Modulhandbuch
Master
Bauingenieurwesen
Kohorte: Wintersemester 2015
Stand: 11. Mai 2016
Inhalt
Die Absolventinnen und Absolventen des Studiengangs M.Sc. Bauingenieurwesen sind in der Lage, ihr im Studium erworbenes ingenieurwissenschaftliches, mathematisches und naturwissenschaftliches Wissen in die Praxis zu übertragen, um Probleme wissenschaftlich zu analysieren und zu lösen, auch wenn diese unüblich oder unvollständig definiert sind und komplexe Spezifikationen aufweisen. Sie sind zu selbständigem Arbeiten im Bauingenieurwesen und in angrenzenden Disziplinen befähigt und können die für die Lösung technischer und planerischer Fragestellungen benötigten Methoden und Verfahren sowie neue Erkenntnisse anwenden, kritisch hinterfragen und weiterentwickeln.
Die Absolventinnen und Absolventen sind ferner qualifiziert, Entwürfe für anspruchsvolle Vorhaben des Hoch‐, Tief‐, Brücken‐ und Wasserbaus zu erarbeiten und diese unter Berücksichtigung der erforderlichen Abklärungen und der Prüfung vorhandener Informationen zu planen. Dabei können sie
Modul M0523: Betrieb & Management |
Modulverantwortlicher | Prof. Matthias Meyer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0524: Nichttechnische Ergänzungskurse im Master |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Der Studienbereich Nichttechnische Wahlpflichtfächer vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im „Nichttechnischen Studienbereich“ gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0808: Finite Elements Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method. |
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwesen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0291: Finite Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- General overview on modern engineering |
Literatur |
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin |
Lehrveranstaltung L0804: Finite Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0962: Nachhaltigkeit und Risikomangement |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden besitzen Fachkompetenz in den Bereichen Verfahren der Sicherheits- und Risikobeurteilung sowie der Bewertung von Umweltschutz- und Nachhaltigkeitsaspekten von verschiedenen Technologien. Sie können zum Beispiel die folgenden Inhalte beschreiben und detailliert erläutern:
|
Fertigkeiten |
Die Studierenden sind in der Lage, fachübergreifend und systemorientiert Methoden zur Risikobewertung und Nachhaltigkeitsberichterstattung anzuwenden. Sie können den technischen Aufwand und die ökologischen Folgen von Energieerzeugungstechniken einschätzen, geeignete Prozesse auswählen und in Ansätzen ökonomisch bewerten. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden können sich gegebene Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind in der Lage, für die Lösung von gegebenen Aufgaben aus dem Bereich der Nachhaltigkeit und Risikobewertung die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (45 Minuten in Gruppen) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L1145: Sicherheit, Zuverlässigkeit und Risikobewertung |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Es wird in die Verfahren der Sicherheits- und Risikobeurteilung eingeführt, und es werden typische Fragestellungen aus dem Bau- und Umweltingenieurwesen behandelt:
|
Literatur |
- Vorlesungsunterlagen - Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf |
Lehrveranstaltung L0319: Environment and Sustainability |
Typ | Vorlesung | |||||||||||||
SWS | 2 | |||||||||||||
LP | 3 | |||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 | |||||||||||||
Dozenten | Prof. Kerstin Kuchta | |||||||||||||
Sprachen | EN | |||||||||||||
Zeitraum | WiSe | |||||||||||||
Inhalt |
This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
|
|||||||||||||
Literatur | Wird in der Veranstaltung bekannt gegeben. |
Modul M0964: Konstruktionen im Grund- und Wasserbau |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 82, Präsenzstudium 98 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0601: Betonkonstruktionen im Grundbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Bemessungn und Konstruktion von Tragwerken im Grundbau
|
Literatur | Handouts |
Lehrveranstaltung L0602: Betonkonstruktionen im Grundbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1146: Stahlkonstruktionen im Grund- und Wasserbau |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0707: Unterirdisches Bauen |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Marius Milatz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1811: Unterirdisches Bauen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Studienleistung | Schriftliche Ausarbeitung (10 Seiten) und Präsentation (15 min). Für Bericht und Präsentation erhält man je 5% der Punkte in der Klausur als Bonus. |
Dozenten | Marius Milatz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0699: Spezialtiefbau und Bodenpraktikum |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Bodenmechanik, Grundbau |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem erfolgreichen Absolvieren des Moduls sind die Studierenden in der Lage,
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden sind in der Lage, selbständig ein geotechnisches Baugrund- und Gründungsgutachten zu erstellen, hierfür eigenständig einen Zeit- und Arbeitsplan zu entwerfen und sich selbständig dafür notwendiges Wissen sowie die Datengrundlage zu erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0499: Bodenmechanisches Praktikum |
Typ | Laborpraktikum |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0497: Spezialtiefbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0498: Spezialtiefbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0858: Küstenwasserbau I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Grundlagen des Wasserbaus, der Hydrologie sowie der Hydromechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Grundlagen des Küstenwasserbaus zu definieren, detailliert zu erläutern und auf einzelne praktische Fragestellungen des Küstenwasserbaus anzuwenden. Sie können die Grundlagen für Planung und Bemessung von küstenwasserbaulichen Anlagen definieren und ermitteln und die gängigen Ansätze für die konstruktive und funktionelle Bemessung im Küstenwasserbau beschreiben. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den konstruktiven Entwurf von küstenwasserbaulichen Anlagen auswählen und auf vorgegebene Bemessungsaufgaben anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 2 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0807: Grundlagen des Küstenwasserbaus |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Coastal Engineering Manual, CEM Vorlesungsumdruck |
Lehrveranstaltung L1413: Grundlagen des Küstenwasserbaus |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0511: Stromerzeugung aus Wind- und Wasserkraft |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Joachim Gerth |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Thermodynamik, Strömungsmechanik, Grundlagen der Strömungsmaschinen |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Desweiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studieren können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten |
Typ | Projektseminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Andreas Wiese |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Folien der Vorlesung |
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Stephan Heimerl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0663: Marine Geotechnik und Numerik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Bodenmechanik, Baustatik, Grundbau |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage, Marine Gründungsstrukturen und Aspekte des Hafenbaus zu erklären. Sie können im Einzelnen
|
Fertigkeiten |
Die Studierenden können für technische Fragestellungen im Hafenbau und für Offshore-Bauwerke lösungsorientiert Analysen und Planungen durchführen. Sie sind hierfür in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0548: Marine Geotechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0549: Marine Geotechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0375: Numerische Methoden in der Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Hans Mathäus Hügel |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein |
Literatur |
|
Modul M0593: Baustoffe und Bauwerkserhaltung |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde, Bauchemie und Bauphysik, z.B. über die Module Baustoffgrundlagen und Bauphysik sowie Baustoffe und Bauchemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Komponenten mineralischer Baustoffe und deren Funktion im Detail beschreiben und für die Herstellung von mineralischen Spezialbaustoffen einsetzen. Sie können die Charakteristika mineralischer Bindemittel darstellen. Die Herstellung, Eigenschaften und Anwendungsgebiete von Spezialmörteln und Spezialbetonen können Sie beschreiben und die werkstoffkundlichen Zusammenhänge darstellen. Die Grundlagen der Befestigungstechnik können sie darstellen. |
Fertigkeiten |
Die Studierenden sind in der Lage eine Granulometrieoptimierung eines mineralischen Baustoffs durchzuführen. Sie können die Rezeptur eines mineralischen Spezialmörtels entwerfen und diesen Mörtel herstellen. Die Studierenden sind in der Lage nachträgliche Bewehrungsanschlüsse herzustellen. Sie sind in der Lage, Bauschäden zu erkennen, die Ursachen einzugrenzen, die Grundzüge der Bauwerkserhaltung anzuwenden sowie Instandsetzungs- und Verstärkungsmaßnahmen auszuwählen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden sind in der Lage in einer Kleingruppe eine Spezialmörtelrezeptur zu entwickeln. Sie präsentieren ihr Arbeitsergebniss vor dem Dozenten und den anderen Studierenden und stellen sich einer kritischen Diskussion, in der sie ihre Ergebnisse verteidigen bzw. anpassen. Die Studierenden können auf der Basis dieses Feedbacks gemeinsam diesen Spezialbaustoff herstellen. |
Selbstständigkeit | Die Studierenden sind in der Lage, die vorhandenen Resourcen an Materialien und Laborausstattung für ihr Projekt selbständig zu nutzen sowie fehlende Komponenten zu recherchieren und zu beschaffen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht |
Lehrveranstaltung L0257: Befestigungstechnologie und nachträgliche Bewehrungsanschlüsse |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vortragsfolien der Lehrveranstaltung stehen über STUD.IP zum download zur Verfügung Beton-Kalender 2012: lnfrastrukturbau, Befestigungstechnik. Eurocode 2. Herausgegeben von Konrad Bergmeister, Frank Fingerloos und Johann-Dietrich Wörner; 2012 Ernst & Sohn GmbH & Co. KG. Published by Ernst & Sohn GmbH & Co. KG. DIBt: Hinweise für die Montage von Dübelverankerungen; Oktober 2010 Ratgeber Dübeltechnik, Basiswissen - Metalldübel, chemische Dübel, Kunststoffdübel; Herausgeber Hilti AG
|
Lehrveranstaltung L0255: Instandsetzung von Bauteilen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl, Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bauwerkserhaltung, Instandsetzung und Verstärkung, nachträgliche Bauwerksabdichtung |
Literatur | BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen – schützen, erhalten, instandsetzen |
Lehrveranstaltung L0253: Mineralische Baustoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Komponenten mineralischer Baustoffe und deren Funktion, Bindemittel, Beton und Mörtel, Spezialmörtel, Spezialbetone |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0256: Technologie mineralischer Baustoffe |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Konzeption und Herstellung mineralischer Baustoffe |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0254: Transportprozesse in Baustoffen und Bauschäden |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl, Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Transportprozesse in Baustoffen und Schadensprozesse an Bauteilen |
Literatur | Blaich, J.: Bauschäden, Analyse und Vermeidung |
Modul M0723: Spannbeton- und Massivbrückenbau |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Vertiefte Kenntnisse der Bemessung und Konstruktion von Stahlbetontragwerken sowie Grundlagenwissen in der Berechnung von Stahlbetonkonstruktionen. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die Einsatzgebiete der wesentlichen Brückentypen sowie die anzusetzenden Einwirkungen. Sie können die wesentlichen Berechnungsverfahren erläutern. Die Studierenden können die Bemessung einer Spannbetonkonstruktion erläutern. |
Fertigkeiten |
Die Studierenden können vorgespannte Massivbrücken nach den einschlägigen Vorschriften und Verfahren berechnen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppen eine reale Brücke zu entwerfen und zu bemessen. |
Selbstständigkeit |
Die Studierenden können eine Spannbetonbrücke eigenständig berechnen sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0603: Spannbeton- und Massivbrückenbau |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Spannbetonbau
Brückenbau
|
Literatur |
|
Lehrveranstaltung L0604: Spannbeton- und Massivbrückenbau |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0756: Bodenmechanik und -dynamik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Bodenmechanik, Technische Schwingungslehre |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage,
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können im Team zu Arbeitsergebnissen zu messtechnischen und experimentellen Grundlagen kommen und ihre Ergebnisse am Ende des Semsters gemeinsam präsentieren. |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 150 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0374: Ausgewählte Themen der Bodenmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Hans Mathäus Hügel |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt: ausgewählte Themen aus den Bereichen
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein je nach vertieft behandelten Themen
|
Literatur | Kolymbas D. (2007): Geotechnik - Bodenmechanik, Grundbau und Tunnelbau. Springer Verlag |
Lehrveranstaltung L0452: Bodendynamik |
Typ | Vorlesung |
SWS | 3 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 18, Präsenzstudium 42 |
Dozenten | Dr. Sascha Henke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
• die wesentlichen Gleichungen des Einmassenschwingers herleiten und anwenden, • die Wellenausbreitung im Boden unter dynamischer Anregung • Bodendynamische Parameter und deren Bedeutung • die wesentlichen Labor- und Feldversuche zur Ermittlung bodendynamischer Kennwerte und deren Auswertung, • Maschinenfundamente, • Zyklische Verformungsakkumulation • Grundlagen der Plastodynamik |
Literatur |
|
Lehrveranstaltung L0706: Experimentelle Forschung in der Geotechnik |
Typ | Laborpraktikum |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Marius Milatz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Modul M0807: Boundary Element Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method. |
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht International Production Management: Vertiefung Produktionstechnik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0523: Boundary Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Boundary value problems - Hands-on Sessions (programming of BE routines) |
Literatur |
Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden |
Lehrveranstaltung L0524: Boundary Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0827: Modellierung in der Wasserwirtschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Wilfried Schneider |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundwassermodellierung
Leitungssysteme
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die softwaregestützte Modellierung von Grundwasserströmungen, zugehörigen Transportprozessen und städtischen Wasserinfrastrukturen beschreiben. In Fallstudien können sie System- und Schwachpunktanalysen durchführen. Zudem können sie die hydraulischen und schadstoffspezifischen Wirkungszusammenhänge auf dem Pfad Boden - Gewässer quantitativ analysieren. |
Fertigkeiten |
Die Studierenden können softwarebasiert Lösungen für bestehende wasserwirtschaftliche Probleme entwickeln und bewerten. Insbesondere sind sie in der Lage, Grundwassermodelle zur Nachbildung von Strömungen und Schadstoffausbreitungsprozessen eigenständig und wissenschaftlich aufzubauen und anzuwenden. Sie haben die Fähigkeit, Fallbeispiele mit den zur Modellierung von Leitungssystemen maßgeblichen Softwarelösungen (zB EPANET, EPA SWMM) abzubilden und zu untersuchen. |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0543: Angewandte Grundwassermodellierung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Einführung und Anwendung der Grundwassersoftware MODFLOW (PMWIN), Theoretischer Hintergrund des Modells, Studierende bearbeiten unter intensiver Anleitung praktische Fragestellungen mit dem Modell PMWIN. |
Literatur |
MODFLOW-Handbuch Chiang, Wen Hsien: PMWIN |
Lehrveranstaltung L0544: Angewandte Grundwassermodellierung |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0875: Modellierung von Leitungssystemen |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen, NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Modellierung von Wasserversorgungssystemen:
Modellierung von Stadtentwässerungssystemen:
|
Literatur |
Modul M0828: Urban Environmental Management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1109: Noise Protection |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Bitte auswählen |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0874: Urban Infrastructures |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Problem/Project Based Learning Main topics are:
|
Literatur |
Modul M0859: Küstenwasserbau II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Küstenwasserbau I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Aspekte des Küsten- und Hochwasserschutzes zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Küsten- und Hochwasserschutzes anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente von Küstenschutzanlagen funktionell und konstruktiv entwerfen und bemessen. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den funktionellen und konstruktiven Entwurf von Küsten- und Hochwasserschutzanlagen auswählen und diese auf Bemessungsaufgaben anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 130 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht |
Lehrveranstaltung L0808: Küsten- und Hochwasserschutz |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Schutz sandiger Küsten
Hochwasserschutz
|
Literatur |
Vorlesungsumdruck Coastal Engineering Manual CEM |
Lehrveranstaltung L1415: Küsten- und Hochwasserschutz |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1411: Unterhaltung und Verteidigung von Hochwasserschutzanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Olaf Müller |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Modul M0860: Hafenbau und Hafenplanung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse |
VL Grundlagen des Küstenwasserbaus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Aspekte der Hafenplanung zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Hafenbaus anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente eines Hafens entwerfen. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den funktionellen Entwurf eines Hafens auswählen und diese auf Bemessungsaufgaben anwenden.
