion and give a feedback on the project to their colleagues.

Autonomy

The students are capable of independently planning and documenting the work steps and procedures while considering the given deadlines. This includes the ability to accurately procure the newest scientific information. Furthermore, they can obtain feedback from experts with regard to the progress of the work, and to accomplish results on the state of the art in science and technology.

Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Study work
Examination duration and scale See FSPO
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Compulsory

Module M0581: Water Protection

Courses
Title Typ Hrs/wk CP
Water Protection and Wastewater Management (L0226) Lecture 3 3
Water Protection and Wastewater Management (L2008) Project Seminar 3 3
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge in water management;
  • Good knowledge in urban drainage;
  • Good knowledge of wastewater treatment techniques;
  • Good knowledge of pollutants (e.g. COD, BOD, TS, N, P) and their properties;
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can describe the basic principles of the regulatory framework related to the international and European water sector. They can explain limnological processes, substance cycles and water morphology in detail. They are able to assess complex problems related to water protection, such as ecosystem service and wastewater treatment with a special focus on innovative solutions, remediation measures as well as conceptual approaches.

Skills

Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems.



Personal Competence
Social Competence

The students can work together in international groups.



Autonomy

Students are able to organize their work flow to prepare presentations and discussions. They can acquire appropriate knowledge by making enquiries independently.




Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale Term paper plus presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Course L0226: Water Protection and Wastewater Management
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content

The lecture focusses on:

  • Regulatory Framework (e.g. WFD)
  • Main instruments for the water management and protection
  • In depth knowledge of relevant measures of water pollution control
  • Urban drainage, treatment options in different regions on the world
  • Rainwater management, improved management of heavy rainfalls, downpours, rainwater harvesting, rainwater infiltration
  • Case Studies and Field Trips
Literature

The literature listed below is available in the library of the TUHH.

  • Water and wastewater technology Hammer, M. J. 1., & . (2012). (7. ed., internat. ed.). Boston [u.a.]: Pearson Education International.
  • Water and wastewater engineering : design principles and practice: Davis, M. L. 1. (2011). . New York, NY: McGraw-Hill.
  • Biological wastewater treatment: (2011). C. P. Leslie Grady, Jr.  (3. ed.). London, Boca Raton,  Fla. [u.a.]: IWA Publ. 
Course L2008: Water Protection and Wastewater Management
Typ Project Seminar
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content
Literature

Module M0802: Membrane Technology

Courses
Title Typ Hrs/wk CP
Membrane Technology (L0399) Lecture 2 3
Membrane Technology (L0400) Recitation Section (small) 1 2
Membrane Technology (L0401) Practical Course 1 1
Module Responsible Prof. Mathias Ernst
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of water chemistry. Knowledge of the core processes involved in water, gas and steam treatment

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to rank the technical applications of industrially important membrane processes. They will be able to explain the different driving forces behind existing membrane separation processes. Students will be able to name materials used in membrane filtration and their advantages and disadvantages. Students will be able to explain the key differences in the use of membranes in water, other liquid media, gases and in liquid/gas mixtures.

Skills

Students will be able to prepare mathematical equations for material transport in porous and solution-diffusion membranes and calculate key parameters in the membrane separation process. They will be able to handle technical membrane processes using available boundary data and provide recommendations for the sequence of different treatment processes. Through their own experiments, students will be able to classify the separation efficiency, filtration characteristics and application of different membrane materials. Students will be able to characterise the formation of the fouling layer in different waters and apply technical measures to control this. 

Personal Competence
Social Competence

Students will be able to work in diverse teams on tasks in the field of membrane technology. They will be able to make decisions within their group on laboratory experiments to be undertaken jointly and present these to others. 

Autonomy

Students will be in a position to solve homework on the topic of membrane technology independently. They will be capable of finding creative solutions to technical questions.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Energy and Environmental Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0399: Membrane Technology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content

The lecture on membrane technology supply provides students with a broad understanding of existing membrane treatment processes, encompassing pressure driven membrane processes, membrane application in electrodialyis, pervaporation as well as membrane distillation. The lectures main focus is the industrial production of drinking water like particle separation or desalination; however gas separation processes as well as specific wastewater oriented applications such as membrane bioreactor systems will be discussed as well.

Initially, basics in low pressure and high pressure membrane applications are presented (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). Students learn about essential water quality parameter, transport equations and key parameter for pore membrane as well as solution diffusion membrane systems. The lecture sets a specific focus on fouling and scaling issues and provides knowledge on methods how to tackle with these phenomena in real water treatment application. A further part of the lecture deals with the character and manufacturing of different membrane materials and the characterization of membrane material by simple methods and advanced analysis.

The functions, advantages and drawbacks of different membrane housings and modules are explained. Students learn how an industrial membrane application is designed in the succession of treatment steps like pre-treatment, water conditioning, membrane integration and post-treatment of water. Besides theory, the students will be provided with knowledge on membrane demo-site examples and insights in industrial practice. 