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 150 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0809: Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlagen des Hafenbaus
Elemente von Seehäfen
Anbindung von Hinterlandverkehren / Binnenverkehrswasserbau Schutz von Seehäfen
Fischereihäfen und andere kleine Häfen
|
Literatur | Brinkmann, B.: Seehäfen, Springer 2005 |
Lehrveranstaltung L1414: Hafenbau |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0378: Hafenplanung und Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Vorlesungsumdruck, s. www.tu-harburg.de/gbt |
Modul M0861: Modellieren im Wasserbau |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Prozesse, die mit der Modellierung von Strömungen und Wellen / Seegang im Wasserbau und Küstenwasserbau verbunden sind, detailliert definieren. Daneben können sie wesentliche Aspekte der Modellierung benennen und die gängigen numerischen Modelle zur Simulation von Strömungen und Seegang beschreiben. |
Fertigkeiten |
Die Studierenden können numerische Modelle auf einfache Fragestellungen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 3 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0813: Hydraulische Modelle |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Strobl, Zunic: Wasserbau, Kap. 11 Hydraulische Modelle, Springer |
Lehrveranstaltung L0812: Modellieren von Seegang |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Lehrveranstaltung L0810: Modellieren von Strömungen in Flüssen und Ästuaren |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Vorlesungsskript |
Modul M0874: Abwassersysteme |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis abwasserwasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Abwasserwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die ganze Breite der Anlagentechniken bei siedlungswasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für einen nachhaltigen Gewässerschutz beschreiben. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. |
Fertigkeiten |
Studierende können verfügbare Abwasseraufbereitungsverfahren in der Breite der Anwendungen für Vorentwürfe auslegen und erklären, sowohl für kommunale als auch für einige industrielle Anlagen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig und planvoll ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0934: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
•Understanding the global situation with water and wastewater •Regional planning and decentralised systems •Overview on innovative approaches •In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse •Mathematical Modelling of Nitrogen Removal •Exercises with calculations and design |
Literatur |
Henze, Mogens: George Tchobanoglous, Franklin L. Burton, H. David Stensel: |
Lehrveranstaltung L0943: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0357: Physikalische und chemische Abwasserbehandlung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Überblick über weitergehende Abwasserreinigung Wiederverwendung aufbereiteten kommunalen Abwassers Fällung Flockung Tiefenfiltration Membranverfahren Aktivkohleadsorption Ozonisierung "Advanced Oxidation Processes" Desinfektion |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Lehrveranstaltung L0358: Physikalische und chemische Abwasserbehandlung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Organische Summenparameter Industrieabwasser Verfahren zur Industrieabwasserbehandlung Fällung Flockung Aktivkohleadsorption Refraktäre organische Stoffe |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Modul M0922: Stadtplanung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Für die Lehrveranstaltung Grundlagen der Stadtplanung: Keine Für die Lehrveranstaltung Straßenraumgestaltung: Vorerfahrung in Verkehrsplanung, z. B. durch die Bachelorveranstaltung „Verkehrsplanung und Verkehrstechnik“ |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1066: Grundlagen der Stadtplanung |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
„Grundlagen der Stadtplanung“ behandelt die Determinanten städtebaulicher Entwicklung und ihre Zusammenhänge. Es geht um:
Ziel der Veranstaltung ist es, ein Grundverständnis städtebaulicher Probleme und Lösungsansätze zu erlangen und die Funktionsweise von Stadtplanung nachvollziehen zu können. In einem praxisorientierten Übungsprojekt werden für ein Planungsgebiet ein Rahmenplan, städtebaulicher Entwurf sowie Bebauungsplan erstellt. |
Literatur |
Albers, Gerd; Wekel, Julian (2009) Stadtplanung: Eine illustrierte Einführung. Primus Verlag. Darmstadt. Frick, Dieter (2008) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. Wasmuth-Verlag. Tübingen Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York. |
Lehrveranstaltung L1067: Straßenraumgestaltung |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Lehrveranstaltung „Straßenraumgestaltung“ befasst sich mit den vielfältigen funktionalen und gestalterischen Anforderungen an Stadtstraßen und Plätze als wichtigste Elemente des öffentlichen Raums. Behandelt werden:
|
Literatur |
Forschungsgesellschaft für Straßen- und Verkehrswesen (2011) Empfehlungen zur Straßenraumgestaltung innerhalb bebauter Gebiete - ESG. FGSV-Verlag. Köln (FGSV, 230). Forschungsgesellschaft für Straßen- und Verkehrswesen (2007) Richtlinien für die Anlage von Stadtstraßen – RASt 06. FGSV-Verlag. Köln (FGSV, 200). |
Modul M0961: Entwurf und Konstruktion von Tragwerken |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen des konstruktiven Ingenieurbaus (Baustatik, Stahl- und Spannbetonbau, Stahlbau) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ausgewählte Aspekte der Bau- und Technikgeschichte wiedergeben und grundsätzliche Entwurfsstrategien erläutern. |
Fertigkeiten |
Die Studierenden sind in der Lage Tragwerken zu entwerfen und verfügen über vertiefte Fertigkeiten in der Tragwerksplanung. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage Probleme und Lösungen vor einem Fachpublikum zu vertreten, indem die in Gruppen bearbeiteten Aufgaben im Plenum präsentiert und diskutiert werden. |
Selbstständigkeit |
Die Studierenden entwickeln auf Basis des veranstaltungsbegleitenden Feedbacks eigenständige Lösungen für komplexe technische Fragestellungen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Mündliche Prüfung (15-30 Minuten pro Person) und Projektarbeit (FE-Berechnung) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1144: Bemessung und Konstruktion |
Typ | Projektseminar |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Anhand verschiedener (kleiner) semesterbegleitender Projekte wird das Entwerfen und Konstruieren geübt. Die Entwurfsaufgaben werden in Gruppen bearbeitet und müssen im Plenum präsentiert und diskutiert werden. |
Literatur | - Projektbezogene Unterlagen |
Lehrveranstaltung L1142: Tragwerksentwurf |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Studierenden lernen Tragwerke zu entwerfen und erlangen Gestaltungs- und Entscheidungskompetenz. Folgende Aspekte werden angesprochen:
|
Literatur | - Vorlesungsunterlagen, Fachzeitschriften |
Modul M0977: Baulogistik und Projektmanagement |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Heike Flämig |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können...
|
Fertigkeiten |
Studierende können...
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können...
|
Selbstständigkeit |
Studierende können...
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Zwei schriftliche Ausarbeitungen und zwei kurze Ergebnispräsentationen |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht |
Lehrveranstaltung L1163: Baulogistik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung macht deutlich, wie die Logistik von Bauvorhaben inzwischen zu einem wichtigen Wettbewerbsfaktor geworden ist und was es dabei zu beachten gilt. Folgende Themenfelder werden behandelt:
|
Literatur |
Flämig, Heike: Produktionslogistik in Stadtregionen. In: Forschungsverbund Ökologische Mobilität (Hrsg.) Forschungsbericht Bd. 15.2. Wuppertal 2000. Krauss, Siri: Die Baulogistik in der schlüsselfertigen Ausführung, Bauwerk Verlag GmbH Berlin 2005. Lipsmeier, Klaus: Abfallkennzahlen für Neubauleistungen im Hochbau : Verlag Forum für Abfallwirtschaft und Altlasten, 2004. Schmidt, Norbert: Wettbewerbsfaktor Baulogistik. Neue Wertschöpfungspotenziale in der Baustoffversorgung. In: Klaus, Peter: Edition Logistik. Band 6. Deutscher Verkehrs-Verlag. Hamburg 2003. Seemann, Y.F. (2007): Logistikkoordination als Organisationseinheit bei der Bauausführung Wissenschaftsverlag Mainz in Aachen, Aachen. (Mitteilungen aus dem Fachgebiet Baubetrieb und Bauwirtschaft (Hrsg. Kuhne, V.): Heft 20) |
Lehrveranstaltung L1164: Baulogistik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1161: Projektentwicklung und -steuerung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen dieser Vorlesung werden entlang einer Projektlebenszyklusbetrachtung die wesentlichen Aspekte der Projektentwicklung und –steuerung behandelt:
|
Literatur |
Projektmanagement-Fachmann. Band 1 und Band 2. RKW-Verlag, Eschborn, 2004. |
Lehrveranstaltung L1162: Projektentwicklung und -steuerung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0998: Baustatik und Baudynamik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Uwe Starossek |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse |
Kenntnisse der linearen Statik der statisch bestimmten und unbestimmten Stabtragwerke; Mechanik I/II, Mathematik I/II, Differentialgleichungen I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte der dynamischen Wirkungen auf Tragwerke und die entsprechenden Berechnungsverfahren erläutern. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, das Verhalten von Tragwerken unter dynamischer Belastung mittels rechnerischer Verfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 135 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1202: Baudynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Clough, R.W., Penzien, J.: Dynamics of Structures. 2. Aufl., McGraw-Hill, New York, 1993. |
Lehrveranstaltung L1203: Baudynamik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0564: Bruchmechanik und Schwingfestigkeit |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Ingo Hadrych |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0565: Bruchmechanik und Schwingfestigkeit |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Ingo Hadrych |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0999: Projekt des Stahlbaus |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Jürgen Priebe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Stahl- und Verbundtragwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage sich einen Teilbereich der Projektaufgabe detailliert zu erarbeiten und anderen zu erklären. |
Fertigkeiten |
Die Studierenden können für ihren Teilbereich der Gesamtaufgabe Skizzen und Berechnungen anfertigen. Dabei sind sie in der Lage bei sich verändernden Rahmenbedingungen durch andere Teilprojekte nachzusteuern. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können ihre eigenen Ergebnisse in der Gruppe vorstellen und vertreten. Sie sind in der Lage konsensorientiert zu arbeiten und berücksichtigen dabei gruppenübergreifende Abhängigkeiten. Sie können in einer Gruppe selbständig Aufgaben verteilen und ausführen. |
Selbstständigkeit |
Die Studierenden können ein Teilgebiet der Gesamtaufgabe eigenverantwortlich bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 15-20 Seiten (exklusive Anhang) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1206: Projekt des Stahlbaus |
Typ | Projektseminar |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Dr. Jürgen Priebe, Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Bearbeitung eines großen Bauprojektes, wie z.B Hochhaus, Großbrücke, Stadiondach etc. in Kleingruppen |
Literatur |
Modul M0581: Gewässerschutz |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare themselves before presentations and discussion. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Environmental Engineering: Vertiefung Wasser: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0963: Geoinformationssysteme in der Wasserwirtschaft und im Wasserbau |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Theoretische Grundlagen von Geographischen Informationssystemen (GIS)
|
Literatur | None |
Lehrveranstaltung L0226: Water Protection and Wastewater Management |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
The literature listed below is available in the library of the TUHH.
|
Lehrveranstaltung L0227: Water Protection and Wastewater Management |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
The literature listed below is available in the library of the TUHH.
|
Modul M0595: Materialprüfung, Bauzustands- und Schadensanalyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde oder Werkstoffkunde, z.B. über das Modul Baustoffe und Bauchemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die Regeln für das Handeln mit sowie die Anwendung und Kennzeichnung von Bauprodukten in Deutschland zu beschreiben. Sie wissen welche Methoden zur Ermittlung von Baustoffeigenschaften zur Verfügung stehen und welche Grenzen und Charakteristika die wichtigsten Methoden haben. |
Fertigkeiten | Die Studierenden können selbstständig die Regeln für das Handeln mit und die Verwendbarkeit von Bauprodukten in Deutschland ermitteln. Sie können geeignete Prüfmethoden für die Überwachung von Bauprodukten, die Untersuchung von Schadensprozessen sowie für die Bauzustandsanalyse auswählen. Sie können von Symptomen auf die Ursache von Bauschäden schließen. Sie sind in der Lage die Ergebnisse einer Materialprüfung in einem Untersuchungsbericht oder Gutachten zusammenzufassen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die unterschiedlichen Rollen von Herstellern sowie von Prüf-, Überwachungs- und Zertifizierungstellen beschreiben, die im Rahmen der Materialprüfung zum Tragen kommen. Das gleiche gilt für die unterschiedlichen Rollen der verschiedenen Beteiligten in gerichtlichen Auseinandersetzungen. |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht |
Lehrveranstaltung L0260: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Materialprüfung und Kennzeichnung von Bauprodukten, Untersuchungsmethoden für Baustoffe und Bauteile, Untersuchungsberichte und Gutachten, Bauzustandbeschreibung, vom Symptom zur Schadensursache |
Literatur |
Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013. |
Lehrveranstaltung L0261: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0665: Projekte und Tiefbaurecht |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Umweltrecht, Bauvertragsrecht (entsprechend den Veranstaltungen aus dem Bachelorstudiengang Bau- und Umweltingenieurwesen) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichen Absolvieren des Moduls können die Studierenden komplexe Inhalte des Baugrund- und Tiefbaurechts sowie des Vertragsrechts detailliert erläutern und die Bestimmungen der Vergabe- und Vertragsordnung für Bauleistungen mit Blick auf ihre Anwendung kritisch beurteilen. |
Fertigkeiten |
Die Studierenden sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Nach Abschluss des Projekts sind die Studierenden in der Lage,
|
Selbstständigkeit |
Studierende können
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Kolloquium |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0395: Baugrund- und Tiefbaurecht |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Studienleistung | Kolloquium. Bei bestandenem Kolloquium verbessert sich die Modulnote um 1,0. |
Dozenten | Dr. Georg-Friedger Drewsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Folienskipt (in der Vorlesung erhältlich) weitere Literatur:
|
Lehrveranstaltung L0708: Projekt Geotechnik |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Im Rahmen der Veranstaltung wird in der Gruppe ein ausgewähltes geotechnisches Projekt bearbeitet. Zu den besonderen Fragestellungen des Projektes werden gezielte Vorträge angeboten sowie Material zum Selbststudium. In einem 14tägigen Kolloquium präsentiert jede Gruppe den Stand ihrer Arbeit und diskutiert ihn. Der fertige Entwurf wird in einer Abschlusspräsentation vorgestellt. |
Literatur | abhängig von der Fragestellung |
Modul M0619: Abfallbehandlungstechnologien |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | chemische und biologische Grundkenntnisse |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Ziel ist der Erwerb von Kenntnissen zur Planung von biologischen Abfallbehandlungsverfahren. Die Studierenden können Techniken der anaeroben und aeroben Abfallbehandlung detailliert beschreiben, unterschiedliche Designs von Abluftbehandlung für biologische Abfallbehandlungsverfahren erläutern und abfallanalytischen Verfahren und Versuche erläutern. |
Fertigkeiten |
Die Studierenden beherrschen die technische Auslegung sowie die kritische Bewertung von Techniken sowie der Qualitätskontrolle bzw. Messung von Abfallbehandlungsanlagen. Die Studierenden können relevante Literatur und Daten zu gegebenen Fragestellungen auswählen und bewerten sowie zusätzlich Untersuchungen bzw. Versuche planen und durchführen. Die Studierenden sind in der Lage, Ergebnisse zu präsentieren und sachlich zu diskutieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend diskutieren, gemeinsame Lösungen in Kleingruppen entwickeln sowie ihre eigenen Arbeitsergebnissen vor Kommilitonen vertreten. Sie können fachlich konstruktives Feedback an Kommilitonen geben und mit Rückmeldungen zu ihren eigenen Leistungen umgehen. |
Selbstständigkeit |
Die Studierenden können selbstständig Quellen aus Literatur und Geschäfts- oder Versuchsberichten recherchieren und erschließen, sich das darin enthaltene Wissen aneignen und auf das jeweilige Projekt transformieren. Sie sind fähig, in Rücksprache mit Lehrenden oder der Zwischenpräsentation ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen für die Lösungen der notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (15-25 Minuten in Gruppen), erfolgreiche Teilnahme am Praktikum |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Energie: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0328: Abfall- und Umweltchemie |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Studierenden werden in Gruppen aufgeteilt. Jede Gruppe bereitet ein Protokoll für jeden durchgeführten Versuch vor, das danach im Rahmen einer Nachbesprechung und Diskussion der Ergebnisse als Bewertungsbasis für die Gruppe sowie die einzelnen Studierenden dient. An manchen Versuchen sind Präsentationen des Versuchsverlaufs und der Ergebnisse vorgesehen, mit anschließender Diskussion zwecks kritischer Ergebnisbewertung. Versuche sind zum Beispiel: Siebversuche, Fos/Tac AAS Heizwert |
Literatur | Scripte |
Lehrveranstaltung L0318: Biological Waste Treatment |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Modul M0705: Grundwasser |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Wilfried Schneider |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können das Verhalten von Schadstoffen im Untergrund auf dem Wirkungspfad zwischen Boden und Gewässer qualitativ und quantitativ fundiert erklären und mit mathematisch numerischen Simulationsmodellen nachbilden. |
Fertigkeiten |
Die Studierenden sind in der Lage die Bewegung und Speicherung von Wasser in der wasserungesättigten Bodenzone konzeptionell zu beschreiben. Sie sind in der Lage pF- und Ku-Funktionen zu analysieren und zu ermitteln. Es ist ihnen möglich, den Transport von gelösten Schadstoffen in der Sickerwasser- und Grundwasserzone rechnerisch nachzubilden. Dispersivitäten, Sorptionskoeffizienten, Abbauraten und die Freisetzungsraten für organische und anorganische Schadstoffe können sie bestimmen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können sich bei der Lösung von Problemstellungen gegenseitig Hilfestellung geben. |
Selbstständigkeit | keine |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min Klausur und schriftliche Ausarbeitungen |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0539: Geohydraulik und Stofftransport |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Pumpversuchsauswertung, Wassergehalts-Wasserspannungs-Funktion, ungesättigte Leitfähigkeits-Funktion, Brooks-Corey-Relation, van Genuchten Relation, Stofftansport in der ungesättigten Bodenzone, Stofftransport und Reaktionen im Grundwasser, |
Literatur |
Todd; K. (2005): Groundwater Hydrology Fetter, C.W. (2001): Applied Hydrogeology Hölting & Coldewey (2005): Hydrogeologie Charbeneau, R.J. (2000): Groundwater Hydraulics and pollutant Transport |
Lehrveranstaltung L0540: Geohydraulik und Stofftransport |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0541: Simulation in der Grundwasserhydrologie |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Grundlagen und theoretischer Hintergrund der in Wissenschaft und Praxis häufig verwendeten Simulationsmodelle für Pumpversuchsauswertung, Wasserbewegung in der wasserungesättigten Zone, Transport von wassergelösten Stoffen in der wasserungesättigten Zone, Grundwasserneubildung, Schadstofftransport im Grundwasser |
Literatur | Handbücher der verwendeten Slumationsmodelle werden bereitgestellt. |
Lehrveranstaltung L0542: Simulation in der Grundwasserhydrologie |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0713: Betontragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen der Baustatik, Entwurf und Bemessung von Tragwerken des Massivbaus Module 'Massivbau I und II' |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erweitern ihre Kenntnisse in der Tragwerksplanung, speziell in Richtung Hochbau (Gebäude, Dächer, Hallen). Sie verfügen über das für den Entwurf und die Bemessung von Stahlbetonhochbauten bzw. häufig vorkommender Bauteile benötigte Wissen. |
Fertigkeiten |
Die Studierenden können die Entwurfs- und Bemessungsverfahren auf praktische Fragestellungen des Stahlbetonhochbaus anwenden. Sie sind in der Lage, Tragwerke zu entwerfen und für allgemeine Beanspruchungen zu bemessen sowie hierfür die bauliche und konstruktive Umsetzung vorzusehen. Darüber hinaus können sie Entwurfs- und Konstruktionsskizzen anfertigen und die Ergebnisse von Berechnung und Bemessung sprachlich darlegen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppenarbeit hochwertige Arbeitsergebnissen zu erzielen. |
Selbstständigkeit |
Die Studierenden sind fähig, angeleitet durch Lehrende komplexe Stahlbetontragwerke zu entwerfen und zu bemessen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0579: Betontragwerke |
Typ | Seminar |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Anhand einer semesterbegleitenden Gruppenarbeit werden die Inhalte der Lehrveranstaltung "Stahl- und Spannbetonbauteile" eingeübt, diskutiert und präsentiert. |
Literatur | - Projektbezogene Unterlagen werden abgegeben. |
Lehrveranstaltung L0577: Stahl- und Spannbetonbauteile |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Es wird in den Stahlbetonhochbau eingeführt und typische Bauteile werden eingehend behandelt. Inhalte sind:
|
Literatur |
- Vorlesungsunterlagen |
Lehrveranstaltung L0578: Stahl- und Spannbetonbauteile |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0722: Computerbasierte Berechnung von Betontragwerken |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in der Baustatik sowie in der Berechnung von Betontragwerken (Balken, Platten, Scheiben) LV 'Massivbau I und II' LV 'Baustatik I und II' LV 'Betontragwerke' |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die Probleme der numerischen Abbildung von Stahl- und Spannbetontragwerken. |
Fertigkeiten |
Nach erfolgreichem Absolvieren des Moduls sind die Studierende in der Lage, Stahl- und Spannbetontragwerke mit einem FE-Programm zu modellieren und zu bemessen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppen ein reales Gebäude softwaregestützt zu bemessen. |
Selbstständigkeit |
Die Studierenden können eigenständig eine beliebige Betonkonstruktion computerbasiert modellieren und bemessen sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | Mündliche Prüfung (15-30 Minuten pro Person) und Projektarbeit (FE-Berechnung) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0598: Computerbasierte Berechnung von Betontragwerken |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0599: Computerbasierte Berechnung von Betontragwerken |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0600: FE-Modellierung von Betontragwerken |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Finite Elemente Modellierung und programmgesteuerte Bemessung von Betontragwerken mit dem Programmpaket SOFiSTiK |
Literatur |
|
Modul M0801: Wasserressourcen und -versorgung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Mathias Ernst |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis wasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Trinkwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Konfliktfelder wasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für eine nachhaltige Wasserversorgung skizzieren. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. Die Studierenden können Organisationsstrukturen von Wasserversorgungsunternehmen erläutern und einordnen. Sie können verfügbare Trinkwasseraufbereitungsverfahren in der Breite der Anwendungen erklären. |
Fertigkeiten |
Die Studierende können komplexe Problemfelder aus Sicht der Trinkwassergewinnung einordnen und Lösungsansätze für wasserwirtschaftliche sowie technische Maßnahmen aufstellen. Sie können hierfür anwendbare Bewertungsmethoden einordnen. Die Studierenden sind in der Lage wasserchemische Berechnungen für ausgewählte Aufbereitungsprozessen durchzuführen. Sie können ausgewählte allgemein anerkannte Regeln der Technik auf Prozesse der Trinkwasseraufbereitung anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in einer fachlich heterogenen Gruppe gemeinsam komplexe Lösungen für das Management sowie die Aufbereitung von Trinkwasser erarbeiten und dokumentieren. Sie können professionell z.B. als Vertreter/in von Nutzungsinteressen angemessen Stellung beziehen. Sie können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Chemie) + Referat (WRM) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0311: Chemie der Trinkwasseraufbereitung |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Vorlesung wird das für die Praxis relevante wasserchemische Wissen mit Bezug auf die Wassergewinnung, -aufbereitung und -verteilung vermittelt. Die Themenschwerpunkte sind Löslichkeit von Gasen, Kohlensäure-Gleichgewicht, Kalk-Kohlensäure-Gleichgewicht, Entsäuerung, Mischung von Wässern, Enthärtung, Redoxprozesse, Werkstoffe sowie gesetzliche Anforderungen an die Aufbereitung. Alle Themen werden vor dem Hintergrund der allgemein anerkannten Regeln der Technik (DVGW-Regelwerk, DIN-Normen) praxisnah behandelt. Ein wesentlicher Teil der Veranstaltung sind Berechnungen anhand realer Analysendaten (z.B. Berechnung des pH-Wertes und der Calcitlösekapazität ). Zu jeder Einheit gibt es Übungen und Hausaufgaben. Durch das Lösen der Hausaufgaben erhalten die Studierenden ein Feedback und können Bonuspunkte für die Klausur erwerben. Da Kenntnisse der Wasseraufbereitungsprozesse von großer Bedeutung sind, werden diese in Abstimmung mit der Vorlesung „Wasserressourcenmanagement“ zu Beginn des Semesters erklärt. |
Literatur |
MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003. |
Lehrveranstaltung L0312: Chemie der Trinkwasseraufbereitung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Studienleistung | Freiwillige Abgabe von Hausaufgaben. Über die Abgabe von Hausaufgaben können Bonuspunkte für die Klausur gesammelt werden. Detailliertere Informationen erhalten die Studierenden bei Veranstaltungsbeginn. |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0402: Wasserressourcenmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung vermittelt weitergehende Kenntnisse zur den Abhängigkeiten des Wasserressourcenmanagements mit Blick auf die Trinkwasserversorgung. Die aktuelle Situation der globalen Wasserressourcen wird dargestellt, Abhängigkeiten zwischen Nutzungsinteressen erarbeitet und internationale Beispiele für „Best-Pratice“ sowie unzureichenden Wasserressourcenmanagements präsentiert und diskutiert. Entsprechend werden den Studierenden notwendige Voraussetzungen und Rahmenbedingungen für ein „integriertes Wasserressourcenmanagement“ vermittelt. Mit Bezug zum EU Raum und insbesondere Deutschland werden weiterhin Aspekte relevanter Rechtsnormen, administrative Strukture der Wasserversorgung sowie Fragen der Organisation von Trinkwasserversorgungsunternehmen (kommunal, privat, public privat partnership) vermittelt. Managementinstrumente wie das Life-Cycle Assessment, Modelle des Benchmarkings sowie der Wasserdargebotserfassungwerden für die Trinkwasserversorgung präsentiert und diskutiert. Die Inhalte der Vorlesung schließen wo möglich und sinnvoll, regionale Bezüge mit ein. |
Literatur |
|
Lehrveranstaltung L0403: Wasserressourcenmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0923: Integrierte Verkehrsplanung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Verkehrsplanung, z. B. aus dem Modul Verkehrsplanung und Verkehrstechnik im Bachelor |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1068: Integrierte Verkehrsplanung |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz, Dr. Philine Gaffron |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Lehrveranstaltung wird ein Verständnis für die Interdependenzen zwischen Siedlungsstruktur und Verkehrsentwicklung vermittelt. Behandelt werden u. a.:
|
Literatur |
Kutter, Eckhard (2005) Entwicklung innovativer Verkehrsstrategien für die mobile Gesellschaft. Erich Schmidt Verlag. Berlin. Bracher, Tilman u. a. (Hrsg.) (68. Ergänzung 2013) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen) |
Modul M0963: Stahl- und Verbundtragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Jürgen Priebe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen des Stahlbaus (z.B. Stahlbau I und II, BUBC) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten können nach der Absolvierung des Moduls
|
Fertigkeiten |
Nach erfolgreicher Teilnahme an diesem Modul sind die Studenten in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1204: Stahl- und Verbundtragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag |
Lehrveranstaltung L1205: Stahl- und Verbundtragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1097: Stahlbrückenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Jörg Ahlgrimm |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
• Von der Ausschreibung bis zur Fertigstellung – der Weg einer Stahlbrücke • Aufbau einer Brückenstatik – konstruktive Details, Beispiele für Detailnachweise: ◦ mittragende Breite unter Berücksichtigung von Längssteifen ◦ Auflagerpunkt, Auflagersteifen ◦ Querträgerdurchbruch, Säumung ◦ Zinkennachweis (Querträgersteg zwischen Trapezsteifen) • Stahlsorten, -bezeichnungen, Prüfungen und Abnahmezeugnisse • Zerstörungsfreie Schweißnahtprüfverfahren • Korrosionsschutz • Brückenlager – Arten, Aufbau, Funktion, Berechnung, Einbau • Fahrbahnübergänge • Schwingungen von Rundhängern und Seilen – Schwingungsdämpfer • Bewegliche Brücken • Ausführliche Berichte von verschieden Montagevorgängen und -hilfsmitteln • Ausgewählte Schadensfälle |
Literatur |
|
Modul M0969: Ausgewählte Themen des Bauingenieurwesens |
||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | --- |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1840: Entwurf und Konstruktion von Betontragwerken |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0596: Fertigteilbau |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Broschüren der Fachvereinigung Deutscher Betonfertigteilbau e.V. |
Lehrveranstaltung L0597: Fertigteilbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | Siehe korrespondierende Vorlesung |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1634: Forum I - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Vorträge zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur |
Lehrveranstaltung L1635: Forum II - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Vortrage zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur |
Lehrveranstaltung L0380: Geokunststoffe in der Geotechnik und im Wasserbau |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Michael Heibaum |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Im Erdbau wird heutzutage eine Vielzahl von Bauwerken mit Hilfe von Geokunststoffen realisiert. Insbesondere werden sie in Bereichen, in denen Wechselwirkungen von Baugrund und Wasser auftreten, eingesetzt zum Dichten, Schützen, Trennen, Filtern, Dränen und Verpacken (geotextile Container). Je nach Bauaufgabe werden Geokunststoffe mit gezielt gewählten Eigenschaften eingesetzt, die durch entsprechende Versuche verifiziert werden. Im Rahmen der Vorlesung werden werden Materialien, Einsatzbereiche, Bauweisen und Prüfungen behandelt. |
Literatur |
Vorlesungsbegleitende Unterlagen, s. www.tuhh.de/gbt Monographien:
Zeitschriften:
|
Lehrveranstaltung L1151: Holzbau |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Kolloquium |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Torsten Faber |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1152: Konstruktiver Glasbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Konstruktiver Glasbau - Einführung in den Baustoff Glas (Herstellung, Veredelung, Materialverhalten) - Konstruktion von Fassaden - Fassadentypen - Statische Berechnung von Verglasungen - Statische Berechnung von Fassaden - Unterschiede Plattentragwirkung / Membranwirkung bei Verglasungen - Vertikal- / Horizontalverglasungen mit sicherheitsrelevanten Anforderungen (begehbare, betretbare und absturzsichernde Verglasungen) - Glastragwerke - Brandschutz bei Glasfassaden - Bauphysik bei Fassaden bzw. Verglasungen |
Literatur |
Lehrveranstaltung L1447: Konstruktiver Glasbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0967: Studienarbeit Hafenbau und Küstenschutz |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Lehrinhalte der Vertiefung Hafenbau und Küstenschutz. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ihre Detailkenntnisse im Gebiet des Hafenbaus und Küstenschutzes demonstrieren. Sie können zum Stand von Entwicklung und Anwendung Beispiele geben und diese kritisch unter Berücksichtigung aktueller Probleme und Rahmenbedingungen in Wissenschaft und Gesellschaft diskutieren. Die Studierenden sind in der Lage, für eine grundlagenorientierte, praktische Fragestellung aus dem Bereich des Hafenbaus und Küstenschutzes eigenständig eine Lösungsstrategie zu definieren und einzelne Lösungsansätze zu skizzieren. Dabei können sie theorieorientiert vorgehen und aktuelle sicherheitstechnische, ökologische, ethische und wirtschaftliche Gesichtspunkte nach dem Stand der Wissenschaft und zugehöriger gesellschaftlicher Diskussionen einbeziehen. Wissenschaftliche Arbeitstechniken, die sie zur eigenen Projektbearbeitung gewählt haben, können sie detailliert darlegen und kritisch erörtern. |
Fertigkeiten |
Die Studierenden sind in der Lage, zur Projektbearbeitung selbständig Methoden auszuwählen und diese Auswahl zu begründen. Sie können darlegen, wie sie die Methoden auf das spezifische Anwendungsfeld beziehen und hierfür an den Anwendungskontext anpassen. Über das Projekt hinaus weisende Ergebnisse sowie Weiterentwicklungen können sie in Grundzügen skizzieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und Kolleginnen und Kollegen Rückmeldung zu ihren Projekten geben. |
Selbstständigkeit |
Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erreichen. |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit (laut FSPO) |
Prüfungsdauer und -umfang | Die Seitenzahl ist abhängig von der Aufgabenstellung. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht |
Modul M0997: Ausgewählte Themen der Baustatik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Uwe Starossek |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse |
Kenntnisse der linearen Statik der statisch bestimmten und unbestimmten Stabtragwerke; Mechanik I/II, Mathematik I/II, Differentialgleichungen I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden ausgewählte Methoden der höheren Baustatik erläutern. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, die vorgestellten Methoden der höheren Baustatik hinsichtlich ihrer Voraussetzungen und Anwendbarkeit zu beurteilen und entsprechende baustatische Berechnungen durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden erhalten die Möglichkeit, angebotene Hausübungen freiwillig und selbständig zu bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 135 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1199: Flächentragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Scheibentheorie
Plattentheorie
Schalentheorie
Stabilitätsprobleme (Übersicht)
|
Literatur |
|
Lehrveranstaltung L1200: Nichtlineare Stabstatik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Arten der Nichtlinearität -Bedeutung nichtlinearer Einflüsse für baustatische Nachweise -Klassifizierung und Gegenüberstellung verschiedener Theorien im Hinblick auf die Erfassung geometrischer Nichtlinearität: Theorien I., II., III. Ordnung -Grundlagen der Elastizitätstheorie II. Ordnung für Stabtragwerke -Durchführung der Elastizitätstheorie II. Ordnung mittels finiter Elemente: allgemeines Weggrößenverfahren -Grundlagen der analytischen Durchführung der Elastizitätstheorie II. Ordnung: Herleitung und Lösung der Differentialgleichung -Baupraktische Verfahren zur analytischen Durchführung der Elastizitätstheorie II. Ordnung: allgemeines Weggrößenverfahren mit analytischer Steifigkeitsmatrix, Drehwinkelverfahren für elastisch unverschiebliche und verschiebliche Stabtragwerke, Berücksichtigung von Imperfektionen Fließgelenktheorie I. Ordnung |
Literatur |
Rothert, H.; Gensichen, V. (1987): Nichtlineare Stabstatik. Springer Verlag, Berlin |
Lehrveranstaltung L1201: Nichtlineare Stabstatik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0699: Spezialtiefbau und Bodenpraktikum |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Bodenmechanik, Grundbau |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem erfolgreichen Absolvieren des Moduls sind die Studierenden in der Lage,
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden sind in der Lage, selbständig ein geotechnisches Baugrund- und Gründungsgutachten zu erstellen, hierfür eigenständig einen Zeit- und Arbeitsplan zu entwerfen und sich selbständig dafür notwendiges Wissen sowie die Datengrundlage zu erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0499: Bodenmechanisches Praktikum |
Typ | Laborpraktikum |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0497: Spezialtiefbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0498: Spezialtiefbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0964: Konstruktionen im Grund- und Wasserbau |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 82, Präsenzstudium 98 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0601: Betonkonstruktionen im Grundbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Bemessungn und Konstruktion von Tragwerken im Grundbau
|
Literatur | Handouts |
Lehrveranstaltung L0602: Betonkonstruktionen im Grundbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1146: Stahlkonstruktionen im Grund- und Wasserbau |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0707: Unterirdisches Bauen |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Marius Milatz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1811: Unterirdisches Bauen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Studienleistung | Schriftliche Ausarbeitung (10 Seiten) und Präsentation (15 min). Für Bericht und Präsentation erhält man je 5% der Punkte in der Klausur als Bonus. |
Dozenten | Marius Milatz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0858: Küstenwasserbau I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Grundlagen des Wasserbaus, der Hydrologie sowie der Hydromechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Grundlagen des Küstenwasserbaus zu definieren, detailliert zu erläutern und auf einzelne praktische Fragestellungen des Küstenwasserbaus anzuwenden. Sie können die Grundlagen für Planung und Bemessung von küstenwasserbaulichen Anlagen definieren und ermitteln und die gängigen Ansätze für die konstruktive und funktionelle Bemessung im Küstenwasserbau beschreiben. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den konstruktiven Entwurf von küstenwasserbaulichen Anlagen auswählen und auf vorgegebene Bemessungsaufgaben anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 2 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0807: Grundlagen des Küstenwasserbaus |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Coastal Engineering Manual, CEM Vorlesungsumdruck |
Lehrveranstaltung L1413: Grundlagen des Küstenwasserbaus |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0511: Stromerzeugung aus Wind- und Wasserkraft |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Joachim Gerth |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Thermodynamik, Strömungsmechanik, Grundlagen der Strömungsmaschinen |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Desweiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studieren können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten |
Typ | Projektseminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Andreas Wiese |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Folien der Vorlesung |
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Stephan Heimerl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0593: Baustoffe und Bauwerkserhaltung |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde, Bauchemie und Bauphysik, z.B. über die Module Baustoffgrundlagen und Bauphysik sowie Baustoffe und Bauchemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Komponenten mineralischer Baustoffe und deren Funktion im Detail beschreiben und für die Herstellung von mineralischen Spezialbaustoffen einsetzen. Sie können die Charakteristika mineralischer Bindemittel darstellen. Die Herstellung, Eigenschaften und Anwendungsgebiete von Spezialmörteln und Spezialbetonen können Sie beschreiben und die werkstoffkundlichen Zusammenhänge darstellen. Die Grundlagen der Befestigungstechnik können sie darstellen. |
Fertigkeiten |
Die Studierenden sind in der Lage eine Granulometrieoptimierung eines mineralischen Baustoffs durchzuführen. Sie können die Rezeptur eines mineralischen Spezialmörtels entwerfen und diesen Mörtel herstellen. Die Studierenden sind in der Lage nachträgliche Bewehrungsanschlüsse herzustellen. Sie sind in der Lage, Bauschäden zu erkennen, die Ursachen einzugrenzen, die Grundzüge der Bauwerkserhaltung anzuwenden sowie Instandsetzungs- und Verstärkungsmaßnahmen auszuwählen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden sind in der Lage in einer Kleingruppe eine Spezialmörtelrezeptur zu entwickeln. Sie präsentieren ihr Arbeitsergebniss vor dem Dozenten und den anderen Studierenden und stellen sich einer kritischen Diskussion, in der sie ihre Ergebnisse verteidigen bzw. anpassen. Die Studierenden können auf der Basis dieses Feedbacks gemeinsam diesen Spezialbaustoff herstellen. |
Selbstständigkeit | Die Studierenden sind in der Lage, die vorhandenen Resourcen an Materialien und Laborausstattung für ihr Projekt selbständig zu nutzen sowie fehlende Komponenten zu recherchieren und zu beschaffen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht |
Lehrveranstaltung L0257: Befestigungstechnologie und nachträgliche Bewehrungsanschlüsse |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vortragsfolien der Lehrveranstaltung stehen über STUD.IP zum download zur Verfügung Beton-Kalender 2012: lnfrastrukturbau, Befestigungstechnik. Eurocode 2. Herausgegeben von Konrad Bergmeister, Frank Fingerloos und Johann-Dietrich Wörner; 2012 Ernst & Sohn GmbH & Co. KG. Published by Ernst & Sohn GmbH & Co. KG. DIBt: Hinweise für die Montage von Dübelverankerungen; Oktober 2010 Ratgeber Dübeltechnik, Basiswissen - Metalldübel, chemische Dübel, Kunststoffdübel; Herausgeber Hilti AG