Literature
  • T. Melin, R. Rautenbach: Membranverfahren: Grundlagen der Modul- und Anlagenauslegung (2., erweiterte Auflage), Springer-Verlag, Berlin 2004.
  • Marcel Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands
  • Richard W. Baker, Membrane Technology and Applications, Second Edition, John Wiley & Sons, Ltd., 2004
Course L0400: Membrane Technology
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0401: Membrane Technology
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1505: Adaptation to Climate Change in Hydraulic Engineering (AKWAS)

Courses
Title Typ Hrs/wk CP
Adaptation to climate change in hydraulic engineering (L2291) Project-/problem-based Learning 4 6
Module Responsible Prof. Peter Fröhle
Admission Requirements None
Recommended Previous Knowledge
  • Hydrology, Hydraulic Engineering
  • Hydromechanic, Hydraulics
  • Fundamentals of Coastal Engineering, Coastal- and Flood Protection
  • Hydrological Systems
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Climate protection and climate adaptation
  • Insights into climate change and its regional characteristics - fundamentals, climate modelling / climate models
  • Impacts of climate change on the components of the regional hydrological cycle
  • Fundamentals of analysis of climate data
  • Consequences of the impact of the climate change
  • Measures for climate adaptation
  • Assessment, prioritization and communication of adaptation measures
  • Fundamentals of the analysis of hydrometeorological and hydrological data
Skills
  • Critical thinking: analysis of processes and relations, assessment of needs for action
  • Creative thinking: development of adaptation strategies and adaptation measures
  • Practical thinking: inclusion of restrictions, application of calculation approaches, methods, numerical models, planning methods
  • Consideration of complex tasks


Personal Competence
Social Competence
  • Working in heterogenous groups
  • Working with different scientific / non-scientific disciplines
  • Self reflection
Autonomy
  • Application oriented use of knowledge and skills
  • Autonomous work on complex tasks
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Preparation of a written report and a presentation of a complex task.
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Course L2291: Adaptation to climate change in hydraulic engineering
Typ Project-/problem-based Learning
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Peter Fröhle
Language DE
Cycle WiSe
Content
  • Climate protection and climate adaptation
  • Findings on climate change and its regional characteristics: fundamentals of climate change, climate modelling / climate models
  • Impacts of climate change on the components of the regional hydrological cycle(climate science view)
  • Fundamentals of the analysis of climate data
  • Concequences of the impacts of climate change (ingenieering science view)
  • Measures for climate change adaptation
  • Assessment, prioritization and communication of measures
  • Fundamentals of analysis of hydrometeorological and hydrological data
Literature
  • Bereitgestellte eLearning Plattform

Thesis

Module M-002: Master Thesis

Courses
Title Typ Hrs/wk CP
Module Responsible Professoren der TUHH
Admission Requirements
  • According to General Regulations §21 (1):

    At least 60 credit points have to be achieved in study programme. The examinations board decides on exceptions.

Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • The students can use specialized knowledge (facts, theories, and methods) of their subject competently on specialized issues.
  • The students can explain in depth the relevant approaches and terminologies in one or more areas of their subject, describing current developments and taking up a critical position on them.
  • The students can place a research task in their subject area in its context and describe and critically assess the state of research.


Skills

The students are able:

  • To select, apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question.
  • To apply knowledge they have acquired and methods they have learnt in the course of their studies to complex and/or incompletely defined problems in a solution-oriented way.
  • To develop new scientific findings in their subject area and subject them to a critical assessment.
Personal Competence
Social Competence

Students can

  • Both in writing and orally outline a scientific issue for an expert audience accurately, understandably and in a structured way.
  • Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while upholding their own assessments and viewpoints convincingly.


Autonomy

Students are able:

  • To structure a project of their own in work packages and to work them off accordingly.
  • To work their way in depth into a largely unknown subject and to access the information required for them to do so.
  • To apply the techniques of scientific work comprehensively in research of their own.
Workload in Hours Independent Study Time 900, Study Time in Lecture 0
Credit points 30
Course achievement None
Examination Thesis
Examination duration and scale According to General Regulations
Assignment for the Following Curricula Civil Engineering: Thesis: Compulsory
Bioprocess Engineering: Thesis: Compulsory
Chemical and Bioprocess Engineering: Thesis: Compulsory
Computer Science: Thesis: Compulsory
Electrical Engineering: Thesis: Compulsory
Energy and Environmental Engineering: Thesis: Compulsory
Energy Systems: Thesis: Compulsory
Environmental Engineering: Thesis: Compulsory
Aircraft Systems Engineering: Thesis: Compulsory
Global Innovation Management: Thesis: Compulsory
Computational Science and Engineering: Thesis: Compulsory
Information and Communication Systems: Thesis: Compulsory
International Management and Engineering: Thesis: Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory
Logistics, Infrastructure and Mobility: Thesis: Compulsory
Materials Science: Thesis: Compulsory
Mathematical Modelling in Engineering: Theory, Numerics, Applications: Thesis: Compulsory
Mechanical Engineering and Management: Thesis: Compulsory
Mechatronics: Thesis: Compulsory
Biomedical Engineering: Thesis: Compulsory
Microelectronics and Microsystems: Thesis: Compulsory
Product Development, Materials and Production: Thesis: Compulsory
Renewable Energies: Thesis: Compulsory
Naval Architecture and Ocean Engineering: Thesis: Compulsory
Ship and Offshore Technology: Thesis: Compulsory
Teilstudiengang Lehramt Metalltechnik: Thesis: Compulsory
Theoretical Mechanical Engineering: Thesis: Compulsory
Process Engineering: Thesis: Compulsory
Water and Environmental Engineering: Thesis: Compulsory
Certification in Engineering & Advisory in Aviation: Thesis: Compulsory