|
Lehrveranstaltung L0255: Instandsetzung von Bauteilen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl, Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bauwerkserhaltung, Instandsetzung und Verstärkung, nachträgliche Bauwerksabdichtung |
Literatur | BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen – schützen, erhalten, instandsetzen |
Lehrveranstaltung L0253: Mineralische Baustoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Komponenten mineralischer Baustoffe und deren Funktion, Bindemittel, Beton und Mörtel, Spezialmörtel, Spezialbetone |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0256: Technologie mineralischer Baustoffe |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Konzeption und Herstellung mineralischer Baustoffe |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0254: Transportprozesse in Baustoffen und Bauschäden |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl, Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Transportprozesse in Baustoffen und Schadensprozesse an Bauteilen |
Literatur | Blaich, J.: Bauschäden, Analyse und Vermeidung |
Modul M0723: Spannbeton- und Massivbrückenbau |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Vertiefte Kenntnisse der Bemessung und Konstruktion von Stahlbetontragwerken sowie Grundlagenwissen in der Berechnung von Stahlbetonkonstruktionen. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die Einsatzgebiete der wesentlichen Brückentypen sowie die anzusetzenden Einwirkungen. Sie können die wesentlichen Berechnungsverfahren erläutern. Die Studierenden können die Bemessung einer Spannbetonkonstruktion erläutern. |
Fertigkeiten |
Die Studierenden können vorgespannte Massivbrücken nach den einschlägigen Vorschriften und Verfahren berechnen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppen eine reale Brücke zu entwerfen und zu bemessen. |
Selbstständigkeit |
Die Studierenden können eine Spannbetonbrücke eigenständig berechnen sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0603: Spannbeton- und Massivbrückenbau |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Spannbetonbau
Brückenbau
|
Literatur |
|
Lehrveranstaltung L0604: Spannbeton- und Massivbrückenbau |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0756: Bodenmechanik und -dynamik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Bodenmechanik, Technische Schwingungslehre |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage,
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können im Team zu Arbeitsergebnissen zu messtechnischen und experimentellen Grundlagen kommen und ihre Ergebnisse am Ende des Semsters gemeinsam präsentieren. |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 150 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0374: Ausgewählte Themen der Bodenmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Hans Mathäus Hügel |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt: ausgewählte Themen aus den Bereichen
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein je nach vertieft behandelten Themen
|
Literatur | Kolymbas D. (2007): Geotechnik - Bodenmechanik, Grundbau und Tunnelbau. Springer Verlag |
Lehrveranstaltung L0452: Bodendynamik |
Typ | Vorlesung |
SWS | 3 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 18, Präsenzstudium 42 |
Dozenten | Dr. Sascha Henke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
• die wesentlichen Gleichungen des Einmassenschwingers herleiten und anwenden, • die Wellenausbreitung im Boden unter dynamischer Anregung • Bodendynamische Parameter und deren Bedeutung • die wesentlichen Labor- und Feldversuche zur Ermittlung bodendynamischer Kennwerte und deren Auswertung, • Maschinenfundamente, • Zyklische Verformungsakkumulation • Grundlagen der Plastodynamik |
Literatur |
|
Lehrveranstaltung L0706: Experimentelle Forschung in der Geotechnik |
Typ | Laborpraktikum |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Marius Milatz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Modul M0807: Boundary Element Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method. |
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht International Production Management: Vertiefung Produktionstechnik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0523: Boundary Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Boundary value problems - Hands-on Sessions (programming of BE routines) |
Literatur |
Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden |
Lehrveranstaltung L0524: Boundary Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0827: Modellierung in der Wasserwirtschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Wilfried Schneider |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundwassermodellierung
Leitungssysteme
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die softwaregestützte Modellierung von Grundwasserströmungen, zugehörigen Transportprozessen und städtischen Wasserinfrastrukturen beschreiben. In Fallstudien können sie System- und Schwachpunktanalysen durchführen. Zudem können sie die hydraulischen und schadstoffspezifischen Wirkungszusammenhänge auf dem Pfad Boden - Gewässer quantitativ analysieren. |
Fertigkeiten |
Die Studierenden können softwarebasiert Lösungen für bestehende wasserwirtschaftliche Probleme entwickeln und bewerten. Insbesondere sind sie in der Lage, Grundwassermodelle zur Nachbildung von Strömungen und Schadstoffausbreitungsprozessen eigenständig und wissenschaftlich aufzubauen und anzuwenden. Sie haben die Fähigkeit, Fallbeispiele mit den zur Modellierung von Leitungssystemen maßgeblichen Softwarelösungen (zB EPANET, EPA SWMM) abzubilden und zu untersuchen. |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0543: Angewandte Grundwassermodellierung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Einführung und Anwendung der Grundwassersoftware MODFLOW (PMWIN), Theoretischer Hintergrund des Modells, Studierende bearbeiten unter intensiver Anleitung praktische Fragestellungen mit dem Modell PMWIN. |
Literatur |
MODFLOW-Handbuch Chiang, Wen Hsien: PMWIN |
Lehrveranstaltung L0544: Angewandte Grundwassermodellierung |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0875: Modellierung von Leitungssystemen |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen, NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Modellierung von Wasserversorgungssystemen:
Modellierung von Stadtentwässerungssystemen:
|
Literatur |
Modul M0828: Urban Environmental Management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1109: Noise Protection |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Bitte auswählen |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0874: Urban Infrastructures |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Problem/Project Based Learning Main topics are:
|
Literatur |
Modul M0859: Küstenwasserbau II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Küstenwasserbau I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Aspekte des Küsten- und Hochwasserschutzes zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Küsten- und Hochwasserschutzes anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente von Küstenschutzanlagen funktionell und konstruktiv entwerfen und bemessen. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den funktionellen und konstruktiven Entwurf von Küsten- und Hochwasserschutzanlagen auswählen und diese auf Bemessungsaufgaben anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 130 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht |
Lehrveranstaltung L0808: Küsten- und Hochwasserschutz |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Schutz sandiger Küsten
Hochwasserschutz
|
Literatur |
Vorlesungsumdruck Coastal Engineering Manual CEM |
Lehrveranstaltung L1415: Küsten- und Hochwasserschutz |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1411: Unterhaltung und Verteidigung von Hochwasserschutzanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Olaf Müller |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Modul M0860: Hafenbau und Hafenplanung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse |
VL Grundlagen des Küstenwasserbaus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Aspekte der Hafenplanung zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Hafenbaus anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente eines Hafens entwerfen. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den funktionellen Entwurf eines Hafens auswählen und diese auf Bemessungsaufgaben anwenden.
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 150 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0809: Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlagen des Hafenbaus
Elemente von Seehäfen
Anbindung von Hinterlandverkehren / Binnenverkehrswasserbau Schutz von Seehäfen
Fischereihäfen und andere kleine Häfen
|
Literatur | Brinkmann, B.: Seehäfen, Springer 2005 |
Lehrveranstaltung L1414: Hafenbau |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0378: Hafenplanung und Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Vorlesungsumdruck, s. www.tu-harburg.de/gbt |
Modul M0861: Modellieren im Wasserbau |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Prozesse, die mit der Modellierung von Strömungen und Wellen / Seegang im Wasserbau und Küstenwasserbau verbunden sind, detailliert definieren. Daneben können sie wesentliche Aspekte der Modellierung benennen und die gängigen numerischen Modelle zur Simulation von Strömungen und Seegang beschreiben. |
Fertigkeiten |
Die Studierenden können numerische Modelle auf einfache Fragestellungen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 3 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0813: Hydraulische Modelle |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Strobl, Zunic: Wasserbau, Kap. 11 Hydraulische Modelle, Springer |
Lehrveranstaltung L0812: Modellieren von Seegang |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Lehrveranstaltung L0810: Modellieren von Strömungen in Flüssen und Ästuaren |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Vorlesungsskript |
Modul M0874: Abwassersysteme |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis abwasserwasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Abwasserwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die ganze Breite der Anlagentechniken bei siedlungswasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für einen nachhaltigen Gewässerschutz beschreiben. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. |
Fertigkeiten |
Studierende können verfügbare Abwasseraufbereitungsverfahren in der Breite der Anwendungen für Vorentwürfe auslegen und erklären, sowohl für kommunale als auch für einige industrielle Anlagen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig und planvoll ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0934: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
•Understanding the global situation with water and wastewater •Regional planning and decentralised systems •Overview on innovative approaches •In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse •Mathematical Modelling of Nitrogen Removal •Exercises with calculations and design |
Literatur |
Henze, Mogens: George Tchobanoglous, Franklin L. Burton, H. David Stensel: |
Lehrveranstaltung L0943: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0357: Physikalische und chemische Abwasserbehandlung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Überblick über weitergehende Abwasserreinigung Wiederverwendung aufbereiteten kommunalen Abwassers Fällung Flockung Tiefenfiltration Membranverfahren Aktivkohleadsorption Ozonisierung "Advanced Oxidation Processes" Desinfektion |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Lehrveranstaltung L0358: Physikalische und chemische Abwasserbehandlung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Organische Summenparameter Industrieabwasser Verfahren zur Industrieabwasserbehandlung Fällung Flockung Aktivkohleadsorption Refraktäre organische Stoffe |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Modul M0922: Stadtplanung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Für die Lehrveranstaltung Grundlagen der Stadtplanung: Keine Für die Lehrveranstaltung Straßenraumgestaltung: Vorerfahrung in Verkehrsplanung, z. B. durch die Bachelorveranstaltung „Verkehrsplanung und Verkehrstechnik“ |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1066: Grundlagen der Stadtplanung |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
„Grundlagen der Stadtplanung“ behandelt die Determinanten städtebaulicher Entwicklung und ihre Zusammenhänge. Es geht um:
Ziel der Veranstaltung ist es, ein Grundverständnis städtebaulicher Probleme und Lösungsansätze zu erlangen und die Funktionsweise von Stadtplanung nachvollziehen zu können. In einem praxisorientierten Übungsprojekt werden für ein Planungsgebiet ein Rahmenplan, städtebaulicher Entwurf sowie Bebauungsplan erstellt. |
Literatur |
Albers, Gerd; Wekel, Julian (2009) Stadtplanung: Eine illustrierte Einführung. Primus Verlag. Darmstadt. Frick, Dieter (2008) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. Wasmuth-Verlag. Tübingen Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York. |
Lehrveranstaltung L1067: Straßenraumgestaltung |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Lehrveranstaltung „Straßenraumgestaltung“ befasst sich mit den vielfältigen funktionalen und gestalterischen Anforderungen an Stadtstraßen und Plätze als wichtigste Elemente des öffentlichen Raums. Behandelt werden:
|
Literatur |
Forschungsgesellschaft für Straßen- und Verkehrswesen (2011) Empfehlungen zur Straßenraumgestaltung innerhalb bebauter Gebiete - ESG. FGSV-Verlag. Köln (FGSV, 230). Forschungsgesellschaft für Straßen- und Verkehrswesen (2007) Richtlinien für die Anlage von Stadtstraßen – RASt 06. FGSV-Verlag. Köln (FGSV, 200). |
Modul M0961: Entwurf und Konstruktion von Tragwerken |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen des konstruktiven Ingenieurbaus (Baustatik, Stahl- und Spannbetonbau, Stahlbau) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ausgewählte Aspekte der Bau- und Technikgeschichte wiedergeben und grundsätzliche Entwurfsstrategien erläutern. |
Fertigkeiten |
Die Studierenden sind in der Lage Tragwerken zu entwerfen und verfügen über vertiefte Fertigkeiten in der Tragwerksplanung. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage Probleme und Lösungen vor einem Fachpublikum zu vertreten, indem die in Gruppen bearbeiteten Aufgaben im Plenum präsentiert und diskutiert werden. |
Selbstständigkeit |
Die Studierenden entwickeln auf Basis des veranstaltungsbegleitenden Feedbacks eigenständige Lösungen für komplexe technische Fragestellungen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Mündliche Prüfung (15-30 Minuten pro Person) und Projektarbeit (FE-Berechnung) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1144: Bemessung und Konstruktion |
Typ | Projektseminar |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Anhand verschiedener (kleiner) semesterbegleitender Projekte wird das Entwerfen und Konstruieren geübt. Die Entwurfsaufgaben werden in Gruppen bearbeitet und müssen im Plenum präsentiert und diskutiert werden. |
Literatur | - Projektbezogene Unterlagen |
Lehrveranstaltung L1142: Tragwerksentwurf |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Studierenden lernen Tragwerke zu entwerfen und erlangen Gestaltungs- und Entscheidungskompetenz. Folgende Aspekte werden angesprochen:
|
Literatur | - Vorlesungsunterlagen, Fachzeitschriften |
Modul M0968: Unterirdisches Bauen und Numerik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Grundkenntnisse der Konstruktion und Bemessung von Stahlbetrontragwerken, Bodenmechanik und Grundbau |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0375: Numerische Methoden in der Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Hans Mathäus Hügel |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein |
Literatur |
|
Lehrveranstaltung L0707: Unterirdisches Bauen |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0977: Baulogistik und Projektmanagement |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Heike Flämig |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können...
|
Fertigkeiten |
Studierende können...
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können...
|
Selbstständigkeit |
Studierende können...
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Zwei schriftliche Ausarbeitungen und zwei kurze Ergebnispräsentationen |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht |
Lehrveranstaltung L1163: Baulogistik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung macht deutlich, wie die Logistik von Bauvorhaben inzwischen zu einem wichtigen Wettbewerbsfaktor geworden ist und was es dabei zu beachten gilt. Folgende Themenfelder werden behandelt:
|
Literatur |
Flämig, Heike: Produktionslogistik in Stadtregionen. In: Forschungsverbund Ökologische Mobilität (Hrsg.) Forschungsbericht Bd. 15.2. Wuppertal 2000. Krauss, Siri: Die Baulogistik in der schlüsselfertigen Ausführung, Bauwerk Verlag GmbH Berlin 2005. Lipsmeier, Klaus: Abfallkennzahlen für Neubauleistungen im Hochbau : Verlag Forum für Abfallwirtschaft und Altlasten, 2004. Schmidt, Norbert: Wettbewerbsfaktor Baulogistik. Neue Wertschöpfungspotenziale in der Baustoffversorgung. In: Klaus, Peter: Edition Logistik. Band 6. Deutscher Verkehrs-Verlag. Hamburg 2003. Seemann, Y.F. (2007): Logistikkoordination als Organisationseinheit bei der Bauausführung Wissenschaftsverlag Mainz in Aachen, Aachen. (Mitteilungen aus dem Fachgebiet Baubetrieb und Bauwirtschaft (Hrsg. Kuhne, V.): Heft 20) |
Lehrveranstaltung L1164: Baulogistik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1161: Projektentwicklung und -steuerung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen dieser Vorlesung werden entlang einer Projektlebenszyklusbetrachtung die wesentlichen Aspekte der Projektentwicklung und –steuerung behandelt:
|
Literatur |
Projektmanagement-Fachmann. Band 1 und Band 2. RKW-Verlag, Eschborn, 2004. |
Lehrveranstaltung L1162: Projektentwicklung und -steuerung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0998: Baustatik und Baudynamik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Uwe Starossek |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse |
Kenntnisse der linearen Statik der statisch bestimmten und unbestimmten Stabtragwerke; Mechanik I/II, Mathematik I/II, Differentialgleichungen I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte der dynamischen Wirkungen auf Tragwerke und die entsprechenden Berechnungsverfahren erläutern. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, das Verhalten von Tragwerken unter dynamischer Belastung mittels rechnerischer Verfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 135 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1202: Baudynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Clough, R.W., Penzien, J.: Dynamics of Structures. 2. Aufl., McGraw-Hill, New York, 1993. |
Lehrveranstaltung L1203: Baudynamik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0564: Bruchmechanik und Schwingfestigkeit |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Ingo Hadrych |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0565: Bruchmechanik und Schwingfestigkeit |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Ingo Hadrych |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0999: Projekt des Stahlbaus |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Jürgen Priebe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Stahl- und Verbundtragwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage sich einen Teilbereich der Projektaufgabe detailliert zu erarbeiten und anderen zu erklären. |
Fertigkeiten |
Die Studierenden können für ihren Teilbereich der Gesamtaufgabe Skizzen und Berechnungen anfertigen. Dabei sind sie in der Lage bei sich verändernden Rahmenbedingungen durch andere Teilprojekte nachzusteuern. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können ihre eigenen Ergebnisse in der Gruppe vorstellen und vertreten. Sie sind in der Lage konsensorientiert zu arbeiten und berücksichtigen dabei gruppenübergreifende Abhängigkeiten. Sie können in einer Gruppe selbständig Aufgaben verteilen und ausführen. |
Selbstständigkeit |
Die Studierenden können ein Teilgebiet der Gesamtaufgabe eigenverantwortlich bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 15-20 Seiten (exklusive Anhang) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1206: Projekt des Stahlbaus |
Typ | Projektseminar |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Dr. Jürgen Priebe, Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Bearbeitung eines großen Bauprojektes, wie z.B Hochhaus, Großbrücke, Stadiondach etc. in Kleingruppen |
Literatur |
Modul M0581: Gewässerschutz |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare themselves before presentations and discussion. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Environmental Engineering: Vertiefung Wasser: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0963: Geoinformationssysteme in der Wasserwirtschaft und im Wasserbau |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Theoretische Grundlagen von Geographischen Informationssystemen (GIS)
|
Literatur | None |
Lehrveranstaltung L0226: Water Protection and Wastewater Management |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
The literature listed below is available in the library of the TUHH.
|
Lehrveranstaltung L0227: Water Protection and Wastewater Management |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
The literature listed below is available in the library of the TUHH.
|
Modul M0595: Materialprüfung, Bauzustands- und Schadensanalyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde oder Werkstoffkunde, z.B. über das Modul Baustoffe und Bauchemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die Regeln für das Handeln mit sowie die Anwendung und Kennzeichnung von Bauprodukten in Deutschland zu beschreiben. Sie wissen welche Methoden zur Ermittlung von Baustoffeigenschaften zur Verfügung stehen und welche Grenzen und Charakteristika die wichtigsten Methoden haben. |
Fertigkeiten | Die Studierenden können selbstständig die Regeln für das Handeln mit und die Verwendbarkeit von Bauprodukten in Deutschland ermitteln. Sie können geeignete Prüfmethoden für die Überwachung von Bauprodukten, die Untersuchung von Schadensprozessen sowie für die Bauzustandsanalyse auswählen. Sie können von Symptomen auf die Ursache von Bauschäden schließen. Sie sind in der Lage die Ergebnisse einer Materialprüfung in einem Untersuchungsbericht oder Gutachten zusammenzufassen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die unterschiedlichen Rollen von Herstellern sowie von Prüf-, Überwachungs- und Zertifizierungstellen beschreiben, die im Rahmen der Materialprüfung zum Tragen kommen. Das gleiche gilt für die unterschiedlichen Rollen der verschiedenen Beteiligten in gerichtlichen Auseinandersetzungen. |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht |
Lehrveranstaltung L0260: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Materialprüfung und Kennzeichnung von Bauprodukten, Untersuchungsmethoden für Baustoffe und Bauteile, Untersuchungsberichte und Gutachten, Bauzustandbeschreibung, vom Symptom zur Schadensursache |
Literatur |
Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013. |
Lehrveranstaltung L0261: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0619: Abfallbehandlungstechnologien |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | chemische und biologische Grundkenntnisse |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Ziel ist der Erwerb von Kenntnissen zur Planung von biologischen Abfallbehandlungsverfahren. Die Studierenden können Techniken der anaeroben und aeroben Abfallbehandlung detailliert beschreiben, unterschiedliche Designs von Abluftbehandlung für biologische Abfallbehandlungsverfahren erläutern und abfallanalytischen Verfahren und Versuche erläutern. |
Fertigkeiten |
Die Studierenden beherrschen die technische Auslegung sowie die kritische Bewertung von Techniken sowie der Qualitätskontrolle bzw. Messung von Abfallbehandlungsanlagen. Die Studierenden können relevante Literatur und Daten zu gegebenen Fragestellungen auswählen und bewerten sowie zusätzlich Untersuchungen bzw. Versuche planen und durchführen. Die Studierenden sind in der Lage, Ergebnisse zu präsentieren und sachlich zu diskutieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend diskutieren, gemeinsame Lösungen in Kleingruppen entwickeln sowie ihre eigenen Arbeitsergebnissen vor Kommilitonen vertreten. Sie können fachlich konstruktives Feedback an Kommilitonen geben und mit Rückmeldungen zu ihren eigenen Leistungen umgehen. |
Selbstständigkeit |
Die Studierenden können selbstständig Quellen aus Literatur und Geschäfts- oder Versuchsberichten recherchieren und erschließen, sich das darin enthaltene Wissen aneignen und auf das jeweilige Projekt transformieren. Sie sind fähig, in Rücksprache mit Lehrenden oder der Zwischenpräsentation ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen für die Lösungen der notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (15-25 Minuten in Gruppen), erfolgreiche Teilnahme am Praktikum |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Energie: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0328: Abfall- und Umweltchemie |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Studierenden werden in Gruppen aufgeteilt. Jede Gruppe bereitet ein Protokoll für jeden durchgeführten Versuch vor, das danach im Rahmen einer Nachbesprechung und Diskussion der Ergebnisse als Bewertungsbasis für die Gruppe sowie die einzelnen Studierenden dient. An manchen Versuchen sind Präsentationen des Versuchsverlaufs und der Ergebnisse vorgesehen, mit anschließender Diskussion zwecks kritischer Ergebnisbewertung. Versuche sind zum Beispiel: Siebversuche, Fos/Tac AAS Heizwert |
Literatur | Scripte |
Lehrveranstaltung L0318: Biological Waste Treatment |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Modul M0665: Projekte und Tiefbaurecht |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Umweltrecht, Bauvertragsrecht (entsprechend den Veranstaltungen aus dem Bachelorstudiengang Bau- und Umweltingenieurwesen) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichen Absolvieren des Moduls können die Studierenden komplexe Inhalte des Baugrund- und Tiefbaurechts sowie des Vertragsrechts detailliert erläutern und die Bestimmungen der Vergabe- und Vertragsordnung für Bauleistungen mit Blick auf ihre Anwendung kritisch beurteilen. |
Fertigkeiten |
Die Studierenden sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Nach Abschluss des Projekts sind die Studierenden in der Lage,
|
Selbstständigkeit |
Studierende können
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Kolloquium |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0395: Baugrund- und Tiefbaurecht |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Studienleistung | Kolloquium. Bei bestandenem Kolloquium verbessert sich die Modulnote um 1,0. |
Dozenten | Dr. Georg-Friedger Drewsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Folienskipt (in der Vorlesung erhältlich) weitere Literatur:
|
Lehrveranstaltung L0708: Projekt Geotechnik |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Im Rahmen der Veranstaltung wird in der Gruppe ein ausgewähltes geotechnisches Projekt bearbeitet. Zu den besonderen Fragestellungen des Projektes werden gezielte Vorträge angeboten sowie Material zum Selbststudium. In einem 14tägigen Kolloquium präsentiert jede Gruppe den Stand ihrer Arbeit und diskutiert ihn. Der fertige Entwurf wird in einer Abschlusspräsentation vorgestellt. |
Literatur | abhängig von der Fragestellung |
Modul M0705: Grundwasser |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Wilfried Schneider |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können das Verhalten von Schadstoffen im Untergrund auf dem Wirkungspfad zwischen Boden und Gewässer qualitativ und quantitativ fundiert erklären und mit mathematisch numerischen Simulationsmodellen nachbilden. |
Fertigkeiten |
Die Studierenden sind in der Lage die Bewegung und Speicherung von Wasser in der wasserungesättigten Bodenzone konzeptionell zu beschreiben. Sie sind in der Lage pF- und Ku-Funktionen zu analysieren und zu ermitteln. Es ist ihnen möglich, den Transport von gelösten Schadstoffen in der Sickerwasser- und Grundwasserzone rechnerisch nachzubilden. Dispersivitäten, Sorptionskoeffizienten, Abbauraten und die Freisetzungsraten für organische und anorganische Schadstoffe können sie bestimmen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können sich bei der Lösung von Problemstellungen gegenseitig Hilfestellung geben. |
Selbstständigkeit | keine |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min Klausur und schriftliche Ausarbeitungen |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0539: Geohydraulik und Stofftransport |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Pumpversuchsauswertung, Wassergehalts-Wasserspannungs-Funktion, ungesättigte Leitfähigkeits-Funktion, Brooks-Corey-Relation, van Genuchten Relation, Stofftansport in der ungesättigten Bodenzone, Stofftransport und Reaktionen im Grundwasser, |
Literatur |
Todd; K. (2005): Groundwater Hydrology Fetter, C.W. (2001): Applied Hydrogeology Hölting & Coldewey (2005): Hydrogeologie Charbeneau, R.J. (2000): Groundwater Hydraulics and pollutant Transport |
Lehrveranstaltung L0540: Geohydraulik und Stofftransport |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0541: Simulation in der Grundwasserhydrologie |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Grundlagen und theoretischer Hintergrund der in Wissenschaft und Praxis häufig verwendeten Simulationsmodelle für Pumpversuchsauswertung, Wasserbewegung in der wasserungesättigten Zone, Transport von wassergelösten Stoffen in der wasserungesättigten Zone, Grundwasserneubildung, Schadstofftransport im Grundwasser |
Literatur | Handbücher der verwendeten Slumationsmodelle werden bereitgestellt. |
Lehrveranstaltung L0542: Simulation in der Grundwasserhydrologie |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0713: Betontragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen der Baustatik, Entwurf und Bemessung von Tragwerken des Massivbaus Module 'Massivbau I und II' |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erweitern ihre Kenntnisse in der Tragwerksplanung, speziell in Richtung Hochbau (Gebäude, Dächer, Hallen). Sie verfügen über das für den Entwurf und die Bemessung von Stahlbetonhochbauten bzw. häufig vorkommender Bauteile benötigte Wissen. |
Fertigkeiten |
Die Studierenden können die Entwurfs- und Bemessungsverfahren auf praktische Fragestellungen des Stahlbetonhochbaus anwenden. Sie sind in der Lage, Tragwerke zu entwerfen und für allgemeine Beanspruchungen zu bemessen sowie hierfür die bauliche und konstruktive Umsetzung vorzusehen. Darüber hinaus können sie Entwurfs- und Konstruktionsskizzen anfertigen und die Ergebnisse von Berechnung und Bemessung sprachlich darlegen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppenarbeit hochwertige Arbeitsergebnissen zu erzielen. |
Selbstständigkeit |
Die Studierenden sind fähig, angeleitet durch Lehrende komplexe Stahlbetontragwerke zu entwerfen und zu bemessen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0579: Betontragwerke |
Typ | Seminar |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Anhand einer semesterbegleitenden Gruppenarbeit werden die Inhalte der Lehrveranstaltung "Stahl- und Spannbetonbauteile" eingeübt, diskutiert und präsentiert. |
Literatur | - Projektbezogene Unterlagen werden abgegeben. |
Lehrveranstaltung L0577: Stahl- und Spannbetonbauteile |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Es wird in den Stahlbetonhochbau eingeführt und typische Bauteile werden eingehend behandelt. Inhalte sind:
|
Literatur |
- Vorlesungsunterlagen |
Lehrveranstaltung L0578: Stahl- und Spannbetonbauteile |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0722: Computerbasierte Berechnung von Betontragwerken |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in der Baustatik sowie in der Berechnung von Betontragwerken (Balken, Platten, Scheiben) LV 'Massivbau I und II' LV 'Baustatik I und II' LV 'Betontragwerke' |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die Probleme der numerischen Abbildung von Stahl- und Spannbetontragwerken. |
Fertigkeiten |
Nach erfolgreichem Absolvieren des Moduls sind die Studierende in der Lage, Stahl- und Spannbetontragwerke mit einem FE-Programm zu modellieren und zu bemessen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppen ein reales Gebäude softwaregestützt zu bemessen. |
Selbstständigkeit |
Die Studierenden können eigenständig eine beliebige Betonkonstruktion computerbasiert modellieren und bemessen sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | Mündliche Prüfung (15-30 Minuten pro Person) und Projektarbeit (FE-Berechnung) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0598: Computerbasierte Berechnung von Betontragwerken |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0599: Computerbasierte Berechnung von Betontragwerken |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0600: FE-Modellierung von Betontragwerken |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Finite Elemente Modellierung und programmgesteuerte Bemessung von Betontragwerken mit dem Programmpaket SOFiSTiK |
Literatur |
|
Modul M0801: Wasserressourcen und -versorgung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Mathias Ernst |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis wasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Trinkwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Konfliktfelder wasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für eine nachhaltige Wasserversorgung skizzieren. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. Die Studierenden können Organisationsstrukturen von Wasserversorgungsunternehmen erläutern und einordnen. Sie können verfügbare Trinkwasseraufbereitungsverfahren in der Breite der Anwendungen erklären. |
Fertigkeiten |
Die Studierende können komplexe Problemfelder aus Sicht der Trinkwassergewinnung einordnen und Lösungsansätze für wasserwirtschaftliche sowie technische Maßnahmen aufstellen. Sie können hierfür anwendbare Bewertungsmethoden einordnen. Die Studierenden sind in der Lage wasserchemische Berechnungen für ausgewählte Aufbereitungsprozessen durchzuführen. Sie können ausgewählte allgemein anerkannte Regeln der Technik auf Prozesse der Trinkwasseraufbereitung anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in einer fachlich heterogenen Gruppe gemeinsam komplexe Lösungen für das Management sowie die Aufbereitung von Trinkwasser erarbeiten und dokumentieren. Sie können professionell z.B. als Vertreter/in von Nutzungsinteressen angemessen Stellung beziehen. Sie können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Chemie) + Referat (WRM) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0311: Chemie der Trinkwasseraufbereitung |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Vorlesung wird das für die Praxis relevante wasserchemische Wissen mit Bezug auf die Wassergewinnung, -aufbereitung und -verteilung vermittelt. Die Themenschwerpunkte sind Löslichkeit von Gasen, Kohlensäure-Gleichgewicht, Kalk-Kohlensäure-Gleichgewicht, Entsäuerung, Mischung von Wässern, Enthärtung, Redoxprozesse, Werkstoffe sowie gesetzliche Anforderungen an die Aufbereitung. Alle Themen werden vor dem Hintergrund der allgemein anerkannten Regeln der Technik (DVGW-Regelwerk, DIN-Normen) praxisnah behandelt. Ein wesentlicher Teil der Veranstaltung sind Berechnungen anhand realer Analysendaten (z.B. Berechnung des pH-Wertes und der Calcitlösekapazität ). Zu jeder Einheit gibt es Übungen und Hausaufgaben. Durch das Lösen der Hausaufgaben erhalten die Studierenden ein Feedback und können Bonuspunkte für die Klausur erwerben. Da Kenntnisse der Wasseraufbereitungsprozesse von großer Bedeutung sind, werden diese in Abstimmung mit der Vorlesung „Wasserressourcenmanagement“ zu Beginn des Semesters erklärt. |
Literatur |
MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003. |
Lehrveranstaltung L0312: Chemie der Trinkwasseraufbereitung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Studienleistung | Freiwillige Abgabe von Hausaufgaben. Über die Abgabe von Hausaufgaben können Bonuspunkte für die Klausur gesammelt werden. Detailliertere Informationen erhalten die Studierenden bei Veranstaltungsbeginn. |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0402: Wasserressourcenmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung vermittelt weitergehende Kenntnisse zur den Abhängigkeiten des Wasserressourcenmanagements mit Blick auf die Trinkwasserversorgung. Die aktuelle Situation der globalen Wasserressourcen wird dargestellt, Abhängigkeiten zwischen Nutzungsinteressen erarbeitet und internationale Beispiele für „Best-Pratice“ sowie unzureichenden Wasserressourcenmanagements präsentiert und diskutiert. Entsprechend werden den Studierenden notwendige Voraussetzungen und Rahmenbedingungen für ein „integriertes Wasserressourcenmanagement“ vermittelt. Mit Bezug zum EU Raum und insbesondere Deutschland werden weiterhin Aspekte relevanter Rechtsnormen, administrative Strukture der Wasserversorgung sowie Fragen der Organisation von Trinkwasserversorgungsunternehmen (kommunal, privat, public privat partnership) vermittelt. Managementinstrumente wie das Life-Cycle Assessment, Modelle des Benchmarkings sowie der Wasserdargebotserfassungwerden für die Trinkwasserversorgung präsentiert und diskutiert. Die Inhalte der Vorlesung schließen wo möglich und sinnvoll, regionale Bezüge mit ein. |
Literatur |
|
Lehrveranstaltung L0403: Wasserressourcenmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0923: Integrierte Verkehrsplanung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Verkehrsplanung, z. B. aus dem Modul Verkehrsplanung und Verkehrstechnik im Bachelor |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1068: Integrierte Verkehrsplanung |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz, Dr. Philine Gaffron |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Lehrveranstaltung wird ein Verständnis für die Interdependenzen zwischen Siedlungsstruktur und Verkehrsentwicklung vermittelt. Behandelt werden u. a.:
|
Literatur |
Kutter, Eckhard (2005) Entwicklung innovativer Verkehrsstrategien für die mobile Gesellschaft. Erich Schmidt Verlag. Berlin. Bracher, Tilman u. a. (Hrsg.) (68. Ergänzung 2013) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen) |
Modul M0963: Stahl- und Verbundtragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Jürgen Priebe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen des Stahlbaus (z.B. Stahlbau I und II, BUBC) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten können nach der Absolvierung des Moduls
|
Fertigkeiten |
Nach erfolgreicher Teilnahme an diesem Modul sind die Studenten in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1204: Stahl- und Verbundtragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag |
Lehrveranstaltung L1205: Stahl- und Verbundtragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1097: Stahlbrückenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Jörg Ahlgrimm |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
• Von der Ausschreibung bis zur Fertigstellung – der Weg einer Stahlbrücke • Aufbau einer Brückenstatik – konstruktive Details, Beispiele für Detailnachweise: ◦ mittragende Breite unter Berücksichtigung von Längssteifen ◦ Auflagerpunkt, Auflagersteifen ◦ Querträgerdurchbruch, Säumung ◦ Zinkennachweis (Querträgersteg zwischen Trapezsteifen) • Stahlsorten, -bezeichnungen, Prüfungen und Abnahmezeugnisse • Zerstörungsfreie Schweißnahtprüfverfahren • Korrosionsschutz • Brückenlager – Arten, Aufbau, Funktion, Berechnung, Einbau • Fahrbahnübergänge • Schwingungen von Rundhängern und Seilen – Schwingungsdämpfer • Bewegliche Brücken • Ausführliche Berichte von verschieden Montagevorgängen und -hilfsmitteln • Ausgewählte Schadensfälle |
Literatur |
|
Modul M0966: Studienarbeit Tiefbau |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Dozenten des SD B |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Lehrinhalte der Vertiefung Tiefbau. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ihre Detailkenntnisse im Gebiet der Geotechnik und des Tiefbaus demonstrieren. Sie können zum Stand von Entwicklung und Anwendung Beispiele geben und diese kritisch unter Berücksichtigung aktueller Probleme und Rahmenbedingungen in Wissenschaft und Gesellschaft diskutieren. Die Studierenden sind in der Lage, für eine grundlagenorientierte, praktische Fragestellung aus dem Bereich der Geotechnik und des Tiefbaus eigenständig eine Lösungsstrategie zu definieren und einzelne Lösungsansätze zu skizzieren. Dabei können sie theorieorientiert vorgehen und aktuelle sicherheitstechnische, ökologische, ethische und wirtschaftliche Gesichtspunkte nach dem Stand der Wissenschaft und zugehöriger gesellschaftlicher Diskussionen einbeziehen. Wissenschaftliche Arbeitstechniken, die sie zur eigenen Projektbearbeitung gewählt haben, können sie detailliert darlegen und kritisch erörtern. |
Fertigkeiten |
Die Studierenden sind in der Lage, zur Projektbearbeitung selbständig Methoden auszuwählen und diese Auswahl zu begründen. Sie können darlegen, wie sie die Methoden auf das spezifische Anwendungsfeld beziehen und hierfür an den Anwendungskontext anpassen. Über das Projekt hinaus weisende Ergebnisse sowie Weiterentwicklungen können sie in Grundzügen skizzieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und Kolleginnen und Kollegen Rückmeldung zu ihren Projekten geben. |
Selbstständigkeit |
Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erreichen. |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit (laut FSPO) |
Prüfungsdauer und -umfang | laut FSPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tiefbau: Pflicht |
Modul M0969: Ausgewählte Themen des Bauingenieurwesens |
||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | --- |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1840: Entwurf und Konstruktion von Betontragwerken |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0596: Fertigteilbau |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Broschüren der Fachvereinigung Deutscher Betonfertigteilbau e.V. |
Lehrveranstaltung L0597: Fertigteilbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | Siehe korrespondierende Vorlesung |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1634: Forum I - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Vorträge zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur |
Lehrveranstaltung L1635: Forum II - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Vortrage zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur |
Lehrveranstaltung L0380: Geokunststoffe in der Geotechnik und im Wasserbau |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Michael Heibaum |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Im Erdbau wird heutzutage eine Vielzahl von Bauwerken mit Hilfe von Geokunststoffen realisiert. Insbesondere werden sie in Bereichen, in denen Wechselwirkungen von Baugrund und Wasser auftreten, eingesetzt zum Dichten, Schützen, Trennen, Filtern, Dränen und Verpacken (geotextile Container). Je nach Bauaufgabe werden Geokunststoffe mit gezielt gewählten Eigenschaften eingesetzt, die durch entsprechende Versuche verifiziert werden. Im Rahmen der Vorlesung werden werden Materialien, Einsatzbereiche, Bauweisen und Prüfungen behandelt. |
Literatur |
Vorlesungsbegleitende Unterlagen, s. www.tuhh.de/gbt Monographien:
Zeitschriften:
|
Lehrveranstaltung L1151: Holzbau |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Kolloquium |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Torsten Faber |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1152: Konstruktiver Glasbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Konstruktiver Glasbau - Einführung in den Baustoff Glas (Herstellung, Veredelung, Materialverhalten) - Konstruktion von Fassaden - Fassadentypen - Statische Berechnung von Verglasungen - Statische Berechnung von Fassaden - Unterschiede Plattentragwirkung / Membranwirkung bei Verglasungen - Vertikal- / Horizontalverglasungen mit sicherheitsrelevanten Anforderungen (begehbare, betretbare und absturzsichernde Verglasungen) - Glastragwerke - Brandschutz bei Glasfassaden - Bauphysik bei Fassaden bzw. Verglasungen |
Literatur |
Lehrveranstaltung L1447: Konstruktiver Glasbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0997: Ausgewählte Themen der Baustatik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Uwe Starossek |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse |
Kenntnisse der linearen Statik der statisch bestimmten und unbestimmten Stabtragwerke; Mechanik I/II, Mathematik I/II, Differentialgleichungen I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden ausgewählte Methoden der höheren Baustatik erläutern. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, die vorgestellten Methoden der höheren Baustatik hinsichtlich ihrer Voraussetzungen und Anwendbarkeit zu beurteilen und entsprechende baustatische Berechnungen durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden erhalten die Möglichkeit, angebotene Hausübungen freiwillig und selbständig zu bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 135 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1199: Flächentragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Scheibentheorie
Plattentheorie
Schalentheorie
Stabilitätsprobleme (Übersicht)
|
Literatur |
|
Lehrveranstaltung L1200: Nichtlineare Stabstatik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Arten der Nichtlinearität -Bedeutung nichtlinearer Einflüsse für baustatische Nachweise -Klassifizierung und Gegenüberstellung verschiedener Theorien im Hinblick auf die Erfassung geometrischer Nichtlinearität: Theorien I., II., III. Ordnung -Grundlagen der Elastizitätstheorie II. Ordnung für Stabtragwerke -Durchführung der Elastizitätstheorie II. Ordnung mittels finiter Elemente: allgemeines Weggrößenverfahren -Grundlagen der analytischen Durchführung der Elastizitätstheorie II. Ordnung: Herleitung und Lösung der Differentialgleichung -Baupraktische Verfahren zur analytischen Durchführung der Elastizitätstheorie II. Ordnung: allgemeines Weggrößenverfahren mit analytischer Steifigkeitsmatrix, Drehwinkelverfahren für elastisch unverschiebliche und verschiebliche Stabtragwerke, Berücksichtigung von Imperfektionen Fließgelenktheorie I. Ordnung |
Literatur |
Rothert, H.; Gensichen, V. (1987): Nichtlineare Stabstatik. Springer Verlag, Berlin |
Lehrveranstaltung L1201: Nichtlineare Stabstatik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0699: Spezialtiefbau und Bodenpraktikum |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Bodenmechanik, Grundbau |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem erfolgreichen Absolvieren des Moduls sind die Studierenden in der Lage,
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden sind in der Lage, selbständig ein geotechnisches Baugrund- und Gründungsgutachten zu erstellen, hierfür eigenständig einen Zeit- und Arbeitsplan zu entwerfen und sich selbständig dafür notwendiges Wissen sowie die Datengrundlage zu erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0499: Bodenmechanisches Praktikum |
Typ | Laborpraktikum |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0497: Spezialtiefbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0498: Spezialtiefbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0713: Betontragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Grundlagen der Baustatik, Entwurf und Bemessung von Tragwerken des Massivbaus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erweitern ihre Kenntnisse in der Tragwerksplanung, speziell in Richtung Hochbau (Gebäude, Dächer, Hallen). Sie verfügen über das für den Entwurf und die Bemessung von Stahlbetonhochbauten bzw. häufig vorkommender Bauteile benötigte Wissen. |
Fertigkeiten |
Die Studierenden können die Entwurfs- und Bemessungsverfahren auf praktische Fragestellungen des Stahlbetonhochbaus anwenden. Sie sind in der Lage, Tragwerke zu entwerfen und für allgemeine Beanspruchungen zu bemessen sowie hierfür die bauliche und konstruktive Umsetzung vorzusehen. Darüber hinaus können sie Entwurfs- und Konstruktionsskizzen anfertigen und die Ergebnisse von Berechnung und Bemessung sprachlich darlegen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppenarbeit hochwertige Arbeitsergebnissen zu erzielen. |
Selbstständigkeit |
Die Studierenden sind fähig, angeleitet durch Lehrende komplexe Stahlbetontragwerke zu entwerfen und zu bemessen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0579: Betontragwerke |
Typ | Seminar |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Anhand einer semesterbegleitenden Gruppenarbeit werden die Inhalte der Lehrveranstaltung "Stahl- und Spannbetonbauteile" eingeübt, diskutiert und präsentiert. |
Literatur | - Projektbezogene Unterlagen werden abgegeben. |
Lehrveranstaltung L0577: Stahl- und Spannbetonbauteile |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Es wird in den Stahlbetonhochbau eingeführt und typische Bauteile werden eingehend behandelt. Inhalte sind:
|
Literatur |
- Vorlesungsunterlagen |
Lehrveranstaltung L0578: Stahl- und Spannbetonbauteile |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0963: Stahl- und Verbundtragwerke |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Jürgen Priebe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen des Stahlbaus (z.B. Stahlbau I und II, BUBC) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten können nach der Absolvierung des Moduls
|
Fertigkeiten |
Nach erfolgreicher Teilnahme an diesem Modul sind die Studenten in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1204: Stahl- und Verbundtragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Petersen, C.: Stahlbau, 4.Auflage 2013, Springer-Vieweg Verlag Minnert, J. Wagenknecht, G.: Verbundbau-Praxis - Berechnung und Konstruktion nach Eurocode 4, 2.Auflage 2013, Bauwerk Beuth Verlag |
Lehrveranstaltung L1205: Stahl- und Verbundtragwerke |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Jürgen Priebe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1097: Stahlbrückenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Jörg Ahlgrimm |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
• Von der Ausschreibung bis zur Fertigstellung – der Weg einer Stahlbrücke • Aufbau einer Brückenstatik – konstruktive Details, Beispiele für Detailnachweise: ◦ mittragende Breite unter Berücksichtigung von Längssteifen ◦ Auflagerpunkt, Auflagersteifen ◦ Querträgerdurchbruch, Säumung ◦ Zinkennachweis (Querträgersteg zwischen Trapezsteifen) • Stahlsorten, -bezeichnungen, Prüfungen und Abnahmezeugnisse • Zerstörungsfreie Schweißnahtprüfverfahren • Korrosionsschutz • Brückenlager – Arten, Aufbau, Funktion, Berechnung, Einbau • Fahrbahnübergänge • Schwingungen von Rundhängern und Seilen – Schwingungsdämpfer • Bewegliche Brücken • Ausführliche Berichte von verschieden Montagevorgängen und -hilfsmitteln • Ausgewählte Schadensfälle |
Literatur |
|
Modul M0511: Stromerzeugung aus Wind- und Wasserkraft |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Joachim Gerth |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Thermodynamik, Strömungsmechanik, Grundlagen der Strömungsmaschinen |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Desweiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studieren können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten |
Typ | Projektseminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Andreas Wiese |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Folien der Vorlesung |
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Stephan Heimerl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0593: Baustoffe und Bauwerkserhaltung |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde, Bauchemie und Bauphysik, z.B. über die Module Baustoffgrundlagen und Bauphysik sowie Baustoffe und Bauchemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Komponenten mineralischer Baustoffe und deren Funktion im Detail beschreiben und für die Herstellung von mineralischen Spezialbaustoffen einsetzen. Sie können die Charakteristika mineralischer Bindemittel darstellen. Die Herstellung, Eigenschaften und Anwendungsgebiete von Spezialmörteln und Spezialbetonen können Sie beschreiben und die werkstoffkundlichen Zusammenhänge darstellen. Die Grundlagen der Befestigungstechnik können sie darstellen. |
Fertigkeiten |
Die Studierenden sind in der Lage eine Granulometrieoptimierung eines mineralischen Baustoffs durchzuführen. Sie können die Rezeptur eines mineralischen Spezialmörtels entwerfen und diesen Mörtel herstellen. Die Studierenden sind in der Lage nachträgliche Bewehrungsanschlüsse herzustellen. Sie sind in der Lage, Bauschäden zu erkennen, die Ursachen einzugrenzen, die Grundzüge der Bauwerkserhaltung anzuwenden sowie Instandsetzungs- und Verstärkungsmaßnahmen auszuwählen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden sind in der Lage in einer Kleingruppe eine Spezialmörtelrezeptur zu entwickeln. Sie präsentieren ihr Arbeitsergebniss vor dem Dozenten und den anderen Studierenden und stellen sich einer kritischen Diskussion, in der sie ihre Ergebnisse verteidigen bzw. anpassen. Die Studierenden können auf der Basis dieses Feedbacks gemeinsam diesen Spezialbaustoff herstellen. |
Selbstständigkeit | Die Studierenden sind in der Lage, die vorhandenen Resourcen an Materialien und Laborausstattung für ihr Projekt selbständig zu nutzen sowie fehlende Komponenten zu recherchieren und zu beschaffen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht |
Lehrveranstaltung L0257: Befestigungstechnologie und nachträgliche Bewehrungsanschlüsse |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vortragsfolien der Lehrveranstaltung stehen über STUD.IP zum download zur Verfügung Beton-Kalender 2012: lnfrastrukturbau, Befestigungstechnik. Eurocode 2. Herausgegeben von Konrad Bergmeister, Frank Fingerloos und Johann-Dietrich Wörner; 2012 Ernst & Sohn GmbH & Co. KG. Published by Ernst & Sohn GmbH & Co. KG. DIBt: Hinweise für die Montage von Dübelverankerungen; Oktober 2010 Ratgeber Dübeltechnik, Basiswissen - Metalldübel, chemische Dübel, Kunststoffdübel; Herausgeber Hilti AG
|
Lehrveranstaltung L0255: Instandsetzung von Bauteilen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl, Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bauwerkserhaltung, Instandsetzung und Verstärkung, nachträgliche Bauwerksabdichtung |
Literatur | BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen – schützen, erhalten, instandsetzen |
Lehrveranstaltung L0253: Mineralische Baustoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Komponenten mineralischer Baustoffe und deren Funktion, Bindemittel, Beton und Mörtel, Spezialmörtel, Spezialbetone |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0256: Technologie mineralischer Baustoffe |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Konzeption und Herstellung mineralischer Baustoffe |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis |
Lehrveranstaltung L0254: Transportprozesse in Baustoffen und Bauschäden |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl, Dr. Gernod Deckelmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Transportprozesse in Baustoffen und Schadensprozesse an Bauteilen |
Literatur | Blaich, J.: Bauschäden, Analyse und Vermeidung |
Modul M0723: Spannbeton- und Massivbrückenbau |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Vertiefte Kenntnisse der Bemessung und Konstruktion von Stahlbetontragwerken sowie Grundlagenwissen in der Berechnung von Stahlbetonkonstruktionen. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die Einsatzgebiete der wesentlichen Brückentypen sowie die anzusetzenden Einwirkungen. Sie können die wesentlichen Berechnungsverfahren erläutern. Die Studierenden können die Bemessung einer Spannbetonkonstruktion erläutern. |
Fertigkeiten |
Die Studierenden können vorgespannte Massivbrücken nach den einschlägigen Vorschriften und Verfahren berechnen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppen eine reale Brücke zu entwerfen und zu bemessen. |
Selbstständigkeit |
Die Studierenden können eine Spannbetonbrücke eigenständig berechnen sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0603: Spannbeton- und Massivbrückenbau |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Spannbetonbau
Brückenbau
|
Literatur |
|
Lehrveranstaltung L0604: Spannbeton- und Massivbrückenbau |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0756: Bodenmechanik und -dynamik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Bodenmechanik, Technische Schwingungslehre |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage,
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können im Team zu Arbeitsergebnissen zu messtechnischen und experimentellen Grundlagen kommen und ihre Ergebnisse am Ende des Semsters gemeinsam präsentieren. |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 150 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0374: Ausgewählte Themen der Bodenmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Hans Mathäus Hügel |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt: ausgewählte Themen aus den Bereichen
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein je nach vertieft behandelten Themen
|
Literatur | Kolymbas D. (2007): Geotechnik - Bodenmechanik, Grundbau und Tunnelbau. Springer Verlag |
Lehrveranstaltung L0452: Bodendynamik |
Typ | Vorlesung |
SWS | 3 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 18, Präsenzstudium 42 |
Dozenten | Dr. Sascha Henke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
• die wesentlichen Gleichungen des Einmassenschwingers herleiten und anwenden, • die Wellenausbreitung im Boden unter dynamischer Anregung • Bodendynamische Parameter und deren Bedeutung • die wesentlichen Labor- und Feldversuche zur Ermittlung bodendynamischer Kennwerte und deren Auswertung, • Maschinenfundamente, • Zyklische Verformungsakkumulation • Grundlagen der Plastodynamik |
Literatur |
|
Lehrveranstaltung L0706: Experimentelle Forschung in der Geotechnik |
Typ | Laborpraktikum |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Marius Milatz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Modul M0807: Boundary Element Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method. |
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht International Production Management: Vertiefung Produktionstechnik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0523: Boundary Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Boundary value problems - Hands-on Sessions (programming of BE routines) |
Literatur |
Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden |
Lehrveranstaltung L0524: Boundary Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0827: Modellierung in der Wasserwirtschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Wilfried Schneider |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundwassermodellierung
Leitungssysteme
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die softwaregestützte Modellierung von Grundwasserströmungen, zugehörigen Transportprozessen und städtischen Wasserinfrastrukturen beschreiben. In Fallstudien können sie System- und Schwachpunktanalysen durchführen. Zudem können sie die hydraulischen und schadstoffspezifischen Wirkungszusammenhänge auf dem Pfad Boden - Gewässer quantitativ analysieren. |
Fertigkeiten |
Die Studierenden können softwarebasiert Lösungen für bestehende wasserwirtschaftliche Probleme entwickeln und bewerten. Insbesondere sind sie in der Lage, Grundwassermodelle zur Nachbildung von Strömungen und Schadstoffausbreitungsprozessen eigenständig und wissenschaftlich aufzubauen und anzuwenden. Sie haben die Fähigkeit, Fallbeispiele mit den zur Modellierung von Leitungssystemen maßgeblichen Softwarelösungen (zB EPANET, EPA SWMM) abzubilden und zu untersuchen. |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0543: Angewandte Grundwassermodellierung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Einführung und Anwendung der Grundwassersoftware MODFLOW (PMWIN), Theoretischer Hintergrund des Modells, Studierende bearbeiten unter intensiver Anleitung praktische Fragestellungen mit dem Modell PMWIN. |
Literatur |
MODFLOW-Handbuch Chiang, Wen Hsien: PMWIN |
Lehrveranstaltung L0544: Angewandte Grundwassermodellierung |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0875: Modellierung von Leitungssystemen |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen, NN |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Modellierung von Wasserversorgungssystemen:
Modellierung von Stadtentwässerungssystemen:
|
Literatur |
Modul M0828: Urban Environmental Management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1109: Noise Protection |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Bitte auswählen |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0874: Urban Infrastructures |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Problem/Project Based Learning Main topics are:
|
Literatur |
Modul M0859: Küstenwasserbau II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Küstenwasserbau I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Aspekte des Küsten- und Hochwasserschutzes zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Küsten- und Hochwasserschutzes anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente von Küstenschutzanlagen funktionell und konstruktiv entwerfen und bemessen. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den funktionellen und konstruktiven Entwurf von Küsten- und Hochwasserschutzanlagen auswählen und diese auf Bemessungsaufgaben anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 130 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht |
Lehrveranstaltung L0808: Küsten- und Hochwasserschutz |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Schutz sandiger Küsten
Hochwasserschutz
|
Literatur |
Vorlesungsumdruck Coastal Engineering Manual CEM |
Lehrveranstaltung L1415: Küsten- und Hochwasserschutz |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1411: Unterhaltung und Verteidigung von Hochwasserschutzanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Olaf Müller |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Modul M0860: Hafenbau und Hafenplanung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse |
VL Grundlagen des Küstenwasserbaus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Aspekte der Hafenplanung zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Hafenbaus anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente eines Hafens entwerfen. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den funktionellen Entwurf eines Hafens auswählen und diese auf Bemessungsaufgaben anwenden.
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 150 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0809: Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlagen des Hafenbaus
Elemente von Seehäfen
Anbindung von Hinterlandverkehren / Binnenverkehrswasserbau Schutz von Seehäfen
Fischereihäfen und andere kleine Häfen
|
Literatur | Brinkmann, B.: Seehäfen, Springer 2005 |
Lehrveranstaltung L1414: Hafenbau |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0378: Hafenplanung und Hafenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Vorlesungsumdruck, s. www.tu-harburg.de/gbt |
Modul M0861: Modellieren im Wasserbau |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Prozesse, die mit der Modellierung von Strömungen und Wellen / Seegang im Wasserbau und Küstenwasserbau verbunden sind, detailliert definieren. Daneben können sie wesentliche Aspekte der Modellierung benennen und die gängigen numerischen Modelle zur Simulation von Strömungen und Seegang beschreiben. |
Fertigkeiten |
Die Studierenden können numerische Modelle auf einfache Fragestellungen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 3 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0813: Hydraulische Modelle |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Strobl, Zunic: Wasserbau, Kap. 11 Hydraulische Modelle, Springer |
Lehrveranstaltung L0812: Modellieren von Seegang |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Vorlesungsumdruck |
Lehrveranstaltung L0810: Modellieren von Strömungen in Flüssen und Ästuaren |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Vorlesungsskript |
Modul M0874: Abwassersysteme |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis abwasserwasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Abwasserwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die ganze Breite der Anlagentechniken bei siedlungswasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für einen nachhaltigen Gewässerschutz beschreiben. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. |
Fertigkeiten |
Studierende können verfügbare Abwasseraufbereitungsverfahren in der Breite der Anwendungen für Vorentwürfe auslegen und erklären, sowohl für kommunale als auch für einige industrielle Anlagen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig und planvoll ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0934: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
•Understanding the global situation with water and wastewater •Regional planning and decentralised systems •Overview on innovative approaches •In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse •Mathematical Modelling of Nitrogen Removal •Exercises with calculations and design |
Literatur |
Henze, Mogens: George Tchobanoglous, Franklin L. Burton, H. David Stensel: |
Lehrveranstaltung L0943: Wastewater Systems - Collection, Treatment and Reuse |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0357: Physikalische und chemische Abwasserbehandlung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Überblick über weitergehende Abwasserreinigung Wiederverwendung aufbereiteten kommunalen Abwassers Fällung Flockung Tiefenfiltration Membranverfahren Aktivkohleadsorption Ozonisierung "Advanced Oxidation Processes" Desinfektion |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Lehrveranstaltung L0358: Physikalische und chemische Abwasserbehandlung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Organische Summenparameter Industrieabwasser Verfahren zur Industrieabwasserbehandlung Fällung Flockung Aktivkohleadsorption Refraktäre organische Stoffe |
Literatur |
Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003 Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987 Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007 Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006 Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003 |
Modul M0922: Stadtplanung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Für die Lehrveranstaltung Grundlagen der Stadtplanung: Keine Für die Lehrveranstaltung Straßenraumgestaltung: Vorerfahrung in Verkehrsplanung, z. B. durch die Bachelorveranstaltung „Verkehrsplanung und Verkehrstechnik“ |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1066: Grundlagen der Stadtplanung |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
„Grundlagen der Stadtplanung“ behandelt die Determinanten städtebaulicher Entwicklung und ihre Zusammenhänge. Es geht um:
Ziel der Veranstaltung ist es, ein Grundverständnis städtebaulicher Probleme und Lösungsansätze zu erlangen und die Funktionsweise von Stadtplanung nachvollziehen zu können. In einem praxisorientierten Übungsprojekt werden für ein Planungsgebiet ein Rahmenplan, städtebaulicher Entwurf sowie Bebauungsplan erstellt. |
Literatur |
Albers, Gerd; Wekel, Julian (2009) Stadtplanung: Eine illustrierte Einführung. Primus Verlag. Darmstadt. Frick, Dieter (2008) Theorie des Städtebaus: Zur baulich-räumlichen Organisation von Stadt. Wasmuth-Verlag. Tübingen Jonas, Carsten (2009) Die Stadt und ihr Grundriss. Wasmuth-Verlag. Tübingen Kostof, Spiro; Castillo, Greg (1998) Die Anatomie der Stadt. Geschichte städtischer Strukturen. Campus-Verlag. Frankfurt/New York. |
Lehrveranstaltung L1067: Straßenraumgestaltung |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carsten Gertz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Lehrveranstaltung „Straßenraumgestaltung“ befasst sich mit den vielfältigen funktionalen und gestalterischen Anforderungen an Stadtstraßen und Plätze als wichtigste Elemente des öffentlichen Raums. Behandelt werden:
|
Literatur |
Forschungsgesellschaft für Straßen- und Verkehrswesen (2011) Empfehlungen zur Straßenraumgestaltung innerhalb bebauter Gebiete - ESG. FGSV-Verlag. Köln (FGSV, 230). Forschungsgesellschaft für Straßen- und Verkehrswesen (2007) Richtlinien für die Anlage von Stadtstraßen – RASt 06. FGSV-Verlag. Köln (FGSV, 200). |
Modul M0961: Entwurf und Konstruktion von Tragwerken |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen des konstruktiven Ingenieurbaus (Baustatik, Stahl- und Spannbetonbau, Stahlbau) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ausgewählte Aspekte der Bau- und Technikgeschichte wiedergeben und grundsätzliche Entwurfsstrategien erläutern. |
Fertigkeiten |
Die Studierenden sind in der Lage Tragwerken zu entwerfen und verfügen über vertiefte Fertigkeiten in der Tragwerksplanung. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage Probleme und Lösungen vor einem Fachpublikum zu vertreten, indem die in Gruppen bearbeiteten Aufgaben im Plenum präsentiert und diskutiert werden. |
Selbstständigkeit |
Die Studierenden entwickeln auf Basis des veranstaltungsbegleitenden Feedbacks eigenständige Lösungen für komplexe technische Fragestellungen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Mündliche Prüfung (15-30 Minuten pro Person) und Projektarbeit (FE-Berechnung) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L1144: Bemessung und Konstruktion |
Typ | Projektseminar |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Anhand verschiedener (kleiner) semesterbegleitender Projekte wird das Entwerfen und Konstruieren geübt. Die Entwurfsaufgaben werden in Gruppen bearbeitet und müssen im Plenum präsentiert und diskutiert werden. |
Literatur | - Projektbezogene Unterlagen |
Lehrveranstaltung L1142: Tragwerksentwurf |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Studierenden lernen Tragwerke zu entwerfen und erlangen Gestaltungs- und Entscheidungskompetenz. Folgende Aspekte werden angesprochen:
|
Literatur | - Vorlesungsunterlagen, Fachzeitschriften |
Modul M0968: Unterirdisches Bauen und Numerik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Grundkenntnisse der Konstruktion und Bemessung von Stahlbetrontragwerken, Bodenmechanik und Grundbau |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0375: Numerische Methoden in der Geotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Hans Mathäus Hügel |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
Qualifikationsziele: Die Studierenden sollen nach erfolgreichem Absolvieren der Lehrveranstaltung in der Lage sein |
Literatur |
|
Lehrveranstaltung L0707: Unterirdisches Bauen |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0977: Baulogistik und Projektmanagement |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Heike Flämig |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können...
|
Fertigkeiten |
Studierende können...
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können...
|
Selbstständigkeit |
Studierende können...
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Zwei schriftliche Ausarbeitungen und zwei kurze Ergebnispräsentationen |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht |
Lehrveranstaltung L1163: Baulogistik |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung macht deutlich, wie die Logistik von Bauvorhaben inzwischen zu einem wichtigen Wettbewerbsfaktor geworden ist und was es dabei zu beachten gilt. Folgende Themenfelder werden behandelt:
|
Literatur |
Flämig, Heike: Produktionslogistik in Stadtregionen. In: Forschungsverbund Ökologische Mobilität (Hrsg.) Forschungsbericht Bd. 15.2. Wuppertal 2000. Krauss, Siri: Die Baulogistik in der schlüsselfertigen Ausführung, Bauwerk Verlag GmbH Berlin 2005. Lipsmeier, Klaus: Abfallkennzahlen für Neubauleistungen im Hochbau : Verlag Forum für Abfallwirtschaft und Altlasten, 2004. Schmidt, Norbert: Wettbewerbsfaktor Baulogistik. Neue Wertschöpfungspotenziale in der Baustoffversorgung. In: Klaus, Peter: Edition Logistik. Band 6. Deutscher Verkehrs-Verlag. Hamburg 2003. Seemann, Y.F. (2007): Logistikkoordination als Organisationseinheit bei der Bauausführung Wissenschaftsverlag Mainz in Aachen, Aachen. (Mitteilungen aus dem Fachgebiet Baubetrieb und Bauwirtschaft (Hrsg. Kuhne, V.): Heft 20) |
Lehrveranstaltung L1164: Baulogistik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1161: Projektentwicklung und -steuerung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen dieser Vorlesung werden entlang einer Projektlebenszyklusbetrachtung die wesentlichen Aspekte der Projektentwicklung und –steuerung behandelt:
|
Literatur |
Projektmanagement-Fachmann. Band 1 und Band 2. RKW-Verlag, Eschborn, 2004. |
Lehrveranstaltung L1162: Projektentwicklung und -steuerung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heike Flämig |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0998: Baustatik und Baudynamik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Uwe Starossek |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse |
Kenntnisse der linearen Statik der statisch bestimmten und unbestimmten Stabtragwerke; Mechanik I/II, Mathematik I/II, Differentialgleichungen I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden die grundlegenden Aspekte der dynamischen Wirkungen auf Tragwerke und die entsprechenden Berechnungsverfahren erläutern. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, das Verhalten von Tragwerken unter dynamischer Belastung mittels rechnerischer Verfahren vorherzusagen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 135 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1202: Baudynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Clough, R.W., Penzien, J.: Dynamics of Structures. 2. Aufl., McGraw-Hill, New York, 1993. |
Lehrveranstaltung L1203: Baudynamik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0564: Bruchmechanik und Schwingfestigkeit |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Ingo Hadrych |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0565: Bruchmechanik und Schwingfestigkeit |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Ingo Hadrych |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0999: Projekt des Stahlbaus |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Jürgen Priebe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Stahl- und Verbundtragwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage sich einen Teilbereich der Projektaufgabe detailliert zu erarbeiten und anderen zu erklären. |
Fertigkeiten |
Die Studierenden können für ihren Teilbereich der Gesamtaufgabe Skizzen und Berechnungen anfertigen. Dabei sind sie in der Lage bei sich verändernden Rahmenbedingungen durch andere Teilprojekte nachzusteuern. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können ihre eigenen Ergebnisse in der Gruppe vorstellen und vertreten. Sie sind in der Lage konsensorientiert zu arbeiten und berücksichtigen dabei gruppenübergreifende Abhängigkeiten. Sie können in einer Gruppe selbständig Aufgaben verteilen und ausführen. |
Selbstständigkeit |
Die Studierenden können ein Teilgebiet der Gesamtaufgabe eigenverantwortlich bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 15-20 Seiten (exklusive Anhang) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1206: Projekt des Stahlbaus |
Typ | Projektseminar |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Dr. Jürgen Priebe, Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Bearbeitung eines großen Bauprojektes, wie z.B Hochhaus, Großbrücke, Stadiondach etc. in Kleingruppen |
Literatur |
Modul M0581: Gewässerschutz |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
Students can accurately assess current problems and situations in a country-specific or local context. They can suggest concrete actions to contribute to the planning of tomorrow's urban water cycle. Furthermore, they can suggest appropriate technical, administrative and legislative solutions to solve these problems. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare themselves before presentations and discussion. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Environmental Engineering: Vertiefung Wasser: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0963: Geoinformationssysteme in der Wasserwirtschaft und im Wasserbau |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Theoretische Grundlagen von Geographischen Informationssystemen (GIS)
|
Literatur | None |
Lehrveranstaltung L0226: Water Protection and Wastewater Management |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
The literature listed below is available in the library of the TUHH.
|
Lehrveranstaltung L0227: Water Protection and Wastewater Management |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
The literature listed below is available in the library of the TUHH.
|
Modul M0595: Materialprüfung, Bauzustands- und Schadensanalyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Baustoffkunde oder Werkstoffkunde, z.B. über das Modul Baustoffe und Bauchemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die Regeln für das Handeln mit sowie die Anwendung und Kennzeichnung von Bauprodukten in Deutschland zu beschreiben. Sie wissen welche Methoden zur Ermittlung von Baustoffeigenschaften zur Verfügung stehen und welche Grenzen und Charakteristika die wichtigsten Methoden haben. |
Fertigkeiten | Die Studierenden können selbstständig die Regeln für das Handeln mit und die Verwendbarkeit von Bauprodukten in Deutschland ermitteln. Sie können geeignete Prüfmethoden für die Überwachung von Bauprodukten, die Untersuchung von Schadensprozessen sowie für die Bauzustandsanalyse auswählen. Sie können von Symptomen auf die Ursache von Bauschäden schließen. Sie sind in der Lage die Ergebnisse einer Materialprüfung in einem Untersuchungsbericht oder Gutachten zusammenzufassen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die unterschiedlichen Rollen von Herstellern sowie von Prüf-, Überwachungs- und Zertifizierungstellen beschreiben, die im Rahmen der Materialprüfung zum Tragen kommen. Das gleiche gilt für die unterschiedlichen Rollen der verschiedenen Beteiligten in gerichtlichen Auseinandersetzungen. |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht |
Lehrveranstaltung L0260: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Materialprüfung und Kennzeichnung von Bauprodukten, Untersuchungsmethoden für Baustoffe und Bauteile, Untersuchungsberichte und Gutachten, Bauzustandbeschreibung, vom Symptom zur Schadensursache |
Literatur |
Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013. |
Lehrveranstaltung L0261: Materialprüfung, Bauzustands- und Schadensanalyse |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0603: Nichtlineare Strukturanalyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Düster |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Mathematik I, II, III, Mechanik I, II, III, IV Differentialgleichungen 2 (Partielle Differentialgleichungen) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können |
Fertigkeiten |
Studierende sind in der Lage |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können |
Selbstständigkeit |
Studierende sind fähig |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Ship and Offshore Technology: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0277: Nichtlineare Strukturanalyse |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Alexander Düster |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
1. Einleitung |
Literatur |
[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014. |
Lehrveranstaltung L0279: Nichtlineare Strukturanalyse |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Alexander Düster |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0619: Abfallbehandlungstechnologien |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | chemische und biologische Grundkenntnisse |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Ziel ist der Erwerb von Kenntnissen zur Planung von biologischen Abfallbehandlungsverfahren. Die Studierenden können Techniken der anaeroben und aeroben Abfallbehandlung detailliert beschreiben, unterschiedliche Designs von Abluftbehandlung für biologische Abfallbehandlungsverfahren erläutern und abfallanalytischen Verfahren und Versuche erläutern. |
Fertigkeiten |
Die Studierenden beherrschen die technische Auslegung sowie die kritische Bewertung von Techniken sowie der Qualitätskontrolle bzw. Messung von Abfallbehandlungsanlagen. Die Studierenden können relevante Literatur und Daten zu gegebenen Fragestellungen auswählen und bewerten sowie zusätzlich Untersuchungen bzw. Versuche planen und durchführen. Die Studierenden sind in der Lage, Ergebnisse zu präsentieren und sachlich zu diskutieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend diskutieren, gemeinsame Lösungen in Kleingruppen entwickeln sowie ihre eigenen Arbeitsergebnissen vor Kommilitonen vertreten. Sie können fachlich konstruktives Feedback an Kommilitonen geben und mit Rückmeldungen zu ihren eigenen Leistungen umgehen. |
Selbstständigkeit |
Die Studierenden können selbstständig Quellen aus Literatur und Geschäfts- oder Versuchsberichten recherchieren und erschließen, sich das darin enthaltene Wissen aneignen und auf das jeweilige Projekt transformieren. Sie sind fähig, in Rücksprache mit Lehrenden oder der Zwischenpräsentation ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen für die Lösungen der notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (15-25 Minuten in Gruppen), erfolgreiche Teilnahme am Praktikum |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Energie: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0328: Abfall- und Umweltchemie |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Studierenden werden in Gruppen aufgeteilt. Jede Gruppe bereitet ein Protokoll für jeden durchgeführten Versuch vor, das danach im Rahmen einer Nachbesprechung und Diskussion der Ergebnisse als Bewertungsbasis für die Gruppe sowie die einzelnen Studierenden dient. An manchen Versuchen sind Präsentationen des Versuchsverlaufs und der Ergebnisse vorgesehen, mit anschließender Diskussion zwecks kritischer Ergebnisbewertung. Versuche sind zum Beispiel: Siebversuche, Fos/Tac AAS Heizwert |
Literatur | Scripte |
Lehrveranstaltung L0318: Biological Waste Treatment |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Modul M0665: Projekte und Tiefbaurecht |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Umweltrecht, Bauvertragsrecht (entsprechend den Veranstaltungen aus dem Bachelorstudiengang Bau- und Umweltingenieurwesen) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichen Absolvieren des Moduls können die Studierenden komplexe Inhalte des Baugrund- und Tiefbaurechts sowie des Vertragsrechts detailliert erläutern und die Bestimmungen der Vergabe- und Vertragsordnung für Bauleistungen mit Blick auf ihre Anwendung kritisch beurteilen. |
Fertigkeiten |
Die Studierenden sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Nach Abschluss des Projekts sind die Studierenden in der Lage,
|
Selbstständigkeit |
Studierende können
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Kolloquium |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0395: Baugrund- und Tiefbaurecht |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Studienleistung | Kolloquium. Bei bestandenem Kolloquium verbessert sich die Modulnote um 1,0. |
Dozenten | Dr. Georg-Friedger Drewsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Folienskipt (in der Vorlesung erhältlich) weitere Literatur:
|
Lehrveranstaltung L0708: Projekt Geotechnik |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Im Rahmen der Veranstaltung wird in der Gruppe ein ausgewähltes geotechnisches Projekt bearbeitet. Zu den besonderen Fragestellungen des Projektes werden gezielte Vorträge angeboten sowie Material zum Selbststudium. In einem 14tägigen Kolloquium präsentiert jede Gruppe den Stand ihrer Arbeit und diskutiert ihn. Der fertige Entwurf wird in einer Abschlusspräsentation vorgestellt. |
Literatur | abhängig von der Fragestellung |
Modul M0705: Grundwasser |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Wilfried Schneider |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können das Verhalten von Schadstoffen im Untergrund auf dem Wirkungspfad zwischen Boden und Gewässer qualitativ und quantitativ fundiert erklären und mit mathematisch numerischen Simulationsmodellen nachbilden. |
Fertigkeiten |
Die Studierenden sind in der Lage die Bewegung und Speicherung von Wasser in der wasserungesättigten Bodenzone konzeptionell zu beschreiben. Sie sind in der Lage pF- und Ku-Funktionen zu analysieren und zu ermitteln. Es ist ihnen möglich, den Transport von gelösten Schadstoffen in der Sickerwasser- und Grundwasserzone rechnerisch nachzubilden. Dispersivitäten, Sorptionskoeffizienten, Abbauraten und die Freisetzungsraten für organische und anorganische Schadstoffe können sie bestimmen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können sich bei der Lösung von Problemstellungen gegenseitig Hilfestellung geben. |
Selbstständigkeit | keine |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min Klausur und schriftliche Ausarbeitungen |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0539: Geohydraulik und Stofftransport |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Pumpversuchsauswertung, Wassergehalts-Wasserspannungs-Funktion, ungesättigte Leitfähigkeits-Funktion, Brooks-Corey-Relation, van Genuchten Relation, Stofftansport in der ungesättigten Bodenzone, Stofftransport und Reaktionen im Grundwasser, |
Literatur |
Todd; K. (2005): Groundwater Hydrology Fetter, C.W. (2001): Applied Hydrogeology Hölting & Coldewey (2005): Hydrogeologie Charbeneau, R.J. (2000): Groundwater Hydraulics and pollutant Transport |
Lehrveranstaltung L0540: Geohydraulik und Stofftransport |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0541: Simulation in der Grundwasserhydrologie |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Grundlagen und theoretischer Hintergrund der in Wissenschaft und Praxis häufig verwendeten Simulationsmodelle für Pumpversuchsauswertung, Wasserbewegung in der wasserungesättigten Zone, Transport von wassergelösten Stoffen in der wasserungesättigten Zone, Grundwasserneubildung, Schadstofftransport im Grundwasser |
Literatur | Handbücher der verwendeten Slumationsmodelle werden bereitgestellt. |
Lehrveranstaltung L0542: Simulation in der Grundwasserhydrologie |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Wilfried Schneider |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0722: Computerbasierte Berechnung von Betontragwerken |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Günter Rombach |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in der Baustatik sowie in der Berechnung von Betontragwerken (Balken, Platten, Scheiben) LV 'Massivbau I und II' LV 'Baustatik I und II' LV 'Betontragwerke' |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die Probleme der numerischen Abbildung von Stahl- und Spannbetontragwerken. |
Fertigkeiten |
Nach erfolgreichem Absolvieren des Moduls sind die Studierende in der Lage, Stahl- und Spannbetontragwerke mit einem FE-Programm zu modellieren und zu bemessen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, in Gruppen ein reales Gebäude softwaregestützt zu bemessen. |
Selbstständigkeit |
Die Studierenden können eigenständig eine beliebige Betonkonstruktion computerbasiert modellieren und bemessen sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | Mündliche Prüfung (15-30 Minuten pro Person) und Projektarbeit (FE-Berechnung) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L0598: Computerbasierte Berechnung von Betontragwerken |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0599: Computerbasierte Berechnung von Betontragwerken |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0600: FE-Modellierung von Betontragwerken |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Finite Elemente Modellierung und programmgesteuerte Bemessung von Betontragwerken mit dem Programmpaket SOFiSTiK |
Literatur |
|
Modul M0801: Wasserressourcen und -versorgung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Mathias Ernst |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnis wasserwirtschaftlicher Maßnahmenfelder sowie der zentralen Prozesse der Trinkwasseraufbereitung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Konfliktfelder wasserwirtschaftlichen Maßnahmen und deren gegenseitige Abhängigkeit für eine nachhaltige Wasserversorgung skizzieren. Sie können relevante ökonomische, ökologische und soziale Aspekte wiedergeben. Die Studierenden können Organisationsstrukturen von Wasserversorgungsunternehmen erläutern und einordnen. Sie können verfügbare Trinkwasseraufbereitungsverfahren in der Breite der Anwendungen erklären. |
Fertigkeiten |
Die Studierende können komplexe Problemfelder aus Sicht der Trinkwassergewinnung einordnen und Lösungsansätze für wasserwirtschaftliche sowie technische Maßnahmen aufstellen. Sie können hierfür anwendbare Bewertungsmethoden einordnen. Die Studierenden sind in der Lage wasserchemische Berechnungen für ausgewählte Aufbereitungsprozessen durchzuführen. Sie können ausgewählte allgemein anerkannte Regeln der Technik auf Prozesse der Trinkwasseraufbereitung anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in einer fachlich heterogenen Gruppe gemeinsam komplexe Lösungen für das Management sowie die Aufbereitung von Trinkwasser erarbeiten und dokumentieren. Sie können professionell z.B. als Vertreter/in von Nutzungsinteressen angemessen Stellung beziehen. Sie können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden sind in der Lage selbstständig ein Thema zu erarbeiten und dieses zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Chemie) + Referat (WRM) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0311: Chemie der Trinkwasseraufbereitung |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Vorlesung wird das für die Praxis relevante wasserchemische Wissen mit Bezug auf die Wassergewinnung, -aufbereitung und -verteilung vermittelt. Die Themenschwerpunkte sind Löslichkeit von Gasen, Kohlensäure-Gleichgewicht, Kalk-Kohlensäure-Gleichgewicht, Entsäuerung, Mischung von Wässern, Enthärtung, Redoxprozesse, Werkstoffe sowie gesetzliche Anforderungen an die Aufbereitung. Alle Themen werden vor dem Hintergrund der allgemein anerkannten Regeln der Technik (DVGW-Regelwerk, DIN-Normen) praxisnah behandelt. Ein wesentlicher Teil der Veranstaltung sind Berechnungen anhand realer Analysendaten (z.B. Berechnung des pH-Wertes und der Calcitlösekapazität ). Zu jeder Einheit gibt es Übungen und Hausaufgaben. Durch das Lösen der Hausaufgaben erhalten die Studierenden ein Feedback und können Bonuspunkte für die Klausur erwerben. Da Kenntnisse der Wasseraufbereitungsprozesse von großer Bedeutung sind, werden diese in Abstimmung mit der Vorlesung „Wasserressourcenmanagement“ zu Beginn des Semesters erklärt. |
Literatur |
MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005. Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996. DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004. Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003. |
Lehrveranstaltung L0312: Chemie der Trinkwasseraufbereitung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Studienleistung | Freiwillige Abgabe von Hausaufgaben. Über die Abgabe von Hausaufgaben können Bonuspunkte für die Klausur gesammelt werden. Detailliertere Informationen erhalten die Studierenden bei Veranstaltungsbeginn. |
Dozenten | Dr. Klaus Johannsen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0402: Wasserressourcenmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung vermittelt weitergehende Kenntnisse zur den Abhängigkeiten des Wasserressourcenmanagements mit Blick auf die Trinkwasserversorgung. Die aktuelle Situation der globalen Wasserressourcen wird dargestellt, Abhängigkeiten zwischen Nutzungsinteressen erarbeitet und internationale Beispiele für „Best-Pratice“ sowie unzureichenden Wasserressourcenmanagements präsentiert und diskutiert. Entsprechend werden den Studierenden notwendige Voraussetzungen und Rahmenbedingungen für ein „integriertes Wasserressourcenmanagement“ vermittelt. Mit Bezug zum EU Raum und insbesondere Deutschland werden weiterhin Aspekte relevanter Rechtsnormen, administrative Strukture der Wasserversorgung sowie Fragen der Organisation von Trinkwasserversorgungsunternehmen (kommunal, privat, public privat partnership) vermittelt. Managementinstrumente wie das Life-Cycle Assessment, Modelle des Benchmarkings sowie der Wasserdargebotserfassungwerden für die Trinkwasserversorgung präsentiert und diskutiert. Die Inhalte der Vorlesung schließen wo möglich und sinnvoll, regionale Bezüge mit ein. |
Literatur |
|
Lehrveranstaltung L0403: Wasserressourcenmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Mathias Ernst |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0858: Küstenwasserbau I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Peter Fröhle |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Grundlagen des Wasserbaus, der Hydrologie sowie der Hydromechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage die wesentlichen Grundlagen des Küstenwasserbaus zu definieren, detailliert zu erläutern und auf einzelne praktische Fragestellungen des Küstenwasserbaus anzuwenden. Sie können die Grundlagen für Planung und Bemessung von küstenwasserbaulichen Anlagen definieren und ermitteln und die gängigen Ansätze für die konstruktive und funktionelle Bemessung im Küstenwasserbau beschreiben. |
Fertigkeiten |
Die Studierenden können geeignete Bemessungsansätze für den konstruktiven Entwurf von küstenwasserbaulichen Anlagen auswählen und auf vorgegebene Bemessungsaufgaben anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | Die Prüfungsdauer beträgt 2 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0807: Grundlagen des Küstenwasserbaus |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Coastal Engineering Manual, CEM Vorlesungsumdruck |
Lehrveranstaltung L1413: Grundlagen des Küstenwasserbaus |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Peter Fröhle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0923: Integrierte Verkehrsplanung |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Carsten Gertz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Verkehrsplanung, z. B. aus dem Modul Verkehrsplanung und Verkehrstechnik im Bachelor |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L1068: Integrierte Verkehrsplanung |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Carsten Gertz, Dr. Philine Gaffron |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Lehrveranstaltung wird ein Verständnis für die Interdependenzen zwischen Siedlungsstruktur und Verkehrsentwicklung vermittelt. Behandelt werden u. a.:
|
Literatur |
Kutter, Eckhard (2005) Entwicklung innovativer Verkehrsstrategien für die mobile Gesellschaft. Erich Schmidt Verlag. Berlin. Bracher, Tilman u. a. (Hrsg.) (68. Ergänzung 2013) Handbuch der kommunalen Verkehrsplanung. Herbert Wichmann Verlag. Berlin, Offenbach. (Loseblattsammlung mit kontinuierlichen Ergänzungen) |
Modul M0964: Konstruktionen im Grund- und Wasserbau |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Jürgen Grabe |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Module aus dem Bachelorstudiengang Bau- und Umweltingenieurwesen:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Kenntnis verschiederner Tunnelbauweisen sowie spezieller Methoden und Verfahren des unterirdischen Bauens. Die Studierenden verfügen außerdem über die nötigen Kenntnisse alle Einzelbauteile von Spundwandkonstruktionen zu entwerfen und in Abhängigkeit von äußeren Randbedingungen die richtigen Einzelbauteile auszuwählen. |
Fertigkeiten |
Grundkenntnisse beim Entwurf von Tunneln sowie praktische Fertigkeiten in der Tunnelstatik. Die Studierenden können außderdem Spundwände mit allen Einzelbauteilen konstruieren, sinnvolle Einzelbauteile in Abhängigkeit von gegebenen Randbedingungen wählen, alle Arten von Spundwandkonstruktionen (Wellenspundwand, gemischte Spundwand) bemessen und alle Einzelbauteile und Anschlusskonstruktionen bemessen. |
Personale Kompetenzen | |
Sozialkompetenz | Teamfähigkeit in der Projektplanung und beim Entwurf von Tunnelbauwerken. |
Selbstständigkeit | Förderung des selbstständigen und kreativen Arbeitens im Rahmen einer Entwurfsübung. |
Arbeitsaufwand in Stunden | Eigenstudium 82, Präsenzstudium 98 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Pflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht |
Lehrveranstaltung L0601: Betonkonstruktionen im Grundbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Bemessungn und Konstruktion von Tragwerken im Grundbau
|
Literatur | Handouts |
Lehrveranstaltung L0602: Betonkonstruktionen im Grundbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1146: Stahlkonstruktionen im Grund- und Wasserbau |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Frank Feindt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0707: Unterirdisches Bauen |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Marius Milatz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1811: Unterirdisches Bauen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Studienleistung | Schriftliche Ausarbeitung (10 Seiten) und Präsentation (15 min). Für Bericht und Präsentation erhält man je 5% der Punkte in der Klausur als Bonus. |
Dozenten | Marius Milatz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0965: Studienarbeit Tragwerke |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Dozenten des SD B |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Lehrinhalte der Vertiefung Tragwerke. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ihre Detailkenntnisse im Gebiet der Tragwerksplanung und des Tragwerksbaus demonstrieren. Sie können zum Stand von Entwicklung und Anwendung Beispiele geben und diese kritisch unter Berücksichtigung aktueller Probleme und Rahmenbedingungen in Wissenschaft und Gesellschaft diskutieren. Die Studierenden sind in der Lage, für eine grundlagenorientierte, praktische Fragestellung aus dem Bereich der Tragwerksplanung und des Tragwerksbaus eigenständig eine Lösungsstrategie zu definieren und einzelne Lösungsansätze zu skizzieren. Dabei können sie theorieorientiert vorgehen und aktuelle sicherheitstechnische, ökologische, ethische und wirtschaftliche Gesichtspunkte nach dem Stand der Wissenschaft und zugehöriger gesellschaftlicher Diskussionen einbeziehen. Wissenschaftliche Arbeitstechniken, die sie zur eigenen Projektbearbeitung gewählt haben, können sie detailliert darlegen und kritisch erörtern. |
Fertigkeiten |
Die Studierenden sind in der Lage, zur Projektbearbeitung selbständig Methoden auszuwählen und diese Auswahl zu begründen. Sie können darlegen, wie sie die Methoden auf das spezifische Anwendungsfeld beziehen und hierfür an den Anwendungskontext anpassen. Über das Projekt hinaus weisende Ergebnisse sowie Weiterentwicklungen können sie in Grundzügen skizzieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und Kolleginnen und Kollegen Rückmeldung zu ihren Projekten geben. |
Selbstständigkeit |
Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erreichen. |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit (laut FSPO) |
Prüfungsdauer und -umfang | laut FSPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Pflicht |
Modul M0969: Ausgewählte Themen des Bauingenieurwesens |
||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | --- |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1840: Entwurf und Konstruktion von Betontragwerken |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0596: Fertigteilbau |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Broschüren der Fachvereinigung Deutscher Betonfertigteilbau e.V. |
Lehrveranstaltung L0597: Fertigteilbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | Siehe korrespondierende Vorlesung |
Dozenten | Prof. Günter Rombach |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1634: Forum I - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Vorträge zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur |
Lehrveranstaltung L1635: Forum II - Geotechnik und Baubetrieb |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Jürgen Grabe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Vortrage zu verschiedenen Projekten und Fragestellungen aus Praxis und Forschung. |
Literatur |
Lehrveranstaltung L0380: Geokunststoffe in der Geotechnik und im Wasserbau |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Michael Heibaum |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Im Erdbau wird heutzutage eine Vielzahl von Bauwerken mit Hilfe von Geokunststoffen realisiert. Insbesondere werden sie in Bereichen, in denen Wechselwirkungen von Baugrund und Wasser auftreten, eingesetzt zum Dichten, Schützen, Trennen, Filtern, Dränen und Verpacken (geotextile Container). Je nach Bauaufgabe werden Geokunststoffe mit gezielt gewählten Eigenschaften eingesetzt, die durch entsprechende Versuche verifiziert werden. Im Rahmen der Vorlesung werden werden Materialien, Einsatzbereiche, Bauweisen und Prüfungen behandelt. |
Literatur |
Vorlesungsbegleitende Unterlagen, s. www.tuhh.de/gbt Monographien:
Zeitschriften:
|
Lehrveranstaltung L1151: Holzbau |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Kolloquium |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Torsten Faber |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1152: Konstruktiver Glasbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Konstruktiver Glasbau - Einführung in den Baustoff Glas (Herstellung, Veredelung, Materialverhalten) - Konstruktion von Fassaden - Fassadentypen - Statische Berechnung von Verglasungen - Statische Berechnung von Fassaden - Unterschiede Plattentragwirkung / Membranwirkung bei Verglasungen - Vertikal- / Horizontalverglasungen mit sicherheitsrelevanten Anforderungen (begehbare, betretbare und absturzsichernde Verglasungen) - Glastragwerke - Brandschutz bei Glasfassaden - Bauphysik bei Fassaden bzw. Verglasungen |
Literatur |
Lehrveranstaltung L1447: Konstruktiver Glasbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Marvin Matzik |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0997: Ausgewählte Themen der Baustatik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Uwe Starossek |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse |
Kenntnisse der linearen Statik der statisch bestimmten und unbestimmten Stabtragwerke; Mechanik I/II, Mathematik I/II, Differentialgleichungen I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Absolvieren dieses Moduls können die Studierenden ausgewählte Methoden der höheren Baustatik erläutern. |
Fertigkeiten |
Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden in der Lage, die vorgestellten Methoden der höheren Baustatik hinsichtlich ihrer Voraussetzungen und Anwendbarkeit zu beurteilen und entsprechende baustatische Berechnungen durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden erhalten die Möglichkeit, angebotene Hausübungen freiwillig und selbständig zu bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 135 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht |
Lehrveranstaltung L1199: Flächentragwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Scheibentheorie
Plattentheorie
Schalentheorie
Stabilitätsprobleme (Übersicht)
|
Literatur |
|
Lehrveranstaltung L1200: Nichtlineare Stabstatik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Arten der Nichtlinearität -Bedeutung nichtlinearer Einflüsse für baustatische Nachweise -Klassifizierung und Gegenüberstellung verschiedener Theorien im Hinblick auf die Erfassung geometrischer Nichtlinearität: Theorien I., II., III. Ordnung -Grundlagen der Elastizitätstheorie II. Ordnung für Stabtragwerke -Durchführung der Elastizitätstheorie II. Ordnung mittels finiter Elemente: allgemeines Weggrößenverfahren -Grundlagen der analytischen Durchführung der Elastizitätstheorie II. Ordnung: Herleitung und Lösung der Differentialgleichung -Baupraktische Verfahren zur analytischen Durchführung der Elastizitätstheorie II. Ordnung: allgemeines Weggrößenverfahren mit analytischer Steifigkeitsmatrix, Drehwinkelverfahren für elastisch unverschiebliche und verschiebliche Stabtragwerke, Berücksichtigung von Imperfektionen Fließgelenktheorie I. Ordnung |
Literatur |
Rothert, H.; Gensichen, V. (1987): Nichtlineare Stabstatik. Springer Verlag, Berlin |
Lehrveranstaltung L1201: Nichtlineare Stabstatik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Uwe Starossek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M-002: Masterarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 900, Präsenzstudium 0 |
Leistungspunkte | 30 |
Prüfung | laut FSPO |
Prüfungsdauer und -umfang | laut FSPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energie- und Umwelttechnik: Abschlussarbeit: Pflicht Energietechnik: Abschlussarbeit: Pflicht Environmental Engineering: Abschlussarbeit: Pflicht Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht Global Innovation Management: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Information and Communication Systems: Abschlussarbeit: Pflicht International Production Management: Abschlussarbeit: Pflicht Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht Materialwissenschaft: Abschlussarbeit: Pflicht Mechanical Engineering and Management: Abschlussarbeit: Pflicht Mechatronics: Abschlussarbeit: Pflicht Mediziningenieurwesen: Abschlussarbeit: Pflicht Microelectronics and Microsystems: Abschlussarbeit: Pflicht Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht Regenerative Energien: Abschlussarbeit: Pflicht Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht Ship and Offshore Technology: Abschlussarbeit: Pflicht Theoretischer Maschinenbau: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht |